
Introduction

The explosion of research in the field of
immunology and the increased complexity
that it is has revealed have created a need for
new methods to assimilate and analyze the
data. In addition, the advent of experimental
tools such as gene arrays and proteomics

poses new challenges to immunologists who
are now faced with more information than can
be readily incorporated into existing para-
digms of immunity. Novel methodologies are
required to allow integration of these exten-
sive data sets into our thinking. These data-
intensive technologies represent a change
from the reductionist approaches that have
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traditionally characterized immunological
research. In addition, as we begin to identify
more of the components of the immune
response, there is a need to model complex
interactions in the in vivo setting. Mathemat-
ical modeling coupled with computer simula-
tion models provide important new tools that
can be used not only to analyze complex
datasets but also to model in vivo immune
responses (1). As described below we have
been involved in mathematical modeling of
immune responses for several years and have
tackled important questions.

In our initial studies, we developed ordi-
nary differential equation (ODE) models to
describe the proliferative response of B cells
and T cells to interleukin (IL)-2 and IL-4
(2,3). In these studies we modeled the appar-
ently contradictory effects of these cytokines
on B and T cells, such that IL-2 and IL-4 act
synergistically to induce T cell proliferation
but antagonize each other in the induction of
B cell proliferation (4). This could be
explained in the model by incorporating two
effects: (1) the downregulation of the high-
affinity IL-2R by IL-4, through the seques-
tration of the common γ chain that is shared
by both the IL-2 and IL-4 receptors; and (2) a
synergistic effect on the signaling induced by
IL-2 in the presence of IL-4. The difference in
response between B and T cells could thus be
modeled by changing the initial conditions of
the simulations in which B cells, expressing
lower levels of IL-2Rs than T cells, were more
susceptible to the downregulating effects of
IL-4 on IL-2R expression, whereas the syn-
ergy term was dominant in the case of T cells.
Although these results were satisfying, the
model was very computer intensive and
required a supercomputer (2), and a large
number of parameters had to be estimated. We
attempted to broaden this model to a more
general analysis of Th1/Th2 crossregulation
in vivo but realized that using the ODE

approach it was not going to be easy to cap-
ture the complexity of the interactions
between relevant cell types and the cytokines
and mediators that they secrete. On the other
hand, as discussed below, we have success-
fully developed useful ODE-based models of
Mycobacterium tuberculosis infection that
have provided important new insights into this
devastating infection. In this review we pro-
vide a summary of our efforts in the modeling
of M. tuberculosis infection in the lung and
highlight a new modeling approach that we
are developing as well new tools for the analy-
sis of microarray data that we are currently
working on.

Modeling M. tuberculosis Infection

Many studies in model systems designed
to elucidate the immune response to infection
are reductionist, highlighting the importance
of one or two elements at a time. These fail
to account for how the entire system is
affected by variations in elements of the
system as a whole. Adding mathematical
models to the study of infectious diseases to
help understand immunity and pathogenesis
is powerful. A particularly complex infec-
tious disease is that caused by the bacterium
M. tuberculosis. Tuberculosis kills 2 million
people every year, even though there are
drugs available to cure this infection. The
bacillus infects via the respiratory route, and
causes primary disease in a small fraction of
those infected. Although most infected per-
sons are capable of controlling the infection
with no signs of disease, the organism resides
within the host for years or decades. In
approx 10% of infected individuals, reacti-
vation of this clinically latent infection
occurs, and active tuberculosis ensues. The
immune response to this infection is crucial
in preventing both primary and reactivation
tuberculosis, and under immunosuppressing
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conditions, such as age, malnutrition, and
HIV infection, there is an increased risk of
active disease (reviewed in ref. 5). The
immune response to M. tuberculosis is com-
plex and not well understood because,
although we know many of the immune cel-
lular players, we do not understand the basis
for establishment or maintenance of latency
in terms of the cellular interactions occurring
throughout the course of this long infection.

Our previous studies in animal models and
those of multiple other groups have provided
information about the cell types and cytokines
involved in control of M. tuberculosis infec-
tion (reviewed in ref. 6). A feature of the
immune response to M. tuberculosis is the
formation of a granuloma, an immune struc-
ture composed of T cells, B cells, macro-
phages, and other cell types, whose function
is to provide an immune microenvironment
where T cells, cytokines, and macrophages
can interact. The bacterium resides within
macrophages at the center of the granu-
loma, and activation of these cells is crucial
to the success of the host in controlling the
infection.

We have developed several mathematical
models to address important questions
regarding both the immune response and M.
tuberculosis infection that have been diffi-
cult to approach using traditional experi-
mental methods (7–12). In addition we have
used these mathematical models to identify
mechanisms by which the bacterium sub-
verts the immune response, allowing long-
term persistence. An example of the use of
ODE models to address difficult experimen-
tal questions comes from our work on CD8+

T cells and M. tuberculosis (11). This has
been a controversial topic in tuberculosis
research, because it is difficult to prove that
CD8+ T cells are playing an essential role in
the control of this infection. This is an
important question as rationally designed

vaccines are currently being developed, and
one must consider whether to target CD8+ T
cells in addition to CD4+ T cells. In both
mice and humans, CD8+ T cell responses to
M. tuberculosis are present, but loss of CD8+

T cells in mice gives only a modest pheno-
type. There is a major difference between
human and murine CD8+ T cells: human
cells produce a molecule called granulysin,
present in the cytotoxic granules of these
cells, which directly kills intracellular M.
tuberculosis following perforin-mediated
granule exocytosis (13). Murine CD8+ T
cells do not have a granulysin homolog, and
therefore testing the effects of CD8+ T cells
on control of tuberculosis in the murine
model is incomplete. We addressed the ques-
tion of the role of CD8+ T cells in tubercu-
losis using a mathematical model. The model
was built based on known cellular interac-
tions described in the literature together with
our experimental results, and has variables
that represent T cells, macrophages, specific
cytokines, and bacterial populations. The T
cells are divided into subsets: TH0 (precur-
sor Th cells), TH1, TH2 for CD4+ T cells and
T80 (precursor CD8+ T cells), T8 (those that
make IFN-γ) and Tc (cytotoxic cells) for
CD8+ T cells. The model was validated by
performing various “virtual knockouts” con-
sisting of the depletion of specific cells or
cytokines to ensure that published mouse or
human data could be recapitulated. Based on
changes in the parameter values, the model
provides scenarios for primary, latent, and
reactivation tuberculosis.

As an example of how we used this model
to study the T cell response, we questioned the
timing of the development of the two differ-
ent functional CD8+ T cell subsets. In our
mouse model, we found that the CD8+ T cells
expressed a cytotoxic phenotype first, and
then switched in the chronic phase to produc-
ing IFN-γ (and were no longer cytotoxic) (14).
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Using the ODE mathematical model, we also
studied development of disease when CD8+ T
cells were cytotoxic first, and then IFN-γ pro-
ducing; however, we also were able to model
the reverse situation. To our surprise, the bac-
terial loads were lower and latency was “more
stable” in the situation where CD8+ T cells
produced IFN-γ first, and then were cytotoxic,
the opposite of the situation that we observed
in our mouse model. We went on to use this
model to study the minimum requirement for
memory CD4+ and CD8+ T cells that would be
protective in a vaccine-challenge model.

The ODE model is currently being
expanded further to understand the role of
TNF-α in tuberculosis, and how TNF-α neu-
tralizing drugs used to treat chronic inflam-
matory diseases cause increased reactivation
of latent tuberculosis. In addition to modeling
the lung, we have also developed a two-com-
partment model, where the modeling space is
the lymph node (for priming of T cell
responses) and the lung (for effector T cell
and macrophage responses) (9). This model
explored the importance of dendritic cells for
priming T cells in this model, as well as the
kinetics of priming T cells following M.
tuberculosis infection, which is a much slower
process than in many infections.

To understand granuloma formation and
function, the ODE model is not the best choice.
A granuloma is a three-dimensional spatial
object, and is best modeled in a system that
allows cellular migration and spatial arrange-
ments. We have used agent-based modeling to
provide the framework for addressing impor-
tant and difficult questions about granuloma
formation. Our current goal is to include much
more complexity (as in the ODE model) into
the agent-based model, and to ultimately link
it to the lymph node priming model, to provide
a complex and comprehensive approach to the
study of immune responses in tuberculosis.

Novel Modeling Approach

The use of ODE models requires detailed
knowledge about kinetic parameters that are
explicitly included in the equations. Some of
these can be measured experimentally
whereas others need to be estimated. One con-
cern that arises with this approach is that the
more parameters there are, the easier it
becomes to introduce inaccuracies in the
model that may deviate from the biological
reality that the model is trying to capture. We
have recently experimented with a new frame-
work for modeling biological processes. The
framework includes two main parts. The first
is a formal language to express experimental
design and data as well as knowledge regard-
ing states and interactions in biological sys-
tems. The second is a computer-simulation
environment that uses the formal language to
define stochastic logical network models and
to simulate them. The approach addresses
limitations in available measurements, high
variability in results, large amounts of data
across the field of immunology, and the
exceptional complexity of biological systems.
The formal language is intuitive and readily
understandable by biomedical scientists,
facilitating communication across distant dis-
ciplines, mathematics and biology.

In developing a general framework for
modeling immune functions, we had to deal
with several issues. We have developed an
approach that (1) is flexible and modular; (2)
is understandable by bench scientists without
additional training in modeling approaches;
(3) addresses the complexity of the system;
(4) directly deals with the hierarchical struc-
ture (from genes to proteins to cells to
organs); (5) addresses the great variability in
experimental data (by using logical vari-
ables); (6) addresses the insufficient knowl-
edge regarding reaction rates (by using logical
variables for reaction rates); and (7) can inter-
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act with state-of-the-art experimental tech-
niques, because it can deal with genes and
proteins and their interactions.

The rationale for the new framework is
based on a few observations. First, the large
number of interactions and processing that
take place in an immune response, or in other
coupled molecular/cellular systems, call for a
new paradigm to capture such complex behav-
ior. Second, the variability in experimental
results in expression level of receptors,
cytokines, microarrays, and others suggests
the use of discrete variables with only a few
values (e.g., “no expression,” “low level,” and
“high level”). Such abstraction is necessary
also for rate constants, because in most cases
such rates (on-rate, off-rate) are not known; in
the real human condition, variation induced by
single nucleotide polymorphisms in genes
critical to inflammation and immunity add a
further layer of complexity. This is not to say
that the model we have developed cannot be
made very quantitative: we note that as addi-
tional quantitative information becomes avail-
able, our modeling platform can become more
finely-grained. Third, there is a large body of
knowledge regarding molecular interactions in
immune response, and this knowledge base is
growing rapidly. Thus, it is useful to work in
a modeling environment that allows for rapid
incorporation of new developments. At the
individual cell or molecule level, we use log-
ical variables attaining only a few values;
however, at the population level (many cells),
our description is in terms of real numbers,
thus quantitative at the population level.

Molecules are the fundamental objects in
our model and all interactions are formulated
in terms of molecules. Cells are treated as more
complex objects made up of molecules resid-
ing in a few compartments (surface, cytosol,
etc.). Finally, organs are objects with a higher
level of complexity, consisting of populations
of cells. The dynamics in our model are gov-

erned by a set of reactions (rules) for molecu-
lar interactions that are defined outside the sim-
ulation program for maximum flexibility. To
build a model using this framework one has to
build the following components: (1) the objects
in the system, including their molecular con-
tent, (2) a set of interactions (rules), (3) speci-
fication of desired output.

Objects in the modeling platform are of two
types, simple objects and complex objects. The
simple objects represent, for example, mole-
cules. These may be genes, proteins, or any
other relevant molecule. Such objects are
described in terms of their identity, i.e., a name,
and abundance that attains one of the discrete
values allowed (none, low, high, very high,
etc.). A Th1 cell for example can be expressed
as Th1:=Obj (IN:={SigTh1X}; SURFACE:=
{CD4, CD28, TCR, IL-12R, IL4R, IL-2R};
ObjList:={Mitochondria, Nucleus}), SigTh1X
represent a certain signaling typical to a Th1
cell. For example, activation of a Th1 cell via
the TCR that stimulates the secretion of IL-2
and IFN-γ.

Objects communicate through surface–sur-
face interactions (via surface molecules),
through the secretion of molecules from one
object into another, and more. Objects, such
as cells, may migrate between compartments
that represent organs, the blood, the lym-
phatic system, etc. This is facilitated using
chemokines and their receptors as in reality.

A fundamental component of our frame-
work involves a set of interaction rules, or
reactions. This is a set of rules that describe
the possible evolution for objects or
processes. Owing to the limited knowledge
regarding reaction rate constants, we distin-
guish only a few reaction speeds that in the
real system correspond to different orders of
magnitudes. We limit our discussion here to
three speeds, although the model can easily be
extended to have any finite number of speeds
as information about these reaction rates
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becomes available, and introduce symbols to
express them, -> (slow), ->> (moderate), and
->>> (fast). Reactions have a list of reactants
(left), a list of products (right), and a speed.
Examples include, IL-12 + IL-12R ->>> IL-
12:IL12R, where IL-12:IL12R denotes the
complex formed by IL-12 and its receptor. To
deal with secretion of molecules by cells, we
have transporter reactions. As an example,
consider the transporter reaction Tr :: IL-2 @
IN ->>> IL-2 @ OUT. Here Tr is a trans-
porter required in order to move IL-2 from the
inside of the cell (IN) to the outside (OUT),
and the rate of transfer is high (->>>).

The evolution of a system involves the exe-
cution of reactions among objects. Such reac-
tions result in changes in the abundance of
both reactants and products. Because we are
dealing with a discrete representation of these
processes, we need to define addition and sub-
traction among such numbers. The intuition
behind the rules we use is quite obvious if we
think of 0 as representing the absence of mol-
ecules (or process), 1 representing a low
abundance, 2 representing higher abundance,
and so on. Our non-traditional arithmetic
starts with the rules 0 + x = 0, 1 + 1 = 1 (low
+ low = low), 1 + 2 = 2 (low + high = high),
2 + 2 = 2 (high + high = high).

A reaction (e.g., A + B -> C) is executed as
follows. First, a change in reactants (A and B)
and products (C) is calculated, based on abun-
dance and speed mimicking a mass action
law, for the log of concentration. This step is
followed by the addition of the change in
products and subtracting it from reactants,
following our non-standard arithmetic. Such
changes may be fractional at small time steps,
and are interpreted probabilistically. Thus, a
change of α is interpreted as a change of 1, but
is executed in probability of α.

We have carried out preliminary studies in
modeling different cellular systems, during
the development of the general framework.

This allowed us to examine major challenges
in modeling biomedical questions and to build
our modeling environment accordingly. In
particular, we have initiated modeling of
Th1/Th2 differentiation, apoptosis, activation
of NF-κB, acute inflammation, the initiation
of cancer, and a coarse-level model of the
whole immune system (manuscripts in prepa-
ration). Preliminary results suggest that this
modeling approach is readily usable by
immunologists and that it will provide impor-
tant new insights.

Modeling Immunology 
in the Age of Microarrays

The immune system is a biological
system, unlike physical systems that evolves
toward maximal entropy. For example the
immune response in general leads to immune
memory, which can be considered a “neg-
entropic” process. From the innate response
and the detection of a pathogen to the trig-
gering of the adaptive response, there is an
intense amount of information processing.
As a result modeling the immune response is
challenging and stresses the state of the art in
modeling.

The advent of microarray data has com-
pounded this challenge. Microarrays provide
additional evidence of the degree of com-
plexity and an imperative to meet the chal-
lenge. There is more information on a
microarray than we able to process at our pre-
sent state of knowledge. As a result the first
instinct has been to use statistical techniques.
One popular technique was to divide the
genes in clusters of similar activation pat-
terns, on the assumption that genes co-acti-
vated or co-inactivated somehow contribute
together to the physiological effect observed.
This approach, which is in development, has
synergized with the theory of networks.
Genes acting in concert behave as if they
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were part of a network. This approach offers
the hope to be able to “understand” the effect
of patterns of gene activation. In the parlance
of complex system theory, those physiolo-
gical effects correspond to “emergent prop-
erties.” Another way to use data from
microarrays is to understand the regulation of
transcription and its relation with signaling
cascades.

Recently, we have used new analysis tools
to analyze preexisting microarray data sets.
The analysis used data from one of the first
microarray experiments (15). In these exper-
iments, human peripheral blood monocytes
were challenged with Escherichia coli and
microarray analyses were performed on sam-
ples taken at several time points: 0 h, 0.5 h, 1
h, 2 h, 4 h, 6 h, 12 h. We concentrated our
analysis on the first three time points: 0 h, 0.5
h, and 1 h. The rationale for this choice is
that, in the first phase, the transcription fac-
tors involved are likely to be those induced
from signaling cascades stimulated directly
as a result of the LPS binding.

Our analysis was made in three steps:
1. Selection of the genes: There is a need to make

some kind of selection because more genes are
activated than we can analyze. We selected the
most highly activated genes, that increased or
decreased by a factor of at least 2, on a loga-
rithmic scale (normalized to 0 at time zero).
The probability that those genes are spuriously
activated is very small, but they represent a
subset of the activated genes.

2. Identification of transcription factors, using a
tool called Footer (16). This tool allows the
identification of transcription factors that
could have been responsible for the activation

of a given gene. Having identified an activated
gene, we use the publicly available TRASER
(http://genome-www6.stanford.edu/cgi-bin/
Traser/traser) to find the 3 kb upstream pro-
moter sequences. Footer analyzes the
sequences and returns a list of candidate tran-
scription factors that could have binding sites
in the selected sequence and therefore might
have been involved in the activation of the
gene. We performed this analysis for all the
genes of the set of co-activated genes and
compared the list of transcription factors. We
identified the minimum number of transcrip-
tion factors that, in combination, could have
led to the observed pattern of gene activation.
The presence of the same transcription factor
or a few transcription factors in the lists of
transcription factors for all the genes strongly
suggests that these transcription factors could
have been responsible for the observed pattern
of gene activation. This also suggests that a
common signaling cascade may have pro-
duced them.

3. Identification of networks of genes coordi-
nately activated: Data were further analyzed
through the use of Ingenuity Pathways Analy-
sis (Ingenuity® Systems, www.ingenuity.com).
Ingenuity is a very large database where the
knowledge about co-activation of genes is
made directly accessible.

In our early analysis of the data from
Boldrick et al. (15) we identified 132 genes
that were activated after 0.5 h, whereas 192
were activated after 1 h. Of the 132 genes, 94
of which were still activated after 1 h. An
intriguing observation is that of the 132 genes
activated after 0.5 h, 35 of them build a com-
plete Ingenuity network. These genes are:
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ICAM1 IFNGR1 IK IL1A IL1B ITGA6 LYN

MCL1 NFKBIA NOTCH1 NR4A2 NR4A3 PPP1R15A RGS1

SCYA3 SCYA3L1 SCYA4 SDF1 SELE TNF TNFAIP3



Using Footer, we determined whether the
pattern of activation seen after 0.5 h could be
attributable to a small set of transcription fac-
tors. Footer analyzes the upstream sequences
of the desired gene for both Homo sapiens
and mouse to avoid false positive results. For
three of these genes TRASER did not have
the corresponding sequence. The seven tran-
scription factors that can bind to the largest
number of the remaining 32 genes are:

PPAR-α STAT4 TBP Sp3 STAT3 RXRbeta

STAT5A STAT5B

According to Footer, none of these tran-
scription factors bind to all 32 genes. PPAR-α
binds to 29 of them (the three left are SELE,
ICAM1, and SFD1). STAT4 and TBP bind to
25 of them. PPAR-α and STAT4 together are
predicted to bind to all the genes within this
network. STAT4 is activated following the
binding of IL-12 to its receptors and should
not be activated at this early time point. PPAR-
α has been shown to inhibit the activation
induced by LPS by repressing the function of
NK-κB and AP-1 (17). Thus, these results
have identified two transcription factors that
can regulate this network of genes, but, on the
basis of these experiments, it is unlikely that
these transcription factors would be responsi-
ble for the induction of the genes seen at these
early time points following LPS stimulation.

This preliminary analysis demonstrates
that a combination of approaches can be used

when analyzing patterns of activation
detected by microarray analysis and these can
reveal “networks” of coordinately regulated
genes. Learning how to make the culture of
networks speak to the physiological effect
associated with patterns of gene activation
would increase our mathematical toolbox for
the modeling the immune system.

Conclusions

We have described some of the new
approaches that we are exploring and we
anticipate that these will allow us to deepen
our understanding of the integrated behavior
of the immune system. These studies are con-
tinuing under the auspices of a newly created
Immune Modeling Center (http://cmpi.cs.
pitt.edu/) that will be studying immune
responses to three pathogens: M. tuberculosis,
influenza and Francisella tularensis. These
are collaborative studies between experimen-
tal immunologists, mathematicians and com-
puter scientists and we anticipate that new and
accessible tools will be developed for the
analysis of large datasets and the modeling of
in vivo infections.
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