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Abstract. There is significant disagreement in the epidemiological literature

regarding the extent to which reinfection of latently infected individuals con-
tributes to the dynamics of tuberculosis (TB) epidemics. In this study we
present an epidemiological model of Mycobacterium tuberculosis infection that

includes the process of reinfection. Using analysis and numerical simulations,
we observe the effect that varying levels of reinfection has on the qualitative

dynamics of the TB epidemic. We examine cases of the model both with

and without treatment of actively infected individuals. Next, we consider a
variation of the model describing a heterogeneous population, stratified by sus-

ceptibility to TB infection. Results show that a threshold level of reinfection

exists in all cases of the model. Beyond this threshold, the dynamics of the
model are described by a backward bifurcation. Uncertainty analysis of the

parameters shows that this threshold is too high to be attained in a realistic

epidemic. However, we show that even for sub-threshold levels of reinfection,
including reinfection in the model changes dynamic behavior of the model.

In particular, when reinfection is present the basic reproductive number, R0,

does not accurately describe the severity of an epidemic.

1. Introduction. Tuberculosis (TB), an infectious disease caused by the bac-
terium Mycobacterium tuberculosis, is estimated to infect one-third of the world’s
population and results in nearly 3 million deaths per year [1, 2, 3]. The high burden
of TB infection in regions of Southeast Asia, Africa, and Russia has highlighted the
need for global TB control [4, 5]. The emergence of drug-resistant strains of M.
tuberculosis [5] and TB/HIV coinfection [6, 7, 8] will likely impact TB treatment
and control strategies [9, 4].

The long period of latency in M. tuberculosis infection prior to the onset of ac-
tive disease introduces additional ambiguity into understanding disease progression.
Since initial infection is separated so dramatically in time from the development of
disease, it is unclear whether the transition from latency to active disease is due
to endogenous reactivation or exogenous reinfection [10, 11]. The relative impor-
tance of these two pathways to the development of active disease has significant
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implications for treatment and control strategies, most notably in deciding whether
latently infected and treated individuals are at risk of reinfection [12].

On the population level, epidemiological measurements of exogenous reinfection
have proved extremely difficult. Effective treatment of tuberculosis with antibi-
otics makes studying reinfection on the individual level a tractable problem, since
treatment can be considered a barrier to endogenous reactivation. However, several
studies employing RFLP analysis of M. tuberculosis isolates from individuals with
recurrent infection after treatment indicate that both reinfection and reactivation
are possible, but offer conflicting views of their relative importance [13, 14, 15, 16].
The influence of local TB incidence on the probability of reinfection is unclear.
While it seems natural to assume that reinfection will be found only in high inci-
dence environments where latently infected individuals are constantly re-exposed
to M. tuberculosis, some studies have found reinfection in low-incidence populations
[15, 17].

Several authors have investigated the role of exogenous reinfection in TB and
other epidemic diseases through the use of mathematical models. Vynnycky and
Fine, by fitting an age-structured model to historical TB data in England and
Wales, conclude that reinfection likely played an important role in that epidemic
[18]. Several modeling studies have highlighted the bifurcation behavior of compart-
mental models when reinfection is considered [19, 20, 21]. Taking a more abstract
approach, van den Driessche and colleagues have demonstrated the occurence of
backward bifurcations in a number of general models describing infectious disease
dynamics [19, 21]. This type of bifurcation behavior allows for the existence of mul-
tiple positive steady states, leading to different threshold conditions for the onset
of an epidemic and its elimination. Here, we follow the method of Feng et al., who
construct a compartmental model for TB transmission with reinfection [20]. It has
already been shown that models of this type do not demonstrate a backward bi-
furcation or multiple equilibria under realistic parameter values [?]. Our approach
differs from this previous work, however, both in our model construction and anal-
ysis. We examine models describing the spread of TB in both homogeneous and
heterogeneous populations. We demonstrate that the model of [22], like others,
does not produce a backward bifurcation under realistic conditions. However, we
explore not only bifurcation conditions of the model, but also the influence of re-
infection on model behavior in the absence of a backward bifurcation. A key focus
is whether the concept of R0 is still valid in the context of backward bifurcations
during a reinfection scenario.

2. The Model. Our mathematical model of epidemic TB with reinfection is a
direct extension of work on epidemic TB and HIV in populations stratified by
genotype [23, 22, 24]. The model is specifically constructed to capture the behavior
of epidemic TB in heterogeneous populations with two subgroups, one inherently
more susceptible to infection with M. tuberculosis than the other. This model is
used primarily to investigate the influence of various parameters on the steady-
state of the TB epidemic, unlike work by others which explore the evolution of TB
epidemics over time [25]. We now expand our model presented in [23] to study
reinfection. Since reinfection in epidemic TB is not well characterized, including
reinfection in the model allows us to study the influence of different levels of re-
infection on the qualitative dynamics of a TB epidemic. In this study, we are not
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concerned with inferring values for the reinfection parameters. Rather, we are in-
terested in the different bifurcation patterns that occur when reinfection is present
in the system, and the interplay of the reinfection parameter with the basic repro-
duction number, R0. To this end, we define the level of reinfection in our system as
the ratio of the transmission rate of M. tuberculosis between actively infected and
latently infected individuals to the transmission rate between actively infected and
unifected individuals. Specifically, we explore whether the levels of reinfection that
are necessary to influence bifurcation behavior are consistent with those expected
to occur in a real epidemic, and whether subthreshold levels of reinfection modify
the interpretation of R0.

We use a system of six nonlinear, ordinary differential equations to model the
dynamics of M. tuberculosis infection within a heterogeneous population. As in
[23] we divide the population in groups with neutral and susceptible phenotypes
with respect to M. tuberculosis infection. We let UN (t) and US(t) represent the
number of uninfected individuals of neutral and susceptible phenotype, respectively.
Similarly, LN (t) and LS(t) represent latently infected individuals, while TN (t) and
TS(t) represent those with active infection. Suppressing the time dependence t of
each variable and setting P (t) = UN (t) + US(t) + LN (t) + LS(t) + TN (t) + TS(t),
the equations are as follows. Note that in the case cN = cS = 0, the model reduces
to that of [22].
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In previous work, we have distinguished between two sets of parameter values
for the model (Table 1). One represented an epidemic in a population with high
growth (HG) demographics of India, while the other represented low growth (LG)
demographics of the United States[23, 22]. In order to provide results with the
greatest generality, we have merged the intervals of these two parameter sets and
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sample from the largest possible interval for the simulations presented here. For
parameter values and derivations, see [22].

Param. Definition HG Values LG Values

b birth rate 25,567,802/yr 3,892,489

ν frequency of susceptability allele 30% 10%

µ non-TB death rate 0.01587/yr 0.01314
µtb TB death rate 0.8 year−1 0.8

βw # secondary infections (UN ⊗ TN) [5, 7] time−1 [3, 5]

βx = εxβw # secondary infections (UN ⊗ TS) [7, 9] time−1 [5, 7]
βy = εyβw # secondary infections (US ⊗ TN) [7, 9] time−1 [5, 7]

βz = εzβw # secondary infections (US ⊗ TS) [9, 11] time−1 [7, 9]

pN direct progression, neutral 5% – 10% 5% – 10%
pS = εppN direct progression, susceptible 10% – 0.20% 10% – 0.20%

rN reactivation rate, neutral 0.00167 – 0.0033/yr 0.00125 – 0.0025/yr

rS = εrrN reactivation rate, susceptible 0.0033 – 0.0066/yr 0.0025 – 0.0050/yr
ltN , ltS effective chemoprophylaxis, neutral 5 – 15% 5 – 15%

atN , atS per capita therapy, neutral 0.342857 – 3.2/yr 0.342857 – 3.2/yr

Table 1. Parameters and values.

Fig. 1 shows the model diagram. The model follows a standard incidence-
dependent model of transmission among infected individuals. These expressions
are used to model nonlinear contact dynamics in large populations [26, 27].

To account for treatment, we follow our work on TB treatment in [22] and define
lti as the fraction of the population receiving effective chemoprophylaxis, and ati
as the rate of effective per capita therapy (i = N,S). In the model, chemoprophy-
laxis of latently infected individuals (LN , LS) reduces their reactivation rate, and
that initiation of therapeutics causes active infection to subside into latency. We
do this since it is not known to what extent treated individuals are protected from
subsequent infection or reactivation. Other models consider treatment by includ-
ing a fourth population of ‘treated individuals’ into their compartmental model;
however, most of the limited data available on this topic support that it is unlikely
that treated individuals are removed from the SIR dynamics governing TB (c.f.
[20, 28, 29]).

A detailed description of the baseline model for epidemic M. tuberculosis trans-
mission can be found in [23] and [22].

3. Bifurcation Behavior. Many epidemiological models have defined a threshold
condition that indicates whether an infection introduced into a population will be
eliminated or become endemic [30]. The basic reproduction number, R0, is defined
as the average number of secondary infections produced by an infected individual
in a completely susceptible population [27]. In models with only two steady states
and a transcritical bifurcation, R0 > 1 implies that the endemic state is stable (i.e
the infection persists), and R0 ≤ 1 implies that the uninfected state is stable (i.e.
the infection is eliminated).

We know both from the results of [20] and preliminary numerical experiments
with the model given in equations (1) - (6) that models including reinfection may
exhibit a backward, rather than a transcritical, bifurcation. Using the the same
method for calculating R0 as in [23], we find the expression for R0 is unchanged by
the presence of exogenous reinfection. That R0 does not change when reinfection is
included in the model is not entirely unexpected. The basic reproductive number,
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Figure 1. TB epidemic model including the genetically neutral

(UN , LN , TN ) and genetically susceptible (US , LS , TS) populations. Births
(b) occur at a constant rate with a fraction (ν) being genetically more suscep-
tible to infection. Transmission/receipt of M. tuberculosis is represented by

βj (j = w, x, y, z). Direct progression to active TB and the reactivation rate
of latent infections are represented by pi and ri, respectively. We account for
all-cause death µ, and death due to active TB, µTB . Treatment of latently

and/or actively infected individuals is shown by lti and ati, respectively. Re-
infection transmission rates of M. tuberculosis are scaled by ci. In all cases
i = N, S.

as discussed in [30], expresses the number of secondary infections that will result
when an infectious individual is introduced into an uninfected population. Since
reinfection requires both latently infected and actively infectious individuals, we do
not expect it to alter the dynamics of an uninfected population.

In the presence of reinfection, then, the value of R0 does not completely describe
the equilibrium behavior of the model. We analyze the existence of and threshold
conditions for the onset of backward bifurcation, following the method of [20]. We
first consider the case of a homogeneous population, or ν = 0. Mathematically, the
system of three ODEs (1), (3), and (5) has three steady state solutions. Because
our model does not use a separate compartment for treated individuals, we can
solve for these solutions explicitly, without limiting assumptions. These solutions
are only epidemiologically meaningful, however, if they are finite and non-negative.
Since a key characteristic of the backward bifurcation is the existence of three
non-negative steady states, this allows us to specify a threshold condition on the
reinfection parameter, c. Solving for the steady-state solutions using the method
of [20] and suppressing the N,S notation, this condition is:

c ≥ c0 =
at + µ + µtb + (1− lt) r − µtbp

p(β − µ− µtb)
(7)

When c ≤ c0, the system can only realize two non-negative steady states, and
thus has a single transcritical bifurcation at R0 = 1. In the c ≤ c0 regime, the
system has a single steady state solution, corresponding to zero prevalence and
elimination of the TB epidemic, when R0 ≤ 1. When R0 > 1, the system has two
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steady states corresponding to endemic TB and zero prevalence. When c > c0,
the backward bifurcation has three steady state patterns. As in the transcritical
bifurcation case, R0 > 1 indicates the existence of both endemic and elimination
states. In contrast to the transcritical bifurcation, there are three steady states
when R0 is immediately less than unity. If we fix a value of c, the upper and
lower steady state curves meet at a single point: the limit point of the backward
bifurcation. We refer to the limit point, as expressed on the R0 scale, as Rc. For
R0 ≤ Rc, there is only a single steady state corresponding to elimination of TB
from the population.

Although we have derived a condition for the existence of various steady states
of the system, we conduct no stability analysis for these steady states. Rather,
we are concerned with determining if the conditions for the onset of a backward
bifurcation in this model may be met under epidemiologically realistic conditions.

3.1. Existence of the backward bifurcation. The estimated value of R0 is often
used as an indicator for the severity of an epidemic, and forcing R0 < 1 may be
a goal for designing infection control and treatment measures for the elimination
of an epidemic. The occurrence of a backward bifurcation, then, has important
implications for the design of epidemiological control measures, since an epidemic
may persist at steady state even if R0 < 1 [12, 20, 18, 19].

Understanding whether our model predicts the occurrence of a backward bifur-
cation in the dynamics of an actual epidemic requires knowing both the backward
bifurcation threshold, c0, and the value of the reinfection parameter, c, in the given
epidemic. Since reinfection has only been documented in small-scale studies, it is
difficult to make precise estimates for c [31, 15, 13, 16]. However, using a method to
determine uncertainty in a system due to parameters variation (Latin Hypercube
Sampling, or LHS, c.f. [32, 33]), we can estimate a distribution for c0.

Ranges for all parameters are given in [23, 22]. For the homogeneous popu-
lation model, we merge the intervals estimated for high-growth and low-growth
populations to give the broadest possible sample space for LHS. We then assume
that each parameter range is uniformly distributed. By applying uncertainty anal-
ysis, we randomly sample the entire space of parameter value combinations in the
model. each set by using equation (7). We construct a frequency histogram of the
c0 distribution over 20000 samples over two conditions (Fig. 2). First, we consider
the distribution of c0 in an untreated population (at = 0). Then, to visualize the
influence of treatment on the bifurcation behavior of the model, we fix at = 3 (im-
plies effective treatment of 79% of the population) to simulate the effect of highly
effective therapy for active TB.

The estimated distributions for c0 in the single population model have means
of 2.1 and 10.6 for the at = 0 and at = 3 cases, respectively. Significantly, these
distributions are bounded below. In the case without treatment, the distribution
has a quick decaying tail. With the addition of treatment, the distribution shifts
upward, with a slow decaying tail. However, the distribution is still sharply bounded
below when treatment is included in the model (Fig. 2).

Analytical results for our model extend only to the simplified system of three
equations for the homogeneous population. To investigate the possible influence of
population heterogeneity on the threshold conditions for backward bifurcation, we
study the behavior of the full system in equations (1) through (6).

To estimate the distribution of c0 for the heterogeneous population model, we em-
ploy a straightforward iterative method. We first make the simplifying assumption
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Figure 2. Distribution of values for c0 under LHS in the single population

model. Light gray: at = 0 (no treatment), dark gray: at = 3 (high treatment).
Sample size N = 20000.

that the rate of reinfection is the same for both subpopulations (i.e. c = cN = cS),
and therefore there is only a single bifurcation parameter associated with reinfec-
tion. The backward bifurcation is distinguished from the transcritical bifurcation
by having three non-negative steady states in the region of parameter space where
R0 is less than unity but greater than the limit point of the backward bifurcation,
Rp. Therefore, our procedure for determining the threshold value of c for the onset
of backward bifurcation revolves around monitoring the number of steady states at
a point in parameter space where R0 is slightly less than unity. We sample param-
eter space with LHS, then solve R0 = 1− ε for a single parameter. The value of c
is then incremented until three steady states appear at R0 = 1 − ε. This method
of approximating the backward bifurcation threshold introduces several sources of
error into the estimated distribution of c0. However, these errors all lead to a
broadening of the tail in the distribution of c0 without affecting the distribution’s
lower bound (data not shown).

The estimated distributions for c0 in the heterogeneous population model have
means of 4.1 and 16.7 for the untreated and treated cases (at = 0 and at = 3 cases),
respectively. As in the single population case, these distributions are bounded
below. In the untreated case, the distribution has a quickly decaying tail. With
the addition of treatment, the distribution shifts upward, with a slowly decaying
tail. However, the distribution is still sharply bounded below when treatment is
included in the model.

3.2. Sub-threshold levels of reinfection. Our results and the results of others
show that the threshold level of reinfection (c0) required for a backward bifurca-
tion to occur is too high to be expected in a realistic epidemic [?]. However, the
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Figure 4. Onset of backward bifurcation with increasing reinfection. Solid
curve: c = 0 (no reinfection). Dashed curve: c < c0 (low level of reinfection).

Dotted curve: c > c0 (high level of reinfection).

sub-threshold behavior of the model still has important implications for the inter-
pretation of epidemiological measures in the presence of reinfection. As can be seen
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Figure 5. Plot of prevalen ce normalized by R0 for multiple values of the

reinfection threshold, c0. For c = 0 (no reinfection), the line is nearly horizon-
tal. For c ≥ c0 (superthreshold reinfection), dotted curves are overlapping and

highly nonlinear. Dashed curves corresponding to 0 < c < c0 (subthreshold

reinfection) show a continuum of nonlinearity between the no-reinfection case
and the onset of backward bifurcation.

in Fig. 4, the transition from a transcritical to backward bifurcation at R0 = 1 does
not occur suddenly as c passes c0. Rather, if steady-state prevalence is plotted as
a function of R0, the slope of the curve at the bifurcation point R0 = 1 gradually
increases as c increases. At c = c0, the curve is vertical, and for c ≥ c0 the region of
multiple steady states is apparent. For R0 >> 1, however, all steady-state curves
converge, regardless of the value of c.

The gradual transition from transcritical to backward bifurcation has important
implications for model behavior. The behavior of the model in parameter regions
that correspond to R0 > 1 may be strikingly different the cases of c = 0 and
c0 > c > 0. In particular, a sub-threshold level of reinfection may dramatically
increase prevalence even in the case of a single equilibrium. In Fig. 5, we plot
Prevalence

R0−1 , the slope of the chord through the steady-state curve, as a function of
R0 for various values of c. For c = 0, the slope is nearly constant and R0 is a good
predictor of prevalence. For c ≥ c0, the slope approaches a constant as R0 → ∞
and approaches infinity as R0 → 1. This is expected, because after the onset of a
backward bifurcation R0 = 1 no longer corresponds to the elimination of epidemic
disease in the model. However, it is important to note that for subthreshold levels
of c, even those far below c0, there is a several-fold change in the value of the slope
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as R0 → 1. Therefore, in the presence of reinfection, the relationship between R0

and prevalence is significantly nonlinear even for cases where the model exhibits
only a transcritical bifurcation. This suggests that for a given epidemic, exogenous
reinfection contributes significantly to prevalence and epidemic severity.

4. Discussion. The transmission and progression of TB infection has long been
understood only on a population scale. With the advent of molecular fingerprinting
for TB strains, the infection and transmission history of a single individual may be
studied [34, 15, 35, 36, 17]. One of the principal aspects of TB transmission can be
studied only in the context of this individual infection history. Our previous models
of TB progression and transmission assume that once an individual is infected with
TB, he or she is immune from further infection events [23, 22]. However, the
availability of individual, strain-specific infection histories has made it clear that
reinfection of latently or actively infected individuals does occur. It is unclear,
though, whether reinfection occurs commonly enough to have an effect on the overall
infection dynamics of the population [37].

Here, we extend our previous modeling framework for the transmission of TB in
homogeneous and heterogeneous populations to include the process of reinfection
of latently and actively infected individuals [22]. In the simplified case of a homo-
geneous population, we derive an analytical solution for steady states. Using this
solution, we demonstrate that the model exhibits two distinct modes of bifurcation
behavior. When the parameter c, which specifies the efficiency of reinfection rela-
tive to de novo infections, is small, the model has a transcritical bifurcation at the
point in parameter space specified by R0 = 1, as the model did in the absence of
reinfection. Above a critical threshold value of reinfection, the system undergoes a
backward bifurcation at R0 = 1. We derive an expression for the critical value of
the reinfection parameter, c0 in terms of the other parameters of the system.

Using the LHS technique for uncertainty analysis, we then estimate a distribution
for c0 given plausible estimates for the values of the parameters of the simplified
system. We also employ LHS and numerical computation of the steady states to
estimate a distribution of c0 in the heterogeneous population model.

Several groups have examined the influence of including reinfection in models of
TB transmission or in more general models of infectious disease dynamics [19, 38, 20,
18]. They have found, as we have here, that the onset of backward bifurcation is tied
to a threshold in the relative efficiency of reinfection. The existence of the backward
bifurcation has important implications for the design of treatment protocols because
it indicates that an epidemic cannot be eliminated from a population by simply
reducing the value of the basic reproduction number, R0, below 1.

Although our results here and the results of others indicate that the backward
bifurcation is a possible description for the dynamics of epidemic TB, we find that
the onset of the backward bifurcation is unlikely to occur in a realistic epidemic.
In the homogeneous population model, the distribution of c0 is bounded below at
a value above 1. Therefore, the model predicts that a backward bifurcation will
only occur when reinfection occurs at a rate which is actually higher than the
initial infection rate. When treatment of actively infected individuals is added to
the model, the distribution of c0 shifts to the right, indicating that a backward
bifurcation is even less likely to occur in a population with effective treatment.
These results are not confined to the simplified, homogeneous population model.
The results for the heterogeneous population model also indicate that reinfection
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must be more efficient than initial infection for a backward bifurcation to occur,
and that treatment only increases that value of c0.

In the context of the homogeneous population model, we can easily derive an-
alytical expressions for both R0 and the steady-state solutions of the system, and
so R0 is primarily useful as an aggregate bifurcation parameter. However, in the
heterogeneous population model such an analytical solution is not available and a
numerical solution is obtained with difficulty. In this case, and indeed in many mod-
els for which R0 is derived using different methods (such as the Next Generation
Operator, Next Generation Kernel, or implicit [21, 38, 23] methods) in the absence
of a steady-state solution, we look to R0 not only as an aggregate of parameters
but as an indicator of the severity of an epidemic.

In doing so, however, we make an implicit assumption of linearity in the rela-
tionship between R0 and prevalence. We have shown, though, that in the presence
of exogenous reinfection (c > 0) the relationship between R0 and prevalence is far
from linear. This demonstrated nonlinearity in the relationship between R0 and
prevalence in the presence of reinfection may serve as a caveat applicable in the
modeling of other diseases. Recently, attention has been devoted to the possible
role of reinfection in more generalized models than are considered here [38]. Even
in situations where models do not bear out the presence of complex bifurcation
behavior such as backward bifurcations in the behavior of an epidemic, this re-
sult demonstrates that the interpretation of R0 and other indirect measures of an
epidemic may be confounded by reinfection.
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