SUPPORTING INFORMATION

TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next generation two compartment model

Simeone Marino¹, Amy Myers², JoAnne L. Flynn², Denise E. Kirschner^{1,3} ¹Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI - USA. ² Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA – USA.

³ Corresponding author: kirschne@umich.edu

1. Two compartmental mathematical model

Our two-compartmental model comprises 32 equations with 210 parameters Bacteria are not modeled explicitly: since we have precise available data for the dynamics of the bacteria populations, we use the time courses of bacteria as input functions for the model in the lung (CFUlung) and in the lymph node (CFUIn). The remaining equations in the system of non-linear ODE model comprise macrophage (resting, infected, classical and alternatively activated) and dendritic cell (immature and mature) populations in both the lung and lymph node. Naïve CD4+ and naïve CD8+ T cells are also included: they are primed in the lymph node and migrate out to the site of infection as both precursor or effector T helper cells and precursor or effector CTL. These cells elicit their effector functions at the site of infection (lung) after becoming fully differentiated. Cytokines (TNF, IFN γ , IL10 and IL12) are also explicitly modeled, both in the lung and the lymph node. Table 1 in the main manuscript describes all the variables in the model. We list here all the differential equations and most of the diagrams of cell dynamics.

1.1. Macrophage equations in the Lung

Below are the equations described macrophage dynamics in the lung and in the lymph node. A diagram of macrophage dynamics is shown in the main manuscript (Figure 1).

$$\begin{aligned} \text{Resting (uncommitted) Macrophages (M_{0})}_{M_{1} \text{ turnover and recruitment}} & \text{d} M_{\eta} = \left[s_{M_{0}} + rc_{\eta} \left(\frac{(M_{\Lambda} + w_{1}M_{1})}{(M_{\Lambda} + w_{1}M_{1}) + hs_{\eta}} \right) + rc_{2} \left(\frac{F_{\alpha}}{F_{\alpha} + hs_{2}} \right) \right] - \mu_{M_{0}}M_{0} - & (1) \\ & -k_{2} \delta M_{0} - k_{7} (1 - \delta) M_{0} & \text{Alternative } M_{0} \operatorname{activation} & M_{0} \operatorname{death} & (1) \\ & -k_{2} \delta M_{0} - k_{7} (1 - \delta) M_{0} & \text{Alternative } M_{0} \operatorname{activation} & M_{0} \operatorname{death} & (1) \\ & \text{Cassical } M_{p} \operatorname{activation} \rightarrow CAM & (1 - k_{1} - k_{1$$

1.2. Macrophage dynamics in the Lymph Node

1.3. Dendritic Cell Dynamics in the Lung and Lymph Node

A diagram of dendritic cell dynamics in both compartments is shown in Figure S2. Below are the equations. We model two types of dendritic cell populations in each compartment: immature dendritic cells (IDCs) and mature dendritic cells (MDCs) (see Supporting Information online for the equations). Equation (9) represents the IDCs in the lung, describing a constant source s_{IDC} as well as both TNF-independent (rc₃ term) and TNF-dependent (rc₄ term) recruitment. Loss of IDCs is modeled with IDC uptake of bacteria (resulting in DC maturation, k_{12} term) or death at a rate of μ_{IDC} . DC uptake and maturation is delayed by the action of IL10 [1]. Equation (10) describes MDCs in the lung, showing a balance between IDC uptake of bacteria (production of MDCs) and MDC migration to the lymph node (φ) . The equations for the lymph node are similar to those for the lung. Equation (11) describes IDCs in the lymph node, once again including a constant source term, TNF-independent and TNF-dependent recruitment, IDC uptake of bacteria, and death. DC maturation includes MDC equation for the lymph node (equation (12)) includes IDC migration from the lung $\varphi MDC_{I}/\Upsilon$ (where Υ represents a scaling factor between the lung and the lymph node), the exosome mechanism, which is captured by the k_{12b} term [2,3,4].

1.4. Lymphocytes Dynamics in the Lymph Node (LN)

A diagram of lymph node dynamics is shown in Figure S3. Below are the equations. We model lymphocytes in both the lymph node and lung. In the lymph node, naïve CD4+ T cells are described in equation (13) with a constant source term (s_{N4}) , recruitment by a MDC-dependent recruitment term $(k_{13}$ term), natural death, and differentiation to precursor Th1 that depends on MDCs (k₁₄ term). Equation (14) models precursor Th1 cell dynamics. It accounts for the differentiation of naïve CD4+ T cells, proliferation of Th1 cells (logistic growth with rate constant k₁₅, with IL10 down-regulation), differentiation, and migration into the blood (ξ_1 term). Equation (15) describes Th1 cell dynamics, incorporating differentiation via MDCs (k_{20a} term) and both infected and activated macrophages acting as antigen presenting cells (k_{29a} term), TNF-induced apoptosis (k_{22a} term), and migration to the blood (ξ_{1a} term). Equation (16) models naïve CD8+ T cell dynamics, and is similar to the naïve CD4+ cell equation (13). There is a source term (s_{N8}) , and mechanisms for recruitment by MDCs $(k_{16} \text{ term})$, natural death, and differentiation to T80 cells (k_{17} term). The k_{17} term captures the role of licensed DCs in priming CD8+ T cells. Licensing is achieved by an initial successful CD4+ T cell priming: that is why CD8+ T cell priming is only possible if either precursor or fully effector Th1 cells are present. Equation (17) describes primed CD8+ T cell dynamics, with mechanisms for CD8+ T cell proliferation (k_{18} term), differentiation and migration into the blood (ξ_2 term), similarly to equation (14).

Equations (18) and (19) describe IFN- γ -producing T8 cell and CTL dynamics in the lymph node (see [5]). Both equations capture differentiation induced by MDCs (k_{24a} term) and by macrophages (k_{30a} term), TNF-induced apoptosis (k_{26a} and k_{28a} terms), and migration to the blood (ξ_{2a} and ξ_{2b} terms). Parameter m allows for an overlap between IFN- γ -producing CD8+ T cell and CTLs.

1.5. Lymphocytes Dynamics in the Lung

We also modeled lymphocyte dynamics in the lung (see diagrams in Figures S4) and S5, CD4+ and CD8+ lymphocyte dynamics, respectively). Equation (20) describes the precursor Th1 cell dynamics. It accounts for several mechanisms: TNF-independent (rc₅ term) and TNF-dependent (rc₆) recruitment, proliferation (logistic with rate constant k_{19} , with IL10 down-regulation), differentiation to Th1 cells via MDCs (k₂₀ term), and differentiation to Th1 cells via activated and infected macrophages (k_{29} term), both representing gain terms for equation (21), where we model Th1 cell dynamics in the lung. Recruitment (rc_{5a} and rc_{6a} terms) and apoptosis (k₂₂ term) mechanisms are described in equation (21), similarly to Th1 cell dynamics in the lymph node (equation (15)). Equation (22) describes precursor activated T₈ cell dynamics (T80) in the lung. The incorporated mechanisms are very similar to those in equations (20) and (21): TNFindependent (rc₇ term) and TNF-dependent recruitment (rc₈ term), proliferation (logistic with rate constant k₂₃, with IL10 down-regulation), differentiation to CTL due to MDCs (k_{24} term), differentiation due to activated and infected macrophages (k_{30} term), and natural death. Equation (23) describes IFN-y producing CD8+ T cells. The dynamics are regulated by the following mechanisms: TNF-independent (rc_{7a} term) and TNF-dependent (rc_{8a} term) recruitment, differentiation from precursor activated CD8+ T cells (k_{24} and k_{30} terms), TNF-induced apoptosis (k₂₆ term), and natural death. Equation (24) models the CTLs, with similar mechanisms.

$$\begin{aligned} & \text{Precursor Th1 in the Lung -} \begin{pmatrix} \hat{f}_{1} \\ \end{pmatrix} \\ & \text{The Finite-notion for example in the lensing field of the line of th$$

1.6. Cytokine equations

A table of cytokine dynamics is shown in Table S1, while the equations are described below. Cytokines are produced by a large variety of cells involved both in the innate and adaptive immunity [6]. We modeled four cytokines in both compartments: TNF- α , IFN- γ , IL-12 and IL-10. Table S1 lists cytokine production by cell types. Equations (25)-(28) describe cytokine dynamics in the lung, while equations (29)-(32) capture the dynamics in the LN. The equations for the same

cytokine are identical regardless the compartment, except for different values for the rates and rate constants. Each equation has a degradation rate for each cytokine represented by a μ coefficient. TNF α (F $_{\alpha}$, equation (25) and (29)) is mainly secreted by classically activated (M_A, α_1 term) and infected (M_I, α_2 term) macrophages, as well by mature DC (MDC, α_{16} term). The presence of bacteria (CFUlung) enhances TNF production by M_A, while IL-10 inhibits it. Lymphocytes also secrete TNF (α_3 and α_4) with similar regulatory mechanisms in place: classically activated macrophages (M_A) sustain TNF production, while IL-10 inhibits it.

IFN-γ (equation (26) and (30)) is mainly secreted by lymphocytes (Th1 and IFN-γproducing CD8+ Ts, α_5 and α_6 terms) in close interaction with classically activated macrophages [7,8]. Precursor Th1 and precursor effector CD8 Ts also secrete IFN-γ (α_8 and α_9 terms), with the necessary stimulation of mature DC. Extra sources of IFN-γ (e.g., natural killer cells - NKs) are active only if both bacteria and IL-12 are present (s_g term). Infected macrophages produce a small amount of IFN-γ (α_7 terms).

IL-12 (equation (27) and (31)) is mainly produced by mature DC (α_{10}) [9] and classically activated macrophages (α_{11}) [10,11]: IFN- γ increases IL-12 secretion, while IL-10 inhibits it [12]. IL-10 is produced by infected alternatively activated macrophages (α_{17}) (equation (28) and (32)) [13]. Classically activated macrophages also participate in IL-10 production, either directly (α_{12}) or enhancing effector T cell production (α_{14} and α_{15}) [14]. Mature DC secrete some IL-10 as well (α_{13} term).

12

1.7. Cytokine production dynamics in the Lung

Tumor Necrosis Factor α –TNF α (F $_{\alpha}$,)

$$\frac{dF_{\alpha}}{dt} = \alpha_{1}M_{A}\left(1 + \frac{CFUlung}{CFUlung + f_{3}I_{10} + chs_{1}}\right) + \alpha_{2}M_{I} + \alpha_{16}MDC_{L} - \mu_{F_{\alpha}}F_{\alpha} + \left(\alpha_{3}\left(\hat{T}_{1} + T_{1}\right)\left(1 - \frac{I_{10}}{I_{10} + hs_{I_{10} - F_{\alpha}}}\right) + \alpha_{4}\left(T_{C} + T_{8} + T_{80}\right)\right)\left(1 + \frac{M_{A}}{M_{A} + chs_{2}}\right)$$
(25)

Interferon γ - IFN γ (I_{γ})

$$\frac{dI_{\gamma}}{dt} = s_g \left(\frac{CFUlung}{CFUlung + chs_3} \right) \left(\frac{I_{12}}{I_{12} + chs_4} \right) + \alpha_5 T_1 \left(\frac{M_{ATot}}{M_{ATot} + f_2 I_{10} + chs_5} \right) + \alpha_6 T_8 \left(\frac{M_A}{M_A + chs_6} \right) + \alpha_7 M_1 + \alpha_8 \hat{T}_1 \left(\frac{MDC_L}{MDC_L + f_2 I_{10} + chs_8} \right) + \alpha_9 T_{80} \left(\frac{MDC_L}{MDC_L + f_2 I_{10} + chs_9} \right) - \mu_{I_\gamma} I_{\gamma}$$
(26)

Interlukin 12 – IL12 (I₁₂)

$$\frac{dI_{12}}{dt} = \alpha_{10} MDC_{L} \left(1 + \frac{I_{\gamma}}{I_{\gamma} + f_{4}I_{10} + chs_{10}} \right) - \mu_{I_{12}}I_{12} + \alpha_{11}M_{A} \left(1 + \frac{I_{\gamma}}{I_{\gamma} + f_{4}I_{10} + chs_{11}} \right)$$
(27)

$$\frac{dI_{10}}{dt} = \alpha_{17}M_{I} + \alpha_{12}M_{A} + \alpha_{13}MDC_{L} + (\alpha_{14}T_{1} + \alpha_{15}(T_{8} + T_{C}))\left(1 + \frac{M_{A}}{M_{A} + chs_{15}}\right) - \mu_{I_{10}}I_{10}$$
(28)

1.8. Cytokine production dynamics in the Lymph Node

Tumor Necrosis Factor α –TNF α (F $_{\alpha}$,)

$$\frac{dF_{\alpha}^{LN}}{dt} = \alpha_{1a}M_{A}^{LN}\left(1 + \frac{CFUln}{CFUln + f_{3}I_{10}^{LN} + chs_{1a}}\right) + \alpha_{2a}M_{I}^{LN} + \alpha_{16a}MDC - \mu_{F_{\alpha}}F_{\alpha}^{LN} + \left(\alpha_{3a}\left(\hat{T}_{1}^{LN} + T_{1}^{LN}\right)\left(1 - \frac{I_{10}^{LN}}{I_{10}^{LN} + hs_{I_{10a}} - F_{\alpha}}\right) + \alpha_{4a}\left(T_{C}^{LN} + T_{8}^{LN} + T_{80}^{LN}\right)\right)\left(1 + \frac{M_{A}^{LN}}{M_{A}^{LN} + chs_{2a}}\right)$$
(29)

Interferon γ - IFN γ (I_{γ})

$$\frac{dI_{\gamma}^{LN}}{dt} = s_{g}^{LN} \left(\frac{CFU \ln}{CFU \ln + chs_{3a}} \right) \left(\frac{I_{12}^{LN}}{I_{12}^{LN} + chs_{4a}} \right) + \alpha_{5a} T_{1}^{LN} \left(\frac{M_{A}^{LN}}{M_{A}^{LN} + chs_{5a}} \right) + \alpha_{6a} T_{8}^{LN} \left(\frac{M_{A}^{LN}}{M_{A}^{LN} + chs_{6a}} \right) + \alpha_{7a} M_{1}^{LN} + \alpha_{8a} \hat{T}_{1}^{LN} \left(\frac{MDC}{MDC + f_{2} I_{10}^{LN} + chs_{8a}} \right) + \alpha_{9a} T_{80}^{LN} \left(\frac{MDC}{MDC + f_{2} I_{10}^{LN} + chs_{8a}} \right) - \mu_{g} I_{\gamma}$$
(30)

Interlukin 12 – IL12 (I₁₂)

$$\frac{dI_{12}^{LN}}{dt} = \alpha_{10a} MDC \left(1 + \frac{I_{\gamma}^{LN}}{I_{\gamma}^{LN} + f_4 I_{10}^{LN} + chs_{10a}} \right) + \alpha_{11a} M_A^{LN} \left(1 + \frac{I_{\gamma}^{LN}}{I_{\gamma}^{LN} + f_4 I_{10}^{LN} + chs_{11a}} \right) - \mu_{I_{12}} I_{12}^{LN}$$
(31)

Interlukin 10 – IL10 (I₁₀)

$$\frac{dI_{10}^{LN}}{dt} = \alpha_{17a}M_{1}^{LN} + \alpha_{12a}M_{A}^{LN} + \alpha_{13a}MDC - \mu_{I_{10}}I_{10}^{LN} + \left(\alpha_{14a}T_{1}^{LN} + \alpha_{15a}(T_{C}^{LN} + T_{8}^{LN})\right)\left(1 + \frac{M_{A}^{LN}}{M_{A}^{LN} + chs_{15a}}\right)$$
(32)

1.9. Comparing parameter estimates

Based on the parameter estimation results, we compare several biological mechanisms across different cell types and different scales/compartments. Table S2 summarizes parameter estimation results (see Baseline (best fit) column). We find differences between TNF-independent recruitment parameters comparing monocyte derived cells (macrophages, rc₁ and DCs, rc₃) and lymphocytes (rc₅, rc₇), with the latter having 2 orders of magnitude lower maximum recruitment rates. Resting macrophages in the lung seem to have a higher estimated recruitment rates (5 times higher than any other monocyte derived cell types, both in the lung and lymph node compartment).

TNF-dependent recruitment parameter estimates (rc_2 , rc_4) are consistently higher in the lung than in the lymph node for macrophages and DCs. Maximum recruitment rates for T cells (rc_5 , rc_6 , rc_7 , rc_8) are always 3-4 orders of magnitude lower than macrophages and DCs (rc_2 , rc_4). Precursor effector T cells are recruited to the lung with rates 1 to 2 orders of magnitude higher than fully effector CD4+ and CD8+ T cells, suggesting that most of the final T cell differentiation happens at the site of infection.

Estimated rates of bacteria uptake by macrophages (k_1) and DCs (k_{12}) are similar, as well the rates of macrophage activation (k_2 , k_7). Given similar inflammation conditions (i.e., the function δ), the estimates for M₁ (CAM) activation rates (k_2) are 5 times higher than M₂ (k_7 , AAM). This suggests how a pro-inflammatory cytokine environment (IFN- γ and TNF) acts synergistically towards a protective Th1 response (CAM).

15

Macrophage bursting, TNF and Fas/FasL induced apoptosis, as well as CTL killing of infected macrophages shared no significant differences in estimated maximum rates and half saturation constants. In the lymph node compartment, maximum recruitment rates of naïve CD4+ and CD8+ T cells induced by mature DCs are similar (k_{13} , k_{16}), as well as the priming rates (k_{14} , k_{17}) and precursor effector T cell proliferation (k_{15} , k_{18}). T cell TNF-induced apoptosis rates (k_{22} , k_{26} , k_{28}) are higher than T cell differentiation rates (k_{20} , k_{29} , k_{24} , k_{30}), and overall they are 1-2 orders of magnitude higher at the site of infection than in the lymph node (k_{22a} , k_{26a} , k_{28a}).

The estimate for the scaling parameter (scaling) is approximately set to 2, suggesting how cells migrating to the site of infection could come at most from one more lymph node source, which is consistent with the mouse anatomy. The estimated MDC migration rate φ is 0.5, predicting that on average a DC will migrate out of the site of infection within 40 hours upon maturation.

SUPPLEMENTARY FIGURES

Figure S1: Experimental data (red circles) and median trajectory (black line with stars) for bacterial counts in the lung (Panel A) and lymph node (Panel B). Each point (red circle) represents a measure of bacterial load in the whole organ (either lung or lymph node) of a mouse. Mice were sacrificed at day 1, 8, 14, 21, 28, 43 and 99, for a total of 80 mice (12 mice per each time point, except for day 1 where only 8 mice were sacrificed).

Figure S2: diagram of DC dynamics in the lung and in the lymph node that are represented in the model. The parameters in parenthesis represent how each mechanism is described in the model equations. CFU input/forcing functions affect the braches describing IDC maturation in both compartments.

Figure S3: diagram of DCs and Lymphocytes dynamics in the lymph node that are represented in the model. The parameters in parenthesis represent how each mechanism is described in the model equations. CFU input/forcing function affects the brach describing IDC maturation.

Figure S4: diagram of CD4+ Ts dynamics in the lung that are represented in the model. The parameters in parenthesis represent how each mechanism is described in the model equations.

Figure S5: diagram of CD8+ Ts dynamics in the lymph node that are represented in the model. The parameters in parenthesis represent how each mechanism is described in the model equations.

Figure S6: procedure to translate experimental data to a functional for virtual CFU trajectories. *Panel A*: LHS2 for CFU. The red x are the experimental data. The black lines are the result of stepwise linear interpolation of 2500 samples at each experimental time point. *Panel B*: subset of 2500 virtual CFU trajectories shown in Panel A. The minimum and the maximum values for the experimental data at each time point are connected and they define respectively trajectory 1 and trajectory N (N=2500) in LHS2.

SUPPLEMENTARY TABLES

Table S1: cytokine production table. Cell types are listed as producers of the cytokines in the model. The order reflects the known or presumed relative importance of each cell in producing each cytokine. We assume that the order is the same for both compartments (lung and lymph node).

Variable	Cells producing
	1) Activated Macs [$M_{\scriptscriptstyle A}$] , Infected Macs [$M_{\scriptscriptstyle I}$] , Mature [MDC_L]
TNF α [F_{lpha}]	2) Th1 [T_1], IFN- γ producing CD8 [T_8], CTL [T_C]
	3) Precursor Th1 [$\hat{T_1}$] , Precursor effector CD8 [T_{80}]
	1) Th1 [T_1], IFN- γ producing CD8 [T_8]
IFN γ [I_{γ}]	2) Infected Macs [M_I]
	3) Precursor Th1 [$\hat{T_1}$], Precursor effector CD8 [T_{80}]
	1) Mature [<i>MDC</i> _L]
IL12 [<i>I</i> ₁₂]	2) Activated [M_A]
	1) Infected Macrophages (Infected M2 or AAM)
II 10[] 1	2) Activated [M_A]
	3) Mature [<i>MDC</i> _L]
	4) Th1 [T_1], IFN- γ producing CD8 [T_8], CTL [T_C]

Table S2: list of parameter names, descriptions, best fit values (from the model fitting algorithm) and the ranges used to screen the parameter space and select an adequate initial condition for the fitting algorithm.

Nomo	Description	Baseline	LHS1
name	Description	(best fit)	ranges
rc1	max TNF-independent MR recruitment rate	5.00E+03	[1E-1,1E5]
rc1a	max TNF-independent MR recruitment rate (LN)	5.00E+03	[1E-1,1E5]
rc3	max TNF-independent IDC recruitment rate	1.00E+03	[1E-1.1E5]
rc3a	max TNF-independent IDC recruitment rate (LN)	1.00E+02	[1E-1.1E5]
rc5	max TNF-independent precursor Th1 recruitment rate (Lung)	1.00E+01	[1E-3,1E5]
rc5a	max TNF-independent Th1 recruitment rate (Lung)	1.00E-01	[1E-3.1E5]
rc7	max TNF-independent precursor T8/CTL recruitment rate (Lung)	1.00E+01	[1E-3.1E5]
rc7a	max TNF-independent T8 recruitment rate (Lung)	5.00E-01	[1E-3,1E5]
rc7b	max TNF-independent CTL recruitment rate (Lung)	5.00E-01	[1E-3,1E5]
hsr1	Half-sat for TNF-independent MR recruitment rate	1.00E+03	[1,1E6]
hsr1a	Half-sat for TNF-independent MR recruitment rate (LN)	1.00E+02	[1,1E6]
hsr3	Half-sat for TNF-independent IDC recruitment rate	1.00E+04	[1,1E6]
hsr3a	Half-sat for TNF-independent IDC recruitment rate (LN)	1.00E+04	[1,1E6]
hsr5	Half-sat for TNF-independent precursor Th1 recruitment rate (Lung)	1.00E+02	[1,1E6]
hsr5a	Half-sat for TNF-independent Th1 recruitment rate (Lung)	1.00E+02	[1,1E6]
hsr7	Half-sat for TNF-independent precursor T8/CTL recruitment rate (Lung)	1.00E+02	[1,1E6]
hsr7a	Half-sat for TNF-independent T8 recruitment rate (Lung)	1.00E+02	[1,1E6]
hsr7b	Half-sat for TNF-independent CTL recruitment rate (Lung)	1.00E+02	[1,1E6]
rc2	max TNF-dependent MR recruitment rate	1.00E+04	[1E-3,1E5]
rc2a	max TNF-dependent MR recruitment rate (LN)	2.5E+03	[1E-3,1E5]
rc4	max TNF-dependent IDC recruitment rate	5.00E+03	[1E-3,1E5]
rc4a	max TNF-dependent IDC recruitment rate (LN)	1.00E+03	[1E-3,1E5]
rc6	max TNF-dependent precursor Th1 recruitment rate (Lung)	1	[1E-3,1E5]
rc6a	max TNF-dependent Th1 recruitment rate (Lung)	1.00E-01	[1E-3,1E5]
rc8	max TNF-dependent precursor T8/CTL recruitment rate (Lung)	1	[1E-3,1E5]
rc8a	max TNF-dependent T8 recruitment rate (Lung)	5.00E-01	[1E-3,1E5]
rc8b	max TNF-dependent CTL recruitment rate (Lung)	5.00E-01	[1E-3,1E5]
hsr2	Half-sat for TNF-dependent MR recruitment rate	1.00E+01	[1E-3,1E3]
hsr2a	Half-sat for TNF-dependent MR recruitment rate (LN)	107.5372	[1E-3,1E3]
hsr4	Half-sat for TNF-dependent IDC recruitment rate	1.00E+01	[1E-3,1E3]
hsr4a	Half-sat for TNF-dependent IDC recruitment rate (LN)	1	[1E-3,1E3]
hsr6	Half-sat for TNF-dependent precursor Th1 recruitment rate (Lung)	0.30464	[1E-3,1E3]
hsr6a	Half-sat for TNF-dependent Th1 recruitment rate (Lung)	0.48059	[1E-3,1E3]
hsr8	Half-sat for TNF-dependent precursor T8/CTL recruitment rate (Lung)	0.01	[1E-3,1E3]
hsr8a	Half-sat for TNF-dependent T8 recruitment rate (Lung)	0.57839	[1E-3,1E3]
hsr8b	Half-sat for TNF-dependent CTL recruitment rate (Lung)	0.2962	[1E-3,1E3]
k1	M2 infection rate (Lung)	1.00E-05	[1E-8,1E2]
k1a	AAM infection rate (LN)	3.00E-06	[1E-8,1E2]
k2	MR classical activation rate (Lung)	5.00E-01	[1E-8,1E2]
k2a	MR classical activation rate (LN)	5.00E-01	[1E-8,1E2]
k7	MR alternative activation rate (Lung)	1.00E-01	[1E-8,1E2]
k7a	MR alternative activation rate (LN)	1.00E-01	[1E-8,1E2]
k21	M2 classical activation rate (Lung)	1.00E-04	[1E-8,1E2]
k21a	M2 classical activation rate (LN)	1.00E-04	[1E-8,1E2]
hs2	Half-sat of IFN in macrophage activation (Lung)	1	[1E-3,1E2]
hs3	Half-sat of Bacteria+TNF in macrophage activation (Lung)	1.00E+03	[1E1,1E8]
hs2a	Half-sat of IFN in macrophage activation (LN)	1	[1E-3,1E2]
hs3a	Half-sat of Bacteria+TNF in macrophage activation (LN)	1.00E+05	[1E1,1E8]
k3	MI maximum bursting rate (Lung)	1.00E-01	[1E-8,1E2]
k3a	MI maximum bursting rate (LN)	1.00E-01	[1E-8,1E2]
k4	MI maximum Fas/FasL-apoptosis rate (Lung)	1.00E-01	[1E-8,1E2]
k4a	MI maximum Fas/FasL-apoptosis rate (LN)	1.00E-01	[1E-8,1E2]
hs4	Th1 half-sat on MI Fas/FasL-apoptosis rate (Lung)	1241.132	[1,1E5]
hs4a	Th1 half-sat on MI Fas/FasL-apoptosis rate (LN)	1262.4551	[1,1E5]
k5	MI maximum TNF-apoptosis rate (Lung)	1.00E-01	[1E-8,1E2]

k5a	MI maximum TNF-apoptosis rate (LN)	1.00E-01	[1E-8,1E2]
hs5	TNF half-sat on MI TNF-apoptosis rate (Lung)	0.19312	[1E-3,1E1]
hs5a	TNF half-sat on MI TNF-apoptosis rate (LN)	0.2	[1E-3,1E1]
k6	MI maximum CTL killing rate (Lung)	1.00E-01	[1E-8,1E2]
k6a	MI maximum CTL killing rate (LN)	1 00F-01	[1E-8 1E2]
hs6	CTL half-sat onMLCTL killing rate (Lung)	88 0301	[1 1E5]
hs6a	CTL half-sat on MI CTL killing rate (LN)	88	[1,1E5]
hsl10	IL10 half saturation on delaying macrophage activation (Lung)	1	[1E-3.1E4]
hsl10a	IL10 half saturation on delaying macrophage activation (LN)	1	[1E-3,1E4]
hsl10 DC	IL10 half saturation on delaying IDC maturation (Lung)	1	[1E-3,1E4]
hsl10 DCLN	IL10 half saturation on delaying IDC maturation (LN)	1.00E+03	[1E-3.1E4]
hsl10 T0	IL10 half saturation on delaying precursor Th1 proliferation (Lung)	1	[1E-3.1E4]
hsl10 TOLN	IL10 half saturation on delaying precursor Th1 proliferation (LN)	1	[1E-3,1E4]
hsl10_T80	IL10 half saturation on delaying precursor T8/CTL proliferation (Lung)	1	[1E-3,1E4]
hsI10 T80LN	IL10 half saturation on delaying precursor T8/CTL proliferation (LN)	1	[1E-3,1E4]
hsI10 [_] TNF	IL10 half saturation on delaying TNF production by precursor and effector Th1 (Lung)	1	[1E-3,1E4]
hsl10a TNF	IL10 half saturation on delaying TNF production by precursor and effector Th1 (Lung)	1	[1E-3,1E4]
k12	IDC infection rate (Lung)	1.00E-06	[1E-8,1E2]
k12a	IDC infection rate (LN)	1.00E-08	[1E-8,1E2]
k12b	IDC maximum bacteria uptake rate [exosome] (LN)	1.00E-08	[1E-8,1E2]
hs12b	MDC half-sat on IDC bacteria uptake (LN)	565.7622	[1,1E4]
k13	Naïve CD4+ T cells maximum MDC-dependent recruitment rate (LN)	7	[1E-3,1E4]
hs13	MDC half-sat Naïve CD4+ T cells recruitment rate (LN)	1.00E+03	[1,1E4]
k14	Rate (likelyhood) of Naïve CD4+ T cell priming when encountering a MDC (LN)	1.50E-03	[1E-6,1]
k15	Precursor Th1 proliferation rate (LN)	2	[1E-3,1E4]
rho2	Precursor Th1 carrying capacity (LN)	1.00E+07	[1E4,1E8]
k20a	Maximum Th1 differentiation rate, dependent of IL12 and MDC (LN)	1.00E-03	[1E-6,1E1]
hs20a	MDC half-sat on IL12 and MDC dependent Th1 differentiation (LN)	1.00E+03	[1,1E4]
k29a	Maximum Th1 differentiation rate, dependent of IL12 and Macrophages (LN)	1.00E-03	[1E-6,1E1]
hs29a	MDC half-sat on IL12 and Macrophages dependent Th1 differentiation (LN)	1.00E+03	[1,1E4]
k22a	Maximum rate of TNF-dependent apoptosis of Th1 cells (LN)	1.00E-01	[1E-6,1E1]
hs22a	TNF half-sat for TNF-dependent apoptosis of Th1 cells (LN)	1	[1E-3,1E2]
k16	Naïve CD8+ T cells maximum MDC-dependent recruitment rate (LN)	5	[1E-3,1E4]
hs16	MDC half-sat Naïve CD8+ T cells recruitment rate (LN)	1.00E+03	[1,1E4]
k17	Maximum rate (likelyhood) of Naïve CD8+ T cell priming when encountering a MDC (LN)	1.00E-03	[1E-6,1]
hs17	Th1 half-sat rate for Naïve CD8+ T cell priming when encountering a MDC (LN)	1.00E+01	[1E-3,1E2]
k18	Precursor T8/CTL proliferation rate (LN)	2	[1E-3,1E4]
rho3	Precursor T8/CTL carrying capacity (LN)	1.00E+07	[1E4,1E8]
k24a	Maximum T8/CTL differentiation rate, dependent of IL-12 and MDC (LN)	1.00E-04	[1E-6,1E1]
hs24a	MDC half act an II 10 and MDC dependent TR/CTL differentiation (LN)		
k30a	MDC hall-sat on IL-12 and MDC dependent 16/CTL differentiation (LN)	1.00E+03	[1,1E4]
hc30a	Maximum T8/CTL differentiation rate, dependent 18/CTL differentiation (LN)	1.00E+03 1.00E-04	[1,1E4] [1E-6,1E1]
11500a	MDC half-sat on IL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN)	1.00E+03 1.00E-04 1.00E+03	[1,1E4] [1E-6,1E1] [1,1E4]
k26a	MDC half-sat on IL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN)	1.00E+03 1.00E-04 1.00E+03 1.00E-01	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1]
k26a hs26a	MDC half-sat on IL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN)	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2]
k26a hs26a k28a	MDC half-sat of TL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN)	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01	[1,1E4] [1E-6,1E1] [1E-6,1E1] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1]
k26a hs26a k28a hs28a	MDC half-sat of TL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN)	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01 1.00E-01	[1,1E4] [1E-6,1E1] [1E-6,1E1] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2]
k26a hs26a k28a hs28a csi1	MDC half-sat of IL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3]
hsoda k26a hs26a k28a hs28a csi1 csi1a	MDC half-sat of IL-12 and MDC dependent To/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3]
hsoba k26a hs26a k28a hs28a csi1 csi1a csi2	MDC half-sat of HL-12 and MDC dependent 16/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3]
hs50a k26a hs26a k28a hs28a csi1 csi1a csi2 csi2a	MDC half-sat of HL-12 and MDC dependent 16/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood	1.00E+03 1.00E-04 1.00E+03 1.00E-01 1.00E-02 1.00E-01 5 1.00E+01 1.00E+01 1.00E+01	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3]
hs50a k26a hs26a k28a hs28a csi1 csi1a csi2 csi2a csi2b	MDC half-sat of HL-12 and MDC dependent 16/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood	1.00E+03 1.00E-04 1.00E-01 1.00E-01 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3]
k26a hs26a k28a hs28a csi1 csi1a csi2 csi2a csi2b k19	MDC half-sat of HL-12 and MDC dependent 16/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor Th1 proliferation rate (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E-01	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4]
k26a k26a k28a k28a csi1 csi1a csi2 csi2a csi2b k19 rho4	MDC half-sat of HL-12 and MDC dependent 16/C12 differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-01 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E-01 1.00E+05	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4] [1E4,1E8]
k26a k26a k28a k28a csi1 csi1a csi2 csi2a csi2b k19 rho4 k20	MDC half-sat of HL-12 and MDC dependent 16/L-12 and Macrophages (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor Th1 proliferation rate (Lung) Precursor Th1 differentiation rate, dependent of IL12 and MDC (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+05 1.00E+03	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4] [1E4,1E8] [1E-6,1E1]
k26a k26a k28a csi1 csi1a csi2 csi2a csi2b k19 rho4 k20 hs20	MDC half-sat on LC-12 and MDC dependent 16/LC-12 and Macrophages (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate out of the LN into the blood Maximum Th1 cells migration rate out of the LN into the blood Precursor Th1 cells migration rate out of the LN into the blood MDC half-sat on IL12 and MDC dependent of IL12 and MDC (Lung) MDC half-sat on IL12 and MDC dependent Th1 differentiation (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+05 1.00E+03 1.00E+03	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4] [1E4,1E8] [1E-6,1E1] [1,1E4]
hisola k26a hs26a k28a csi1 csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29	MDC half-sat on LC-12 and MDC dependent 16/LC-12 and Macrophages (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 proliferation rate (Lung) Precursor Th1 differentiation rate, dependent of IL-12 and MDC (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and Macrophages (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+05 1.00E+03 1.00E+03 1.00E-03	[1,1E4] [1E-6,1E1] [1,1E4] [1E-6,1E1] [1E-3,1E2] [1E-6,1E1] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4] [1E4,1E8] [1E-6,1E1] [1,1E4] [1E-6,1E1]
hs26a k26a hs26a k28a csi1 csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29	Maximum T8/CTL differentiation rate, dependent T6/CTL differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 differentiation (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03	[1,1E4] [1E-6,1E1] [1,1E4] [1E-3,1E2] [1E-3,1E2] [1E-3,1E2] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-2,1E3] [1E-3,1E4] [1E4,1E8] [1E-6,1E1] [1,1E4] [1,1E4]
k26a k26a k28a k28a csi1 csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22	MDC half-sat on LC-12 and MDC dependent 16/C12 differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03	
k26a k26a k28a csi1 csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22 hs22	MDC half-sat on IL-12 and MDC dependent 16/C12 differentiation (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-01 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.0	
k26a k26a k28a csi1 csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22 hs22 k23	MDC half-sat on IL-12 and MDC dependent 16/IL-12 and Macrophages (LN) Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 differentiation (Lung) MDC half-sat or IL-12 and Macrophages dependent Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung) Precursor T8/CTL proliferation rate (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+01 1 1.00E+01 1 1.00E-01	
k26a k26a k28a k28a csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22 hs22 k22 k23 rho5	Moc hall-sat on L-12 and Moc dependent to /L-12 and Macrophages (LN) Maximum T8/CTL differentiation rate, dependent of /L-12 and Macrophages (LN) MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent of IL-12 and Macrophages (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 differentiation (Lung) MDC half-sat or TNF-dependent apoptosis of Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung) Precursor T8/CTL proliferation rate (Lung) Precursor T8/CTL proliferation rate (Lung) MDC half-sat or IL-12 and Macrophages dependent Th1 differentiation (Lung) Maximum rate of TNF-dependent apoptosis of Th1 cells (Lung) Precursor T8/CTL proliferation rate (Lung) Precursor T8/CTL proliferation rate (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+01 1 1.00E-01 1.00E+05	
k26a k26a k28a k28a csi1 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22 hs22 k23 rho5 k24	Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate (Lung) Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MDC half-sat for TNF-dependent apoptosis of Th1 cells (Lung) Maximum rate of TNF-dependent apoptosis of Th1 cells (Lung) Precursor T8/CTL proliferation rate (Lung) Precursor T8/CTL proliferation rate (Lung) Maximum T8/CTL differentiation rate, dependent of IL-12 and MDC (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-02 1.00E-01 1.00E-01 5 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+01 1 1.00E-01 1.00E+05 1.00E+05 1.00E+04	
k26a k26a k28a k28a csi1 csi2 csi2 csi2a csi2b k19 rho4 k20 hs20 k29 hs29 k22 hs29 k22 k23 rho5 k24 hs24	Maximum T8/CTL differentiation rate, dependent of IL-12 and Macrophages (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of T8 cells (LN) TNF half-sat for TNF-dependent apoptosis of T8 cells (LN) Maximum rate of TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) TNF half-sat for TNF-dependent apoptosis of CTL cells (LN) Precursor Th1 cells migration rate out of the LN into the blood Th1 cells migration rate out of the LN into the blood T8 cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor T8/CTL cells migration rate out of the LN into the blood CTL cells migration rate out of the LN into the blood Precursor Th1 proliferation rate (Lung) Precursor Th1 carrying capacity (Lung) Maximum Th1 differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent Th1 differentiation (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) TNF half-sat for TNF-dependent apoptosis of Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MDC half-sat on IL-12 and Macrophages dependent Th1 cells (Lung) MAximum Th3 cfTL differentiation rate, dependent of IL-12 and Macrophages (Lung) MAXimum rate of TNF-dependent apoptosis of Th1 cells (Lung) MAXimum T8/CTL differentiation rate, dependent of IL-12 and MDC (Lung) MAXimum T8/CTL differentiation rate, dependent of IL-12 and MDC (Lung) MAXimum T8/CTL differentiation rate, dependent of IL-12 and MDC (Lung) MAXimum T8/CTL differentiation rate, dependent of IL-12 and MDC (Lung) MDC half-sat on IL-12 and MDC dependent T8/CTL differentiation (Lung)	1.00E+03 1.00E-04 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E+02 1.00E+02 1.00E+01 1.00E+01 1.00E+01 1.00E+03 1.00E+	

hs30	MDC half-sat on IL-12 and Macrophages dependent T8/CTL differentiation (Lung)	166.9184	[1,1E4]
k26	Maximum rate of TNF-dependent apoptosis of T8 cells (Lung)	1	[1E-6,1E1]
hs26	TNF half-sat for TNF-dependent apoptosis of T8 cells (Lung)	1	[1E-3,1E2]
k28	Maximum rate of TNF-dependent apoptosis of CTL cells (Lung)	1	[1E-6,1E1]
hs28	TNF half-sat for TNF-dependent apoptosis of CTL cells (Lung)	1	[1E-3,1E2]
fi	MDC migration rate from the lung to the LN	0.75	[1E-4,1]
f1	Scaling factor between TNF and CFU	1.00E+02	[1,1E5]
f2	Scaling factor between IL-10 and MDC	0.12698	[1E-2,1E2]
f3	Scaling factor between IL-10 and CFU	4500.72	[1,1E5]
f4	Scaling factor between IL-10 and IFN-g	1.00E+01	[1E-1,1E3]
w1	Weight factor between MA and MI	1	[1E-2,1E1]
wT80	Weight factor between precursor Th1 and Th1 in Naïve CD8 differentiation	0.5	[1E-2,1E1]
scaling	Scaling factor between lung and LN compartments	2	[1E-1,1E1]
т	Fraction of overlap between T8 (IFN producting CD8+ Ts) and CTL phenotypes	0.75	[1e-3,1]

HALF LIVES and CYTOKINES parameters (not included in the fitting)

Name Description		Baseline	LHS1 ranges)
$S_{M0} [= (\mu_{M0} + k_7)^* M_0(0)]$	Constant source of M0 (Lung)	213.86	none
$S_{M0} [= (\mu_{M0} + k_{7a}) * M_0^{LN}(0)]$	Constant source of M0 (LN)	53.465	none
s_{IDC} [= μ_{IDC} *IDC(0)]	Constant source of IDC (Lung)	50	none
s _{IDCLN} [=µ _{IDC_LN} *IDC _{LN} (0)]	Constant source of IDC (LN)	50	none
s _{N4} [=µ _{N4} *N ₄ (0)]	Constant source of N4 (LN)	5e5	none
s _{N8} [=µ _{N8} *N ₈ (0)]	Constant source of N8 (LN)	4.15e5	none
μ_{MO}	death rate for M0 (lung and LN)	0.00693	[1E-3,1E-1]
μмі	death rate for MI (lung and LN)	0.014	[1E-2,1E-1]
μ_{MA}	death rate for M1 (CAM) (lung and LN)	0.035	[2E-2,1E-1]
μ_{M2}	death rate for M2 (AAM) (lung and LN)	0.035	[1E-2,1E-1]
μ_{IDC}	death rate for IDC	0.05	[1E-2,1E-1]
μ_{MDC}	death rate for MDC	0.3	[5E-2,5E-1]
μ_{IDC_LN}	death rate for IDC (LN)	0.05	[1E-2,1E-1]
μ_{MDC_LN}	death rate for MDC (LN)	0.3	[5E-2,5E-1]
μ_{N4}	death rate for Naïve CD4+	2.5	[1E-4,1E1]
μ_{NB}	death rate for Naïve CD8+	2.5	[1E-4,1E1]
$\mu_{ au_0}$	death rate for precursor Th1	0.347	[1E-2,5E-1]
μ_{T1}	death rate for Th1	0.55	[1E-2,2]
μ_{TB}	death rate for T8	1	[1E-2,2]
μ_{T80}	death rate for precursor T8/CTL	0.347	[1E-2,5E-1]
μ_{TC}	death rate for CTL	0.55	[1E-2,2]
μ_{TNF}	degradation rate for TNF	2	[1E-2,5]
μ_{IG}	degradation rate for IFN	2	[1E-2,5]
μ_{l12}	degradation rate for IL12	2	[1E-2,5]
μ_{II0}	degradation rate for IL10	2	[1E-2,5]
alpha1	TNF production rate of MA (Lumg)	0.01533	[1E-6,1E3]
chs1	CFU half-sat on enhancement of TNF production by MA (lung)	7754.8437	[1,1E6]
alpha2	TNF production rate of MI (Lumg)	6.87E-06	[1E-6,1E3]
alpha16	TNF production rate of MDC (Lumg)	0.00018964	[1E-6,1E3]

alpha3	TNF production rate of CD4+ Ts (Lumg)	0.001533	[1E-6,1E3]
alpha4	TNF production rate of CD8+ Ts (Lumg)	1.03E-07	[1E-6,1E3]
chs2	MA half-sat on enhancement of TNF production by CD8+ Ts (Lung)	1.0858	[1,1E6]
sg	Extra source of IFN: CFU and IL-12 dependent IFN-g production rate (Lung)	7.2941	[1E-3,1E2]
chs3	CFU half-sat on IFN-g production by extra source (Lung)	21168.0893	[1,1E6]
chs4	IL-12 half-sat on IFN-g production by extra source (Lung)	1E1	[1E-3,1E2]
alpha5	IFN-g maximum production rate by Th1 cells (Lung)	0.00020395	[1E-6,1E3]
chs5	MA half-sat on IFN production by Th1 cells (Lung)	2559.4721	[1,1E6]
alpha6	IFN-g maximum production rate by T8 cells (Lung)	0.0004204	[1E-6,1E3]
chs6	MA half-sat on IFN production by 18 cells (Lung)	3.9454	[1,1E6]
alpha7	IFN production rate by MI	0.0017624	[1E-6,1E3]
alpha8	IFN-g maximum production rate by precursor Th1 cells (Lung)	6.14E-06	[1E-6,1E3]
chs8	MDC half-sat on IFN production by precurso Th1 cells (Lung)	23.324	[1,1E6]
aipnas	IFIN-g maximum production rate by precursor 18 cells (Lung)	7.03E-05	[1E-6,1E3]
cns9	MDC half-sat on IFN production by precursor 18 cells (Lung)	8.2004	[1,1E6]
alpha10	IL-12 production rate by MDC (Lung)	2.26E-05	[1E-6,1E3]
chs10	IFN half-sat on enhancement of IL12 production by MDC (lung)	35.2535	[1E-3,1E2]
alpha11	IL-12 production rate by MA (Lung)	8.02E-06	[1E-6,1E3]
chs11	IFN half-sat on enhancement of IL12 production by MA (lung)	2.2915	[1E-3,1E2]
alpha12	IL-10 production rate by MAC (Lung)	4.17E-05	[1E-6,1E3]
alpha13	IL-10 production rate by MDC (Lung)	0.0016125	[1E-6,1E3]
alpha14	IL-10 production rate by Th1 cells (Lung)	1.17E-05	[1E-6,1E3]
alpha15	IL-10 production rate by T8 and CTL cells (Lung)	1.11E-05	[1E-6,1E3]
chs15	MA half-sat on enhancement of IL10 production by Ts (Lung)	1287.9797	[1,1E6]
alpha17	IL-10 production rate by M2 (Lung)	1.09E-05	[1E-6,1E3]
alpha1a	TNF production rate of MA (LN)	5.18E-05	[1E-6,1E3]
chs1a	CFU half-sat on enhancement of TNF production by MA (LN)	10885.3308	[1,1E6]
alpha2a	TNF production rate of MI (LN)	9.81E-05	[1E-6,1E3]
alpha16a	TNF production rate of MDC (LN)	0.00077691	[1E-6,1E3]
alpha3a	TNF production rate of CD4+ Ts (LN)	0.001533	[1E-6,1E3]
alpha4a	TNF production rate of CD8+ Ts (LN)	8.55E-06	[1E-6,1E3]
chs2a	MA half-sat on enhancement of TNF production by CD8+ Ts (LN)	1.035	[1,1E6]
sgLN	Extra source of IFN: CFU and IL-12 dependent IFN-g production rate (LN)	0.092061	[1E-3,1E2]
chs3a	CFU half-sat on IFN-g production by extra source (LN)	6348149.912	[1,1E6]
chs4a	IL-12 half-sat on IFN-g production by extra source (LN)	84589.7348	[1E-3,1E2]
alpha5a	IFN-g maximum production rate by Th1 cells (LN)	7.12E-06	[1E-6,1E3]
chs5a	MA half-sat on IFN production by Th1 cells (LN)	5.8983	[1,1E6]
alpha6a	IFN-g maximum production rate by T8 cells (LN)	0.0020684	[1E-6,1E3]
chs6a	MA half-sat on IFN production by T8 cells (LN)	4.268	[1,1E6]
alpha7a	IFN production rate by MI	0.0010406	[1E-6,1E3]
alpha8a	IFN-g maximum production rate by precursor Th1 cells (LN)	2.95E-06	[1E-6,1E3]
chs8a	MDC half-sat on IFN production by precurso Th1 cells (LN)	1970.2791	[1,1E6]
alpha9a	IFN-g maximum production rate by precursor T8 cells (LN)	0.0012697	[1E-6,1E3]
chs9a	MDC half-sat on IFN production by precurso T8 cells (LN)	269.7575	[1,1E6]
alpha10a	IL-12 production rate by MDC (LN)	0.23205	[1E-6,1E3]
chs10a	IFN half-sat on enhancement of IL12 production by MDC (LN)	26.8302	[1E-3,1E2]
alpha11a	IL-12 production rate by MA (LN)	0.010636	[1E-6,1E3]
chs11a	IFN half-sat on enhancement of IL12 production by MA (LN)	98.7184	[1E-3,1E2]

alpha12a	IL-10 production rate by MAC (LN)	0.0046598	[1E-6,1E3]
alpha13a	IL-10 production rate by MDC (LN)	0.00094216	[1E-6,1E3]
alpha14a	IL-10 production rate by Th1 cells (LN)	1.26E-05	[1E-6,1E3]
alpha15a	IL-10 production rate by T8 and CTL cells (LN)	2.30E-06	[1E-6,1E3]
chs15a	MA half-sat on enhancement of IL10 production by Ts (LN)	272.2163	[1,1E6]
alpha17a	IL-10 production rate by M2 (LN)	0.003521	[1E-6,1E3]

Table S3: list of all the non-zero initial conditions for the 32 equations ODE system. Measure units are number of cells in the whole organ (lung or lymph node). Bacterial infection is introduced after homeostasis is reached, i.e. with M_2 initial conditions set to the values below.

Variable	Lung	Lymph Node
Undifferentiated Macrophages [M ₀]	2e3	5e2
Alternatively Activated Macrophages [M2]	5.713e3	1.4283e3
Immature Dendritic Cells [IDC]	1e3	1e3
Naïve Lymphocytes[N_4 and N_8]		CD4 = 2e5 CD8 = 0.8*2e5

Table S4: US analysis results for the LHS2 experiment. In parenthesis is the PRCC value. The correlation index is Partial Rank Correlation Coefficient (PRCC). In this context, a positive impact of a particular mechanism on a specific output (positive PRCC) means that if that mechanism is increased/enhanced, the output will likely increase, or vice versa. On the other hand, a negative impact (negative PRCC) is when an increase in a specific mechanism results in a decrease in the output, and vice versa. There is a strict criteria for significance (p<1e-3) and we only show PRCC> ± 0.15 . The outputs are correlated after 100 days post infection. *: only significant within 2 weeks post infection.

Output	Positive Correlation	Negative correlation
$M_{\rm l}$ in the Lung	rc ₂ (0.25), k ₇ (0.4), k ₁ (0.3), CFUlung*	k ₅ (-0.3)
M_l in the LN	rc _{2a} (0.33), k _{7a} (0.3), k _{1a} (0.5)	k _{5a} (-0.4)
CAM in the Lung	k ₂ (0.5), rc ₂ (0.39), hs _{l10} (0.2), rc ₁ (0.32),	k ₅ (-0.33) hs ₂ (-0.2),
CAM in the LN	$\begin{array}{c} k_{2a} \ (0.5), \ rc_{2a} \ (0.43), \\ hs_{l10a} \ (0.24) \ , \ rc_{1a} \ (0.22), \end{array}$	k _{5a} (-0.28), hs _{2a} (-0.18), hs _{3a} (-0.3)
AAM in the Lung	k ₇ (0.5), rc ₂ (0.36), rc ₁ (0.25)	k₅ (-0.35), k₁ (-0.47), hs _{l10} (-0.15)
AAM in the LN	k _{7a} (0.6), rc _{2a} (0.55), rc _{1a} (0.32)	k _{5a} (-0.52), k _{1a} (-0.3)
MDC in the Lung	k ₁₂ (0.18), rc₄ (0.35), hs _{I10-DC} * (0.3) , CFUlung*	
MDC in the LN	k ₁₂ * (0. 5), hs _{I10-DCLN} (0.3), k _{12a} (0.2), CFUlung*	scaling* (-0.2)
MPF in the Lung	hs _{l10} (0.3), k ₁ * (0.2), CFUlung*	hs ₂ (-0.3), rc ₄ (-0.23), k ₂ (-0.18)
MPF in the LN	hs _{I10a} (0.3)	hs _{2a} (-0.2), hs _{3a} (-0.35), ξ ₁ (-0.15), k _{2a} (-0.18)
Switching time in the Lung	k ₇ (0.4), hs ₂ (0.27)	k_{2} (-0.55), hs_{110} (-0.22), k_{1} (-0.15), k_{15} (-0.18), rc_{2} (-0.18)
Switching time in the LN	k _{7a} (0.48), hs _{3a} (0.23)	$k_{2a} \ (\text{-}0.45), \ hs_{110a} \ (\text{-}0.2), \ k_{5a} \ (\text{-}0.22)$

References

- Demangel C, Bertolino P, Britton WJ (2002) Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol 32: 994-1002.
- Obregon C, Rothen-Rutishauser B, Gitahi SK, Gehr P, Nicod LP (2006) Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol 169: 2127-2136.
- Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, et al. (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5: 1143-1148.
- Thery C, Duban L, Segura E, Veron P, Lantz O, et al. (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3: 1156-1162.
- Einarsdottir T, Lockhart E, Flynn JL (2009) Cytotoxicity and secretion of gamma interferon are carried out by distinct CD8 T cells during Mycobacterium tuberculosis infection. Infect Immun 77: 4621-4630.
- Lucey DR, Clerici M, Shearer GM (1996) Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9: 532-562.
- Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, et al. (1993) Cytokine production at the site of disease in human tuberculosis. Infect Immun 61: 3482-3489.
- Tsukaguchi K, de Lange B, Boom WH (1999) Differential regulation of IFN-gamma, TNF-alpha, and IL-10 production by CD4(+) alphabetaTCR+ T cells and vdelta2(+) gammadelta T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol 194: 12-20.
- Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, et al. (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166: 7033-7041.
- Chensue SW, Ruth JH, Warmington K, Lincoln P, Kunkel SL (1995) In vivo regulation of macrophage IL-12 production during type 1 and type 2 cytokinemediated granuloma formation. J Immunol 155: 3546-3551.
- 11. Fulton SA, Johnsen JM, Wolf SF, Sieburth DS, Boom WH (1996) Interleukin-12 production by human monocytes infected with Mycobacterium tuberculosis: role of phagocytosis. Infect Immun 64: 2523-2531.
- 12. Fulton SA, Cross JV, Toossi ZT, Boom WH (1998) Regulation of interleukin-12 by interleukin-10, transforming growth factor-beta, tumor necrosis factor-alpha, and interferon-gamma in human monocytes infected with Mycobacterium tuberculosis H37Ra. J Infect Dis 178: 1105-1114.
- 13. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13: 453-461.
- 14. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683-765.