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ack of good correlation of serum CC-chemokine
evels with human immunodeficiency virus-1 disease
tage and response to treatment

ING YE, POWEL KAZANJIAN, STEVEN L. KUNKEL, and DENISE E. KIRSCHNER

NN ARBOR, MICHIGAN

Three CC-chemokines—MIP-1� (CCL3), MIP-1� (CCL4), and RANTES (CCL5)—are
natural ligands for the human immunodeficiency virus–1 (HIV-1) coreceptor CCR5.
To determine correlations between CC-chemokines and HIV-1 disease stage or
response to treatment, we examined serum levels of MIP-1�, MIP-1�, and RANTES in
60 infected patients during 18 months while they were taking highly active antiret-
roviral therapy (HAART). Our results demonstrate that serum levels of MIP-1� and
RANTES were increased in HIV-1-infected individuals compared with those in
healthy controls. We found no significant differences among 4 clinical stages of
HIV-1 infection in the serum levels of three CC-chemokines. Longitudinal HAART
analyses revealed a pronounced decline in serum MIP-1� levels over time. We
found no difference in this decline between HAART responders and nonresponders.
These findings indicate that production of MIP-1� and RANTES changes during HIV-1
infection and treatment; however, our results suggest that serum levels of CC-
chemokines should not be used as biomarkers for HIV-1 disease stage or response
to treatment. (J Lab Clin Med 2004;143:310-9)

Abbreviations: ELISA � enzyme-linked immunosorbent assay; HAART � highly active antiretro-
viral therapy; IR� � HAART immunological responder; PBMC � peripheral-blood mononuclear
cell; VR� � HAART virologic responder
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fficient entry of HIV-1 into target cells relies not
only on CD4 molecules but also on chemokine
receptors. Two chemokine receptors, CCR5 and

XCR4, act as the major coreceptors for HIV-1 and
etermine cellular tropism for different HIV-1
trains.1-4 The entry of R5 (non-syncytium�inducing)
nd X4 (syncytium-inducing) HIV-1 strains is mediated
y coreceptors CCR5 and CXCR4, respectively. The
ritical role of chemokine receptors in HIV-1 transmis-
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ion and pathogenesis is exemplified by the protective
ole of a 32-nucleotide deletion of the receptor CCR5 in
IV-1 infection.5,6

Chemokines are chemotactic cytokines that attract
eukocytes to the site of inflammatory reaction.7 They
ave received great attention for their role in HIV-1
nfection, for example, by binding with chemokine
eceptors, thus competing with HIV-1 to inhibit infec-
ion.8 Three CC-chemokines—MIP-1� (CCL3),

IP-1� (CCL4), and RANTES (CCL5)—bind to
CR5, whereas 1 CXC-chemokine, SDF-1, binds to
XCR4.1-4 The results of in vitro experiments suggest

hat MIP-1�, MIP-1� and RANTES are able to inhibit
5 HIV-1 infection of CD4� T-cells, PBMCs, macro-
hages, and dendritic cells.8-11 Similarly, SDF-1 pre-
ents infection by X4 strains.3,4

Macrophages, CD4� and CD8� T-cells, and natural-
iller cells are major cellular sources of MIP-1�, MIP-
�, and RANTES.12-16 During HIV-1 infection, these
ells can be activated or infected or die, inducing al-
ered secretion patterns of these 3 CC-chemokines.

esides binding to CCR5, MIP-1� binds to CCR1 and
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CR3, and RANTES binds to CCR1, CCR3, and
CR4.7 The ability of 1 chemokine to interact with
ultiple chemokine receptors may result in the activa-

ion of different intracellular signaling pathways.
Although CC-chemokines and their receptors seem

o be relevant to the pathogenesis of HIV-1 infection,
heir exact role in disease progression in vivo has not
een established. Several hypotheses exist to explain
he dichotomous effects of CC-chemokines on HIV-1
nfection. First, CC-chemokines bind to CCR5, com-
eting with R5 HIV-1 by binding to the same receptor
nd thereby blocking viral entry.8-11 Second, CC-che-
okines down-regulate the expression of their receptor,
CR5, from the host-cell surface.17,18 These 2 events
ay aid the selection of X4 strains over R5 strains

uring HIV-1 infection. Third, CC-chemokines induce
n inflammatory response, attracting noninfected target
ells to the site of active viral replication.19 Fourth, it is
lso likely that CC-chemokines induce intracellular sig-
aling that enhances HIV-1 replication.20,21

Measurements of CC-chemokines have been per-
ormed both from serum and from secretion by stimu-
ated cells. The authors of several studies have tried
inking CC-chemokine levels with HIV-1 disease pro-
ression or viral replication; however results have been
ontradictory. Some studies have revealed that progres-
ors have a pronounced decline of CC-chemokines in
erum,12 some have suggested that increased serum
evels of RANTES and MIP-1� are associated with
isease progression,22,23 and still others have indicated
hat plasma levels of CC-chemokines have no correla-
ion with disease progression or viral burden.24-26 Some
uggest that augmented production of CC-chemokines
imits viral replication,13,27 whereas others show no
orrelation between CC-chemokines and viral load.24,28

HAART greatly suppresses HIV-1 replication and in-
reases CD4� T-cell counts in most but not all patients.29

owever, the effects of HAART on the production of
C-chemokines remain unclear. Increased,12,30-32 de-
reased,33 and unchanged30,33,34 levels of circulating and
nducible CC-chemokines have been observed during
reatment. Therefore, how serum CC-chemokines respond
uring HAART has not yet been characterized.
It is likely that the relationships between CC-chemo-

ines and HIV-1 are far more complex than the initially
roposed competition for binding to their common che-
okine receptors.8 To this end, we conducted a longi-

udinal study to monitor serum levels of MIP-1�, MIP-
�, and RANTES in 60 HIV-1 infected patients during
8 months of continuous HAART. Our goal was to
lucidate whether these 3 CC-chemokines are associ-

ted with HIV-1 disease stage or response to therapy. (
ETHODS

Patients and controls. We have approximately 800 pa-
ients in our HIV/acquired immunodeficiency syndrome
linic. Sixty HIV-1 infected patients were included in our
tudy between January 1999 and March 2001. Candidates for
nclusion were drug-naı̈ve patients initiating HAART or drug-
xperienced patients in whom HAART failed and who were
hen switched to a salvage or rescue regimen. Of the 60 study
ubjects, 47 were men. The median age of this study group at
he time of entry was 32 years (range 19-64 years). Thirty-five
ere white, 21 black, and 4 Hispanic. Sixteen opportunistic

nfections were detected in 27 of the 60 patients at baseline,
ncluding candidiasis, Pneumocystis carinii pneumonia, cy-
omegalovirus infection, and tuberculosis. Thirteen healthy
ndividuals (8 men; median age 30 years, range 21-42 years)
ere selected as negative controls for the HIV-1 patients.
The guidelines for when to initiate HAART were in flux

hroughout the study period. For this reason, patients enrolled
n the study received HAART at an earlier stage of infection
han they would have under current recommendations (CD4�

-cells 350/mm3 of blood or HIV-1 RNA level 55,000 cop-
es/mL blood35). Fifty-five patients started or switched to
AART after their initial clinic visits. Among these 55 pa-

ients, 25 were antiretroviral-naı̈ve, whereas in the remaining
0 anti-retroviral therapy had failed before (26 were protease
nhibitor experienced and 4 were reverse transcriptase inhib-
tor experienced) and were changed to a salvage HAART
egimen on entering our study. HAART was continued for an
verage of 18 months in these patients (range 1-26 months).
ive patients were not taking medication during our study (1
as antiretroviral-naı̈ve; the other 4 had previously received
rotease-inhibitor therapy).
This research was performed in accordance with the prin-

iples of the Declaration of Helsinki. Fully informed consent
as obtained from all subjects before initiation of the study.
he experimental protocol was approved by the University of
ichigan Institutional Review Board for Approval of Re-

earch Involving Human Subjects.
Sample collection. Blood was collected during each pa-

ient’s initial clinic visit, before the initiation or switch of
reatment and during subsequent clinic visits: 1 to 2 months
fter the initial visit and at 2- to 4-month intervals thereafter
or as long as 2 years. Patients who were not taking medica-
ion were on a blood-draw schedule similar to that instituted
or patients taking HAART. We collected 381 samples from
hese 60 HIV-1�infected patients (6.4 time-series samples
er patient, on average). The number of serum samples per
atient ranged from 2 to 8. Thirteen healthy individuals
onated blood once for controls.
We obtained serum samples by centrifuging coagulated

lood, then stored them at �80°C with 0.2% Triton X-100
Sigma Chemical Co, St Louis, Mo) for future determination
f CC-chemokine levels.

Laboratory measurements. We determined HIV-1 viral
oad with the use of quantitative polymerase chain reaction

Amplicor Monitor; Roche Molecular Systems, Pleasanton,
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alif) with a detection limit of 50 RNA copies/mL of blood.
bsolute CD4� and CD8� lymphocyte counts were mea-

ured with the use of standard flow-cytometric analysis.
A sandwich ELISA was used to assess serum levels of
IP-1�, MIP-1�, and RANTES. The detection limit for this

ssay was 50 pg/mL for all 3 CC-chemokines. Each sample
as measured in duplicate for each ELISA to ensure accu-

acy. We coated 96-well plates with monoclonal antibody
R&D Systems, Minneapolis, Minn). Plates were then
locked with 2% bovine serum albumin. Serum was added to
ach well (1:50 dilution for detection of RANTES, no dilution
or MIP-1� and MIP-1�) and incubated for 1 hour at 37°C.
fter washing, biotinylated antibody (R&D Systems) was

dded to the plates. After a 45-minute incubation at 37°C,
vidin horseradish peroxidase was added. Finally, peroxidase
ubstrate was added to the plates, which were incubated at
oom temperature. After terminating the reaction, we read the
lates at 490 nm in an ELISA reader. For each assay, we
onstructed a standard curve using recombinant human MIP-
�/CCL3, MIP-1�/CCL4, or RANTES/CCL5 (R&D Sys-
ems).

Statistical analysis. Detection levels of HIV-1 RNA cop-
es, MIP-1�, and RANTES were entered if ELISA results
ppeared to be below the detection limit. Viral load was
og-transformed before statistical analysis. We analyzed data
sing the SAS System for Windows, version 8 (SAS Institute,
ary, NC). The Wilcoxon rank-sum test was used for 2-group
omparison, and the Kruskal-Wallis test was employed for
omparisons involving more than 2 groups. We used the
ilcoxon signed-rank test to compare the same group at

ifferent time points. The associations between variables
ere assessed with the Spearman rank-order correlation. The
2 test was applied in comparisons of rates of opportunistic

nfection between 2 groups. We considered P values of less
han .05 statistically significant.

ESULTS

Basic characterization of patients. The immune and
iral characteristics of the 60 HIV-1–infected patients
ecruited to this study are shown in Table I. Patients
ere grouped according to treatment status. The 25

ubjects who were treatment-naı̈ve and were started on
AART at the beginning of this study demonstrated

ignificant increases in their CD4� T-cell counts and

able I. Immune and viral characterization of 60 HIV

roup n

Median (range) at baselin

CD4� CD8�

AART naı̈ve 25 157 (6–693)* 563 (98–2029)*
AART salvage 30 319.5 (1–1013) 898 (137–2149)
o treatment 5 722 (365–1181) 831 (772–1879)

P � .05 vs other 2 groups at same time point (Kruskal-Wallis test).
P � .05 baseline values for same group (Wilcoxon signed-rank te
ignificant decreases in viral load from their baseline H
alues to their endpoint values. This was expected;
AART is effective in drug-naı̈ve patients. HAART

alvage in previously treated patients induced a de-
rease in CD8� T-cell counts and viral load during our
tudy. The 5 patients who were not taking medication
ere characterized by consistent levels of CD4� and
D8� T-cell counts and viral load over the entire study

Table I).
We defined a VR� as any patient who demonstrated
reduction in plasma viral load of more than 1.5 log

rom the baseline value or maintained an undetectable
iral load (50 copies/mL). We defined an IR� as any
atient with an increase in CD4� T-cell level of 10% at
he end of study compared with the pretreatment val-
e.36 The numbers of HAART responders (VR�/IR�),
iscordant responders (VR�/IR�, or VR�/IR�), and
onresponders (VR�/IR�) are listed in Table II by
reatment status. Dividing patients according to treat-
ent, we found that the failure rate of HAART for

alvage regimens was 5 times of that for initial HAART
egimens given to drug-naı̈ve patients (12 of 30 vs 2 of
5).
Patients with opportunistic infections were character-

zed by significantly lower CD4� and CD8� T-cell
ounts compared with no opportunistic infection (P �
05). This was expected because the risk of opportunis-
ic disease was substantial when CD4� T-cell counts
eached a critically low level. The rates of opportunistic
nfection between HAART responders and nonre-
ponders were not significantly different (P � .05);
either were the rates between HAART-naı̈ve and

able II. Response to treatment of 60
IV-1–infected patients

roup n VR�/IR� VR�/IR� VR�/IR� VR�/IR�

AART naı̈ve 25 21 0 2 2
AART salvage 30 10 4 4 12
o treatment 5 NA NA NA NA

A � not applicable.

cted patients

Median (range) at end

-1 CD4� CD8� HIV-1

–5.9) 389 (21–1070)† 692 (391–1802) 1.7 (1.7–5.9)†

–5.9) 306 (1–1191) 756 (210–1849)† 3.6 (1.7–5.9)†

–5.1) 70 (418–1147) 795 (579–1402) 3.5 (1.7–3.7)
-1 infe

e

HIV

4.9 (1.7
4.5 (1.7
3.5 (1.7
AART-salvage patients (P � .05).
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Effects of sex, age, race, and opportunistic infection on
C-chemokine levels. Before exploring the relation-
hip between serum CC-chemokine levels and disease
rogression or response to treatment, we tested whether
ther factors—sex, age, race, and opportunistic infec-
ion—would influence serum CC-chemokine levels.
aseline CC-chemokine values were used in these
nalyses.
Our data indicated that men had higher serum levels

f all 3 CC-chemokines than did women, although not
ignificantly (P� .05; data not shown). Grouping pa-
ients according to age distribution, we saw that age did
ot correlate with CC-chemokine levels (P � .05; data
ot shown). Different racial groups, including white,
lack, and Hispanic subjects, exhibited comparable dis-
ributions of serum CC-chemokine levels (P � .05;
ata not shown). Similarly, opportunistic infection was
ot an influencing factor for CC-chemokine levels in
IV-1–infected patients (P � .05; data not shown).
hese trends held true in healthy controls—sex, age,

Fig 1. Relationship between CC-chemokines and
categories (represented by H1, H2, H3, and H4)
controls are denoted by C. Each individual is denote
of HIV-1 patients (Wilcoxon rank-sum test); the abs
used the Kruskal-Wallis test to compare the 4 HIV-
patients.
nd race did not affect CC-chemokine levels (data not e
hown). Our findings suggested that these 4 factors did
ot contribute to variations in serum CC-chemokine
evels; thus we were able to explore the correlation
etween CC-chemokines and HIV-1 disease stage or
esponse to treatment.

CC-chemokine levels in relation to HIV-1 disease sta-
us. To study whether CC-chemokine levels in the se-
um are related to HIV-1 disease stage, we first classi-
ed 60 patients into HAART naı̈ve and HAART-
alvage groups, then divided each group into 4 clinical
tages according to baseline CD4� T-cell count (Fig 1).
he 4 CD4� T-cell categories were defined as greater

han or equal to 500 cells/mm3 of blood, 200 to 499
ells/mm3 of blood, 50 to 199 cells/mm3 blood, and less
han 50 cells/mm3 of blood.37

MIP-1� levels in 1 category of HAART naı̈ve pa-
ients and 2 categories of HAART-salvage patients
ere significantly increased compared with those in
ealthy controls (P � .05). Similarly, RANTES levels
n 3 naı̈ve-patient categories and 2 salvage-patient cat-

isease stage. HIV-1 patients were grouped into 4
to CD4� T-cell count/mm3 of blood.37 Healthy

angle. *P � .05, healthy controls vs each category
n asterisk represents a P value greater than .05. We
es. A, HAART naı̈ve patients; B, HAART-salvage
HIV-1 d
according
d by a tri
ence of a
1 categori
gories were higher than those in controls (P � .05).
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IP-1� levels in 4 categories of HIV-1–infected pa-
ients, however, were similar to the control level in both
AART-naı̈ve and salvage patients (P � .05; Fig 1).
tudies have shown significant increased serum levels
f RANTES and MIP-1� in comparison to these levels
n HIV-1–negative controls.12,28 High levels of circu-
ating chemokines may be produced in the context of an
nflammatory response to HIV-1 antigens and may also
eflect an altered release from cellular sources other
han CD8� T-lymphocytes and macrophages.

No significant difference in serum levels of MIP-1�,
IP-1�, and RANTES has been found among the 4

linical stages of HIV-1 infection for both HAART-
aı̈ve and salvage groups (P � .05; Fig 1), suggesting
hat serum levels of CC-chemokines did not play a
ajor role in the control of disease stage. Our results
ere consistent with those of several investiga-

ions24,25,38 implying that variations in serum levels of
hese CC-chemokines did not explain variations in the
atural history of HIV-1 infection. Therefore, we and
ther investigators excluded serum CC-chemokine lev-
ls as biomarkers of HIV-1 disease stage.
To study serum CC-chemokine levels in relation to
IV-1 viral replication, we stratified patients into 3

ategories according to baseline viral load for both
AART-naı̈ve and salvage groups. The 3 viral-load

ategories were defined as less than or equal to 2.6 log
IV-1 RNA copies/mL of blood, 2.6 to 5.0 log HIV-1
NA copies/mL of blood, and more than 5.0 log HIV-1
NA copies/mL of blood. Our results indicated that
atients with different viral loads had similar serum
evels of all 3 CC-chemokines, in both HAART-naı̈ve
nd salvage patients (P � .05), suggesting a lack of
orrelation between serum CC-chemokines and HIV-1
eplication (data not shown).

To explore the relationship between CC-chemo-
ines and several immune and viral markers that are
sed to predict HIV-1 disease progression, we per-
ormed the Spearman rank-order correlation analysis
sing baseline values from 60 patients (Table III).
IP-1� and MIP-1� levels were positively corre-

able III. Correlation coefficients between CC-chem

CD4� (n) CD8� (n) HIV

D4� 1.0 (60) 0.59* (53) �0.4
D8� — 1.0 (53) �0.3
IV-1 — — 1
IP-1� — —
IP-1� — —
ANTES — —

P � .05.
ated, and MIP-1� was positively correlated with m
D8� T-cell count. However, a correlation between
IP-1� and CD8� T-cells in peripheral blood did

ot necessarily indicate that the serum level reflected
he release of MIP-1� from CD8� T-cells. MIP-1�

ay also be produced by CD4� T-cells and
acrophages.
Lack of a correlation between CC-chemokines and

iral load, especially for MIP-1�, the only CC-chemo-
ine that exclusively binds to CCR5, suggested a neu-
ral role for CC-chemokines in affecting viral replica-
ion. In accordance with the results of other studies,28,39

ur analyses suggested that CC-chemokines did not
ontribute to the control of viremia.

CC-chemokine levels during treatment. The role of
C-chemokines as indicators of response to treatment

s still debated.12,40,41 After the initiation of therapy in
his study, decreases in HIV-1 RNA levels and in-
reases in CD4� T-cell counts were observed (data not
hown). Longitudinal data indicated that serum MIP-1�
evels were markedly reduced after the initiation of
reatment and remained low over the entire treatment
eriod for both HAART-naı̈ve and salvage patients (P

.05; Fig 2). No significant difference, however, was
etected for the MIP-1� level during treatment as com-
ared with the baseline value (P � .05; Fig 2). Serum
ANTES in HAART-naı̈ve patients exhibited an early

ncrease after the start of therapy (P � .05), then
ecovered to baseline levels (P � .05), whereas salvage
atients maintained consistent levels of RANTES dur-
ng the entire treatment course (Fig 2).

We further compared CC-chemokine levels in VR�/
R� and VR�/IR� groups to test whether certain che-
okines can be used as predictors of response to treat-
ent. Our data indicated that responders and

onresponders in the HAART-naı̈ve group had compa-
able serum levels of MIP-1� and MIP-1�. However, a
emporary increase in RANTES after initiation of treat-
ent was only observed in the naı̈ve-nonresponder

roup (Fig 3). Among HAART-salvage patients, both
esponders and nonresponders showed similar trends in

IP-1�, MIP-1�, and RANTES levels during treat-

s and immune/viral markers at baseline

MIP-1� (n) MIP-1� (n) RANTES (n)

0.17 (60) �0.02 (60) �0.10 (60)
0.35* (53) 0.09 (53) 0.14 (53)

�0.07 (60) �0.22 (60) 0.00 (60)
1.0 (60) 0.41* (60) 0.07 (60)
— 1.0 (60) 0.13 (60)
— — 1.0 (60)
okine

-1 (n)

7* (60)
3* (53)
.0 (60)

—
—
—

ent (Fig 3). The early decline in MIP-1� after therapy
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ay have resulted from either a direct therapeutic in-
ervention or reduced activation of the immune re-
ponse, but it cannot be used to predict response to
reatment. Serum levels of CC-chemokines in discor-
ant-responder groups (VR�/IR�or VR�/IR�) during
reatment showed a trend between those of responder
nd nonresponder groups (data not shown).

CC-chemokine levels in patients not taking medica-
ion. Sequential specimens were available for 5 patients
ho did not meet indications for HAART. Each had a
ifferent CC-chemokines profile (Fig 4). This variabil-
ty may be derived from the innate capacity to produce
ertain chemokines in response to immune stimuli or
rom residual HIV-1 replication occurring in lymphoid
issues. Patient 1004 exhibited pronounced declines in

IP-1�, MIP-1�, and RANTES after entering the
tudy. This patient was the only drug-naı̈ve patient

Fig 2. CC-chemokine kinetics during HAART. The
box points represent the 10th percentile, 25th perc
tively. Means are represented by square symbols. T
*P � .05, baseline value vs each of the following tr
asterisk indicates a P value greater than .05. A, HA
mong the 5 off-medication patients and who had no e
pportunistic infection. This patient showed a de-
reased viral load, from 5.1 to 1.7 log, on entering the
tudy, suggesting that this patient was an acute sero-
onverter who experienced a viral-load drop as the
cute stage of HIV-1 infection ended. The patient’s
linical history, combined with a preserved CD4 count
nd extremely high HIV load that markedly declined
ithout the use of HAART, was consistent with an

cute retroviral syndrome. The parallel changes of CC-
hemokines and viral load in this patient may have been
elated to an HIV-1–induced inflammatory response.

ISCUSSION
The role of CC-chemokines in the pathogenesis of
IV-1 infection is not well defined. This role is ex-
ected to be complicated; CC-chemokines have dichot-
mous effects on HIV-1 (eg, inhibition of viral entry vs

econd lowest, middle, second highest, and highest
dian, 75th percentile, and 90th percentile, respec-

le number is shown in parentheses for each group.
oints (Wilcoxon’s signed-rank test); absence of an

ı̈ve patients; B, HAART-salvage patients.
lowest, s
entile, me
he samp
eatment p
ART na
nhancement of viral replication and induction of in-
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ammatory response). A significant number of investi-
ations measuring CC-chemokine production by PB-
Cs or purified CD4� and CD8� lymphocytes from
IV-1–infected individuals or serum CC-chemokines

Fig 3. Relationship between CC-chemokines and
responder and nonresponder and salvage responder
and RANTES over the course of treatment.

Fig 4. CC-chemokine levels over time in 5 pat
ave not shown an inverse correlation between CC- R
hemokine levels and disease progression,24,25,38,42 yet
n other investigations such inverse correlations have
een noted.22,43-45

We detected serum levels of MIP-1�, MIP-1�, and

es to treatment. The medians of HAART-naı̈ve
esponder groups are plotted for MIP-1�, MIP-1�,

were not taking medication during the study.
respons
and nonr
ients who
ANTES in 60 HIV-1–infected patients who were re-
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ruited to our study. Our analyses revealed that MIP-1�
nd RANTES but not MIP-1� were significantly
ncreased in these patients compared with healthy
ontrols. Studies have shown that HIV-1 infection in-
uces an increase in serum CC-chemokine lev-
ls,12,28,34,40,46,47 suggesting that exposure to HIV-1
esults in activation of the chemokine network.24,38

ith the identification of HIV-1 strains in these pa-
ients, it would be interesting to test whether increased
C-chemokine levels facilitate the selection of X4

trains. Our study also suggests that serum MIP-1�,
IP-1�, and RANTES did not distinguish patients at

ifferent disease stages, in accordance with the findings
f several investigations.24,25,38 No negative correlation
nong 3 CC-chemokines and HIV-1 viral load was
bserved, consistent with the results of another 2 stud-
es.28,39 We conclude that serum levels of CC-chemo-
ines likely do not play a significant role in the control
f viremia or in protection against disease progression.
The effects of HAART on the production of CC-

hemokines remain unclear. The purpose of this study
as to determine whether serum chemokines are re-

ated to treatment response. After the initiation of treat-
ent, we observed that MIP-1� declined significantly

mong both HAART responders and nonresponders.
his may have been a result of reduced immune-system
ctivation or of direct therapeutic effects. In contrast,
ANTES levels were increased in the HAART naı̈ve
roup. This may have been a result of increased num-
ers of circulating activated CD8� T-cells, as well as
atural-killer cells.16 We also demonstrate that sex, age,
ace, and opportunistic infection had no effect on the
evels of the 3 CC-chemokines in either HIV-1 infected
atients or healthy controls.
The differences we observed in the 3 CC-chemo-

ines may have been related to variations in affinity
f chemokines to different receptors that we have not
xplored here. CC-chemokines may inhibit HIV-1
ntry by way of their interactions with CCR5, but the
ignaling induced by MIP-1� and RANTES binding
o other receptors could enhance HIV-1 replication.
retreatment of macrophages with MIP-1�, MIP-1�,
nd RANTES augments HIV-1 infection, whereas
hese same chemokines have suppressive effects dur-
ng and immediately after viral infection.20 RANTES
nhances X4 HIV-1 replication in CD4� T-cells in a
-protein signaling– dependent manner.48 Therefore,

xamination of viral entry versus viral replication
ould help in evaluating the significance of CC-

hemokines in vivo.
The results of our study do not permit us to dismiss
role for MIP-1�, MIP-1�, and RANTES in the

ontrol of viremia or protection against disease pro-

ression. It is possible that serum levels do not reflect
ocal concentrations in sites of inflammation and
IV-1 replication. Therefore, additional studies in

ymphoid tissues are needed to determine whether
ocalized concentrations of CC-chemokines play a
rotective or harmful role in vivo. It may be that the
otential of cells to secrete chemokines but not cir-
ulating chemokines directly regulates disease pro-
ression or viral load.
The exact cell types responsible for increased
IP-1� and RANTES levels in this study have not

een explored. HIV-1–infected macrophages and T-
ells have both been shown to secrete the 3 CC-che-
okines.49,50 We found that CD8� T-cell numbers
ere positively correlated with MIP-1� but not with
IP-1� or RANTES. The lack of correlation between

he number of CD8� T-cells and serum MIP-1� and
ANTES levels does not exclude the possibility that
D8� T-cells contribute to their release. The findings
f 1 study suggest that MIP-1� is synthesized by a
ajor population of CD8� T-cells with a phenotype

ifferent from that of cytotoxic T lymphocytes effector
ells, providing protective immunity against HIV-1.14

acrophages respond to HIV-1 and its envelope pro-
ein (gp120) very rapidly by initiating synthesis of
C-chemokines. This is an important cellular response

or regulating both viral infection and the recruitment
f immune cells, favoring infection of these cells.51,52

ur findings suggest a lack of good correlation between
erum CC-chemokines and HIV-1 disease stage or re-
ponse to treatment. More studies will be necessary to
recisely understand the action of CC-chemokines on
IV-1 replication and at all disease stages of virus/host

nteraction. More information will aid the proper eval-
ation of the significance of CC-chemokines in the
athogenesis of HIV-1 infection, their potential signif-
cance as an additional biomarker of disease progres-
ion, and in the development of new therapeutic agents.

We thank Dr Gary Huffnagle and Dr David Markovitz for their
ritical reading of our manuscript. We thank Dr Nick Luckas for his
elpful discussions and Karyn Sutton, Margaret Catoe, Pamela Lin-
oln, and Holly Evanoff for excellent clinical and technical support.
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