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Mathematical models are emerging as important tools

in the study of microbiology. As an illustrative example,

we present results from several models each generated

to study the interaction of Mycobacterium tuberculosis

and the immune system. Different mathematical models

were formulated on the basis of assumptions regarding

system–component interactions, enabling us to explore

specific aspects at diverse biological scales (e.g. intra-

cellular, cell–cell interactions, and cell population

dynamics). In addition, we were able to examine both

temporal and spatial aspects. At each scale, there were

consistent themes that emerged as determinative in

infection outcome. Factors we identified include both

host and microbial characteristics. The use of the

models lies in generating hypotheses that can then be

tested experimentally. Here, we outline the primary host

and bacterial factors that we have identified as key

mechanisms that contribute to the success of

M. tuberculosis as a human pathogen. Our goal is to

stimulate experimentation and foster collaborations

between theoretical and experimental scientists.
Introduction

Mycobacterium tuberculosis is one of the oldest human
pathogens; evidence of tubercles has been found even in
Egyptian mummies. The fantastic success of this organ-
ism is highlighted by the fact that one-third of the world is
infected. Given its long association with humans, one
might expect that the study of this pathogen would have
revealed a range of virulence factors. Without becoming
trapped in a cycle of definitions regarding virulence, it is
clear that standard notions do not apply forM. tuberculosis.
This poses an interesting conundrum for microbiologists;
namely, how can arguably the world’s most successful
pathogen lack traditional virulence factors? Is this just a
matter of definitions, or has this bacteria evolved beyond
our traditional concepts of such factors? To further
confound things, M. tuberculosis has a stable genome [1]
and thus mutations or phase variations probably do not
contribute to its ability to evade the immune response.
Here, we use a mathematical modeling approach to lend
support to the idea that virulence strategies used by
M. tuberculosis enable it to survive within macrophages
and evade host immunity. We identify both microbe and
host characteristics as determinative to its success.
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A role for mathematical modeling in microbiology

Most modern research in microbial pathogenesis takes
place at the level of cellular and biochemical mechanisms
governing host–parasite interaction; however, studies at
larger scales are undoubtedly needed for a deeper under-
standing of infectious diseases. Components of host–
pathogen systems are sufficiently numerous and their
interactions sufficiently complex that intuition alone is
inadequate to fully understand the dynamics of the
interactions. Here, mathematical modeling becomes an
important integrative experimental tool (Figure 1).
Mathematical models provide a unique approach for
representing and studying the integrated behavior of
complex biological systems. A strength of the modeling
process is that it can lend insight and clarification to
existing data and theories, as well as enabling one to com-
pare and contrast existing hypotheses. We extensively rely
on collaborators and the literature to define our model
structure, to decidewhich biologicalmechanisms to include,
and to determine what alternative hypothesis to test. Once
the structure of the model is defined, parameters that
represent defined biological rates are derived from pub-
lishedexperimentaldataaswell as thosegenerated fromour
collaborators (i.e. half-lives, infection rates and activation
rates). We give weight to studies performed using human
cells and M. tuberculosis primary and virulent laboratory
strains. For full details of the modeling process, please see,
for example, Wiggington et al. [2].

Our mathematical models represent dynamics of a
general adaptive immune response and microbial factors
specific to M. tuberculosis. Data comparison and model
validation has been performed concurrently in a non-
human primate (NHP) model. [3,4] When data are not
available, we employ detailed statistical uncertainty and
sensitivity analyses to estimate parameter values and
evaluate how variations in their values contribute to
infection dynamics.

We have developed several mathematical models
exploring the interaction between the human immune
system and M. tuberculosis. They have been designed to
capture global dynamics regarding trafficking between the
lung and its associated draining hilar lymph node [5,6]
(Box 1), as well as more local dynamics occurring within a
cell (Box 2), within a granuloma [7] or within lungs of
infected individuals [2]. Mathematical models can be used
in a variety of ways to not only reproduce bench
experiments serving as validation of the model, but also
to perform experiments not presently accessible in the
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Figure 1. Extracellular bacteria dynamics: an example of the modeling process. (a) From biology to math: an example of how biological concepts are translated into

mathematical equations. Parameter estimation of the growth rate a of Mycobacterium tuberculosis: in vitro estimates for doubling times of H37Rv laboratory strain within
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macrophages ranged from 28 to 96 hours. In mouse lung tissue, H37Rv was estimated to have a doubling time of 63.2 hours. We can estimate the intracellular versus

extracellular growth rates from these values: rateZln2 / doubling time/aBIZ[0.007, 0.024], aBEZ0.011 (per day). (b) Differential equation for extracellular bacteria, BE. Each

equation of the model represents the incremental variation of a certain quantity over time (days): pg/ml (x 106 cells) for cytokine concentrations, cell/cm3 of tissue for cellular

variables and bacteria/cm3 of tissue for M. tuberculosis. (c) Table of symbols.

Box 1. How do we track infection in Mycobacterium tuberculosis?

Major infection outcomes in humans are latent infection (persistent

infection, w90% of infected) and active TB (w5% of infected).

Reactivation also occurs (w5–10% of latently infected) [28]. Reliable

markers of the status of M. tuberculosis infection in humans are not

presently available. A key challenge historically in the study of

tuberculosis has been identifying a truly representative animal

model for human latent TB. Mouse models are most often used,

however latent infection (the most common outcome in humans) is

not observed in the mouse and granuloma formation is less structured

with a different spatial pattern than in humans. Guinea pigs and

rabbits are also available models, but reagents for studying the

immune response to M. tuberculosis are scarce in these animals. Non-

human primates (NHP) more accurately reflect human disease but

these animals are expensive and must be maintained under Biosafety

Level 3 conditions. CFUs in tissue correlate with disease status in

NHPs [29] and in mice, where a bacterial burden (in whole lung)

greater than 108 translates to death [30].

On the basis of data obtained from animal studies, we chose

bacterial load as the most informative marker of TB progression in our

model simulations. We recognize, however, that the status of

M. tuberculosis infection is not reflected simply by the number of

bacteria or cell types present in the lung. Our models indicate that

latency is a state whereby bacterial numbers in the lung are low and

relatively stable; by contrast, during active TB, bacterial burdens

increase exponentially (Figure Ib). What should be emphasized is that,

owing to the non-linear nature of this biological system (and the

models developed to study it), there are multiple paths by which these

endpoints can be reached. In other words, by playing the parameters

off each other (and hence the processes they govern), the system can

either attain latent infection, active TB, reactivation or even clearance.

In this way, both the time it takes to reach latency and the levels of

bacteria present might also vary corresponding to these changes. This

has important implications for explaining differences between indi-

vidual host responses during infection.
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Figure I. Model simulation results. (a) Simulations of a granuloma using an agent-based model. Shown are containment (left side) and dissemination (right side)

outcomes for a single granuloma. Both granulomas shown are at time points 360 days post infection and are each shown in a 2 mm!2 mm size window. (b) Global scale

model of lung and lymph node dynamics during Mycobacterium tuberculosis infection. Shown are simulations of bacterial levels in the lung during latency (left side) and

active TB (right side, log scale).
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Box 2. Models capturing intracellular dynamics between Mycobacterium tuberculosis and the macrophage

Antigen presentation by macrophages
Mathematical models describing the interaction of M. tuberculosis

and the immune system can also be formulated at the intracellular

level. In one such model, we can represent macrophage processes

leading up to antigen presentation, including major histocompatibility

complex (MHC) class II expression, antigen processing, and peptide–

MHC binding [31]. Our model enables these mechanisms to be

considered together rather than singly as is typically necessary in the

laboratory setting. M. tuberculosis has been found to inhibit several of

these processes but for what purpose? Are redundant mechanisms

necessary for the bacterium to evade immune surveillance and

survive? We suggest they might not actually be redundant but serve

to ensure continuous downregulation of antigen presentation. By

contrast, the inhibitory effect of a single mechanism can either be

delayed or attenuated with time depending on whether the mechan-

ism targets MHC class II expression or not. This time-dependent

behavior of M. tuberculosis has been observed by others based on

expression profiles showing that key regulatory genes are differen-

tially expressed. [32,33]

Iron metabolism

Clinically, excess iron has long been correlated with active TB [34],

whereas increases in nitric oxide production by macrophages are closely

coupled to changes in the amount of transient intracellular iron. [35]

We highlight two key parameters involved in the regulatory network

within macrophages; namely the enhancement of M. tuberculosis

growth by iron and nitric oxide killing of M. tuberculosis. Our model

simulations (J. Christian Ray and D. Kirschner, unpublished) suggest a

stronger role for an indirect effect via nitric oxide, rather than a direct

enhancement of M. tuberculosis growth by iron, as a mechanism for

intracellular bacteria proliferation during TB infection. The relationship

between host factors (nitric oxide and iron sequestration) and bacterial

factors (metabolism) implies that a non-intuitive virulence strategy is

probably at work.
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laboratory setting. For example, multiple simultaneous
virtual depletion experiments can be performed predicting
results for gene-knockout murine models that do not
currently exist. Models can be useful for testing treatment
strategies or elucidating behavior that is observed, for
example, using 2-photon microscopy [8]. Here, mathemat-
ical models can predict mechanisms that lead to observed
phenomena.
Whose side are you on?

To study host–pathogen interactions, scientists often attack
problems from either the perspective of an immunologist or
amicrobiologist. If one wishes to study bacterial factors and
their effects on aspects of immunity while simultaneously
attempting to understand how specific immune factors
impinge on bacterial growth, the number of experiments
that can be identified and would need to be performed
becomes unwieldy. Using mathematical models we are able
to approach these issues in a straightforward and systema-
tic way, and results can be obtained in a matter of seconds.
Thepurpose of themodels thenbecomes to identifyproposed
experiment(s) that will yield decisive results. Our first goal
is to reproduce typical infection progression outcomes by
means of a mathematical model. Once that is achieved, we
can manipulate the system to systematically ask questions
about interactions and rates.
From the host side

To date many factors necessary for controlling infection in
M. tuberculosis have been identified, but no set of factors
has been identified as sufficient. For example, it is well
known that interferon (IFN)-g is a key factor necessary for
macrophage activation and essential for control of infec-
tion. This has been confirmed in mice (using gene KO
techniques) and human studies [9–11] (based on individ-
uals who were born without functional IFN-g receptors).
However, IFN-g levels are high in both humans and mice
with active tuberculosis (TB), even though these hosts
remain unable to control infection [12,13] (see Box 1 for a
description of infection outcomes). Thus, although IFN-g
is necessary, it is not sufficient for achieving latent
infection. Our mathematical models also identify these
same factors as necessary to M. tuberculosis control. But,
www.sciencedirect.com
as outlined below, models might also identify sufficient
conditions under which control can be obtained.

It is known that an effective acquired cellular immunity
toM. tuberculosis is dependent on the ability of the host to
initiate a Th1 cellular response [11]; however, this
response might not be sufficient for controlling infection
or preventing reactivation. From a host perspective,
several factors are highlighted by our mathematical
models as determinative in triggering and enhancing an
efficient adaptive T-cell response: (i) cellular factors,
including activation of resting macrophages and T-cell
killing of infected macrophages, and (ii) environmental
cues, such as trafficking and recruitment induced by
different chemokine profiles and cell maturation.
Trafficking and presentation

Infection with M. tuberculosis has an effect on chemokine
expression in the lung and on dendritic cell localization
into secondary lymphoid tissues by altering expression of
chemokines and chemokine receptors. [14] These signals
drive dendritic cell trafficking and migration first into the
lymphatic vessels and then into lymph nodes. Our
mathematical simulations show how delaying this traf-
ficking translates into altered cell-mediated immunity,
leading to active TB [5].

Using our model, we identified three factors that are
key: the extent of dendritic cell recruitment into inflamed
tissues and subsequent migration into lymph nodes, the
nature of the maturation stimulus, and the kinetics of
activation. Although they represent general features of an
immune response to pathogens [15], factors such as
number and type of effector immune cells present (Th0
or Th precursor, Th1, Th2), or how fast cells migrate back
and forth between the lymph node and lung might play
distinctive roles in protection and immunoregulation,
determining virulence in the context of M. tuberculosis
infection over long time scales. Controlling overall timing
of these events is crucial in elucidating M. tuberculosis
pathogenesis and could represent a virulence strategy.
Th1-Th2 controversy

To highlight how mathematical models can be used to
explore controversial hypotheses we consider the concept
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that there exists a Th1-Th2 switch in the immune response
to M. tuberculosis. Conflicting data exist in the literature
regarding T-cell populations during M. tuberculosis infec-
tion in the lung. In the mouse and most humans, type 1
cytokines are present at high levels during infection.
However, an increase in type 2 cytokines in TB patients
has also been reported [16,17], but not consistently
[18–20]. By contrast, our mathematical simulations [6]
suggest that during latency, lymphocyte populations at
the site of infection are mainly of Th0 type, with very low
levels of either Th1 or Th2 cells. Thus, we propose that
there is not a strict Th1-Th2 switch, but that conflicting
data have probably arisen as a result of other factors. Th0
cells produce both type 1 and type 2 cytokines. The
relative predominance of either Th1 or Th2 cells thus
depends on several factors, including the differentiation
stage of Th0 cells at the time sampling, how long after
infection a sample is drawn, and the sample site (blood
versus lung for example).

Recruitment

We also studied the effect of trafficking and host–pathogen
interactions on a smaller scale (cell–cell interactions)
using a mathematical model of granuloma formation [21]
(Box 1). We are able to capture another important factor:
localization of immune effector cells (macrophages and
T cells) within the lung. In this setting where we capture
spatial aspects of granuloma formation, the rate of cellular
movement in response to signals greatly influences
infection outcome. Increased recruitment of resting
macrophages to the infection site is positively correlated
with bacterial load, most likely by providing additional
cells for productive infection. This suggests the paradox-
ical conclusion that inflammation might be detrimental,
and further, that unless macrophages become activated,
they serve to propagate infection rather than halt it. This
is consistent with experimental data [22] suggesting that
high levels of inflammation could be deleterious during
the course of infection.

From the bacterial side

M. tuberculosis and other pathogenic mycobacteria are
very slow growing. Doubling times of 24–96 hours have
been reported for M. tuberculosis [23] (Figure 1), and this
is striking when one considers that E. coli has a doubling
time of as low as 20 minutes.

In the mathematical models that included bacterial
turnover, the growth rate ofM. tuberculosiswas one of the
key factors that determined whether the system achieved
latent infection or active TB. In the agent-based approach
[21], where interactions are tracked at their most
stochastic and discrete levels, we observed a strong
correlation between the intracellular growth rate of
M. tuberculosis and granuloma size (or similarly, bacterial
load). Using sensitivity analysis, we tracked this corre-
lation during TB infection and we observed a shift from
positive to negative values. In the first 12 days of infection,
higher growth rates are significantly more favorable for
granuloma growth (positive correlation), but between one
to three months, granulomas grow larger when growth
rates are slowest (negative correlation). Finally, after
www.sciencedirect.com
three months, the correlation is again positive, where
slightly higher growth rates favor granuloma growth.

From these outcomes, it is clear that growth rate is
correlated with granuloma formation, although the bio-
logical basis for this result remains unclear. This counter-
intuitive simulation outcome results from the non-linear
dynamics that occur between T cells, macrophages and
bacteria. Does the slow growth rate of M. tuberculosis
contribute to virulence? No experimental data are avail-
able to support this finding, however our results are con-
sistent with hypotheses drawn from earlier mathematical
models suggesting that persistence of M. tuberculosis at
low densities for extended periods in the face of immune
pressure might be due to mechanisms that are associated
with a very slow growth rate [24].
Extracellular and intracellular lifestyles

The status and location of bacteria during latent TB
infection has long been an area of controversy. A unique
feature of the mathematical model is that we are able to
track at any given moment which bacteria are intra-
cellular (within macrophages) and which are extracellular
(not within macrophages). Although data on bacterial
loads in murine models, for example, are usually given as
cfu/gm of tissue, our mathematical models are able to
distinguish total bacterial levels within these mutually
exclusive compartments (Box 1).

In all but one of our cell-dynamic models (the exception
being the agent-based model), levels of extracellular bac-
teria arose as a marker of disease progression. If bacterial
levels could be contained intracellularly (within low levels
of infected macrophages), then infection could be con-
trolled. Our results suggest that all of the bacteria are
harbored within a few infected macrophages during latent
infection within the granuloma. New experiments by our
collaborators are now in place to test this hypothesis. By
contrast, when extracellular bacterial levels increase
uninhibited, this reflects an immune system that is unable
to control infection.
Necrosis

As with most elements of this system, there is an
important balance regarding necrosis. Granulomas have
a characteristic structure including a necrotic center,
surrounded by macrophages, surrounded by T cells.
Within the ring of macrophages these cells are lysed
contributing to centralized necrosis (this structure is
observed in our simulations of granulomas shown in
Box 1). Our agent-based model [21] predicts that this
necrotic center is a site within which extracellular
bacteria reside, and unpublished data from the NHP
model indicate that these granuloma are packed with
bacteria in the necrotic centers (T. Reinhart, personal
communication). This pattern of necrosis prevents
immune cells from reaching and eliminating those
trapped bacteria; however, it also prevents bacteria from
spreading. Thus, in our simulations, this pattern of
necrosis is a mechanism aiding stable containment of
infection. Early studies on TB suggested that it might be
pathology that helps limit infection spread [25,26].
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From math to biology

Mathematics has long been relegated to the closet in
microbiology studies. The emergence of new compu-
tational tools and other technologies provides a perfect
opportunity to dust off old notions of mathematics and
welcome it into the biological arena. Here, we show that
it can be applied in many ways to study relevant problems
in biology, using the example of M. tuberculosis infection.
A key to successful conversations between theory and
experiment is the language. If theoreticians will put their
work in the proper context of the problem being studied,
then experimental biologists can more easily see how
mathematics can be used as an additional tool to stimulate
and address important questions in microbiology. New
experimental technologies [8,27] will eventually produce
in vivo time series cell population dynamics data to
support and validate mathematical model results and
hypotheses. Combinations of experimental measurements
and mathematical models will ultimately yield funda-
mental insights into biological phenomena. A new gener-
ation of students is now being trained to this end.
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