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Overcoming Math Anxiety:

Malthus Meets Koch

Mathematical modeling helps us to understand
host-microbe interactions, including pathogenesis

Denise Kirschner, Victor DiRita, and JoAnne Flynn

key challenge in modern biomedical

research is to make better sense of

the vast amount of data now being

generated that does not consistently

advance our knowledge. Here we
address this challenge in the context of the host-
pathogen relationship, with the key question
being how we can understand this relationship
and account for those aspects of it that lead to
infection and immunity. Put another way, how
can we take pixels and integrate them into a
larger picture of what is going on?

Much of what we know about microbial
pathogenesis comes from analyzing key compo-
nents— either from the microbe or from the
host—at a molecular level. In the case of toxin-
producing pathogens, our understanding of dis-
eases caused by such microbes often derives
from rigorous biochemical analyses of toxins.
Moreover, much is learned by studying how

toxins reach their cellular targets. Additionally,
investigators have developed and applied ge-
netic and imaging approaches to study when
and where during infections such pathogens
produce such toxins. Similarly, host responses
to microbial pathogens are studied at levels
ranging from molecular to organismal.

After Reductionism, Reconstructionists
Seek To Describe the Big Picture

Many experimental researchers study biological
systems by examining the molecular and cellular
details of those systems, an approach that has
been termed “reductionist.” By practicing “re-
constructionism,” researchers take insights
gained from these studies and integrate them
into a more comprehensive understanding of the
system in question.

Mathematical modeling provides a very

e A key biomedical research challenge involves
harnessing large datasets to better understand
host-pathogen relationships and to account for
what leads to infection and immunity.

® Through mathematical modeling, researchers
“reconstruct” molecular and cellular data to
capture in a virtual sense the dynamics of micro-
bial infections and host responses, while analyz-
ing those activities on time scales that would
otherwise be impossible.

® Models are being used specifically to simulate
dynamic responses to host cytokines and both
macrophage and T cells to Mycobacterium tu-
berculosis, while analyzing the complex interac-
tions that lead granulomas to form.

useful approach toward integrating molec-
ular and cellular data. Whatever its draw-
backs, this approach can help to capture in a
virtual sense the dynamics of microbial in-
fections and host responses, enabling inves-
tigators to manipulate and analyze many
features on time scales that are otherwise
impossible. With such models, genes may be
disrupted or neutralized, and infections
then simulated within a matter of seconds.
Fortunately for those microbiologists who
are anxious about mathematics, plenty of
math-savvy collaborators are available.

In applying this approach to microbial
pathogenesis, we must first assemble what
we know about a wide range of mechanisms

used by specific pathogens such as toxin
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activities, pilus-mediated adherence, and intra-
cellular survival, as well as those used by the
host to defend against pathogens, such as Toll-
like receptor signaling, cytokine production,
and macrophage function. We then use that
knowledge to develop models describing host-
pathogen dynamics—trying simultaneously to
capture and simulate the in vivo situation but
also using those models to describe or test fea-
tures of particular host-pathogen interactions,
much as we would do through experiments in
VItro.

Various Approaches Available for
Modeling Microbial-Host Interactions

What kinds of mathematical models are being
applied to host-microbe interactions? In some
cases, mathematical biologists produce deter-
ministic models, studying the rates governing
molecular or cellular interactions, from which
new insights and hypotheses may be developed.
In other cases, models that are based on an
analysis of discrete events sometimes simulate
“emergent” behaviors, namely those that had
been neither defined nor expected.

Regardless of approach, once a system can be
described mathematically, it serves as a starting
point from which hypotheses may be generated
and tested. The value to experimental biologists
is that mathematical models are highly versatile
in vitro-type tools, serving as templates for for-
mulating and addressing a wide array of biolog-
ical questions. By manipulating parameters in
models, investigators may identify key mecha-
nisms, new experiments, or design principles
that are not otherwise obvious.

Reluctance in appreciating mathematical
modeling perhaps reflects skepticism that the
use of equations based on reaction rates can
enable us to understand biological systems. It
remains a challenge for some experimental mi-
crobiologists to believe that mathematical mod-
els indeed can help us to better understand com-
plex systems, even though we rely daily on the
outcomes of mathematical models. For exam-
ple, they are used to forecast the weather, the
economy, and the motions of the moon and
planets. In these and so many other complex
cases, the relative success from applying mathe-
matical models depends on sound math, known
interactions, and good data.

Why should it be any more of a challenge to

imagine that complex genetic regulatory cir-
cuits, infection dynamics, or immune responses
could fall within the realm of biologically astute
mathematicians? Consider a much simpler sys-
tem that often is cited in introductory calculus
courses: a faucet delivering water into a sink
with a drain releasing that water. To learn how
much water is in the sink, one could experiment
by adjusting the flow from the faucet, partly or
fully closing the drain, and measuring the water
that accumulates. But consider a more theoreti-
cal approach, based on calculating the rates of
water flowing into the bowl and out the drain. A
simple differential equation relates those rates to
solve for the volume of water. Once developed,
that equation can be used to predict how this
system behaves when the rates are altered, or
exactly how long it takes for the sink to fill.

In this simple example, all that is needed to
solve the question is to determine the two gov-
erning rates. In studying more complex host-
microbe interactions, modelers try to determine
all the important rates and build equations to
predict how the system behaves over time, In
many cases, a model can help to ascertain
whether key elements are missing and what their
influence might be. No matter its complexity,
the most informed model is one that starts with
ample and reliable data.

Mathematical Models Extend Our
Understanding of Host-Pathogen
Interactions

Microbes and hosts interact in complex ways,
with the outcome dependent on many factors.
Infections often are not clear-cut in terms of
producing symptoms or damage to a particular
host. Instead, the outcome can be anywhere on a
spectrum from rapid, symptom-free clearance of
a pathogen to fulminant, even lethal disease.
Intuitively, we recognize that many factors af-
fect outcome, and that changing one parameter
can be counterbalanced by others to produce the
same outcome. For example, when a particular
strain produces toxin at an increased rate, the
host may adjust by making more antibody to
neutralize that toxin.

Modeling host-pathogen interactions may
help to identify the effects of individual factors
on other variables in the system and thus to
understand which factors may have a major
impact on the outcome of an infection. When
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theoreticians make these predictions, they en-
able the experimentalist to focus on the most
important factors in the system.

We build mathematical models for some of
the extremely complex interactions between
Mycobacterium tuberculosis and its human
host. Published data from human and animal
studies and our data from studying infected
animals informed the development of our math-
ematical systems. By continuing to incorporate
new information, we are further refining these
models to reflect subtleties in the system and to
increase their accuracy.

One major advantage of mathematical mod-
els is that with them we can ask questions that
might be impossible to address experimentally.
An example is in trying to understand the fac-
tors that contribute to reactivation after latent
tuberculosis. Although 90% of M. tuberculosis
infections in humans are latent, nonhuman pri-
mates provide the only accurate animal model of
latent tuberculosis (TB). In humans, such latent
infections can be maintained for decades, mean-
ing an infection may reactivate 50 years after it
begins. By using experimental data to model and
simulate immune mechanisms that contribute to
latency, we can begin to predict which factors
may prevent reactivation. Conducting equiva-
lent experiments would be technically challeng-
ing or even impossible.

Along similar lines, mathematical models can
be used to address important questions about
localized immune responses and compartmen-
talized responses. For example, a pathogen may
initially infect organs and tissues such as the skin
or lung rather than a lymphoid organ. In such
cases, dendritic cells ferry the pathogens to a
lymph node, where they prime the adaptive im-
mune response, triggering T cells to move to the
site of infection. This process, which is split
between at least two sites in the body, depends
on numerous factors that direct specific actions
at each site. Mathematical models can be used to
describe such compartmentalized processes with
far greater ease than they can be studied either in
culture or fully in vivo.

At a mechanistic level, a mathematical model
allows us to test specific questions about host-
pathogen interactions. For instance, we can ex-
amine various effector mechanisms of T cells
over the course of a chronic infection such as
tuberculosis. One question might be which T
cells produce a particular cytokine at each stage

during an infection. We can address this ques-
tion using mathematical models by varying the
contribution and timing of individual cytokines
produced by each T cell subset and examining
the outcomes. It is also possible to study the
dynamics of bacterial populations during an
infection and to predict the behaviors of specific
strains. In this way, both host and pathogen can
be studied as an integrated system in which each
element can be monitored and varied simulta-
neously to determine its role in infection dynam-
ics.

Modeling Granulomas in
M. tuberculosis Infections

Inhaling M. tuberculosis bacteria into the lung
triggers a complex immune response involving
specific cells such as macrophages, CD4+, and
CD8+ T cells as well as immune effectors such
as chemokines and cytokines. This spatio-tem-
poral process yields multicellular structures
called granulomas. Such granulomas serve sev-
eral roles, including containing the infection;
however, they also contribute to pathology.
These structures are complex and diverse in
type. Some granulomas may limit bacterial
growth to result in a latent infection, whereas
others may be incapable of containing the infec-
tion and result in active disease. Understanding
what causes granulomas to form and how they
function will improve our ability to diagnose
and treat tuberculosis.

Fundamental challenges in using mathematics
to study biological systems include choosing
appropriate scale representation and mathemat-
ical tools. To model granuloma formation, we
use several mathematical tools to capture this
phenomenon at different biological scales, with
consistent themes among each of these predic-
tions but also clear differences that arise from
each perspective and set of assumptions.

Applying the Agent-Based
Model to Granulomas

Consider our results in applying the agent-based
model to granuloma formation. This model con-
tains four defined components: (i) the agents
involved in the dynamics; (ii) the environment
where those agents reside and interact; (iii) the
rules governing the behavior of the agents; and
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macrophage cell and an effector T cell
produce enough of the cytokine inter-
feron-y (IFN-y) to activate that macro-
phage, which can kill its intracellular
bacteria (Fig. 1B). Although this exam-
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ple describes only one rule, many are
included in the model. Additional ex-
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the literature or generated by collabora-

dynamics are included.

The development of the mathematical model for granuloma formation. Shown in both
panels are agents (M for macrophage, T for T cell). Panel A shows a cartoon of the
environment: the lattice representing the 2mm x2mm lung. In fact, there are 500 x 500
grids, but we show only a subset. The dark areas represent places on the grid that are
vascular for entry of new cells. Each grid can contain at most one macrophage, but may
also contain T cells as well as concentrations of bacteria and chemokines/cytokines.
Panel B indicates one 'rule’ for infected macrophages. If a macrophage takes up
mycobacteria and becomes infected (M) then there is a probability (p) that infected
macrophage will interact with a T cell and bind cytokine to become actwated (My). This
allows killing of its intracellular bacteria load.

We also use experimental data to es-
timate parameters for many, and ideally
all, of the interactions. Again consider-
ing macrophages being infected by M.
tuberculosis, we need to estimate sev-
eral rates, including the time that a mac-
rophage must be in contact with a T
cell, the concentration of IFN-y neces-
sary to stimulate a macrophage, the
numbers of bacteria per macrophage,

(iv) estimated rates and rate constants for all
agent interactions. The model tracks several
agents, including chemokine concentrations and
aggregate populations of both intracellular and
extracellular bacteria, along with discrete mac-
rophages in one of four states—resting, acti-
vated, infected, and chronically infected —and
effector T cells.

In the simulated host environment, we assume
each agent acts independently and also can in-
teract with other agents. We also assume the
environment to be a two-dimensional, 2-by-
2-mm cross-section of lung tissue (Fig. 1A),
which is an average cross-sectional area of gran-
ulomas. Mathematically, the structure in which
we track these dynamics is known as a lattice.
We assume the tissue is vascularized, enabling
new cells (agents) to enter the lung onto the
lattice through these sites (see darkened squares
in Fig. 1A). What remains to be defined are the
rules that govern the behavior of the cells in lung
tissue.

In building rules, the mathematical model in-
cludes a plethora of data regarding which cell
types and effector molecules are involved in M.
tuberculosis-host interactions. Once key agents
are identified, known interactions are included.
For example, resting macrophages take up bac-
teria, thereby becoming infected. During a par-
ticular period, interactions between an infected

and the probability of activating an ef-
fector T cell that will produce IFN-vy in
proper quantities for a sufficient period. When
no data exist, we perform detailed uncertainty
and sensitivity analyses to determine how the
model output is affected by variations in param-
eter value choices.

Once we complete these four steps, we can use
the agent-based model to simulate a time-lapse
movie of a granuloma forming de novo (see
http://malthus.micro.med.umich.edu/lab/abm
/movies). We then run a series of simulations,
varying parameters that we identified by a sen-
sitivity analysis as significant.

One noteworthy observation from these sim-
ulations is that two different types of granulo-
mas emerge. The first (Fig. 2A) is smaller and
more solid, showing minimal or no necrosis,
whereas the other (Fig. 2B) is larger with a
significant necrotic core. These two simulated
granulomas show striking similarities with pic-
tures of granulomas from a nonhuman primate
model of TB (Fig. 2C and D). Both outcomes
also are seen in human infection, as well as
in certain animals. A key parameter differ-
ence that leads to these two outcomes was
the rate and timing of effector T cells being
recruited to the infection site. These findings
have potential importance for vaccine design as
well as for our understanding of the dynamics of
granuloma formation and control of infection in
vivo.
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FIGURE zJ

Simulations of the agent-based model of granuloma formation at day 200 postinfection with an inoculum of 10 bacteria with comparison of
granulomas from the non-human primate model. Panel A shows the prediction of a solid granuloma outcome, while panel B shows the
prediction of a larger, necrotic granuloma. Note that the shape of the granuloma and the arrangement of cells emerges from the computer
simulation and is not specified a priori. T cells enter from a number of vascular sites on the lattice. The difference between the simulations
in panels A and B was the timing and speed of arrival of effector T cells. Key for both panels: Pink-T cells, Green-resting macrophages,
Tan-infected macrophages, Red-chronically infected macrophages, Blue-activated macrophages, Brown-necrotic regions and Yellow-
extracellular bacteria. Intracellular bacteria are trapped within infected and chronically infected macrophages. Panels C and D show
histopathologic comparison of solid (C) and caseous (D) pulmonary granulomas in the lungs of M. tuberculosis-infected cynomolgus
macaques. Solid granulomas (C) consist of a densely populated collection of inflammatory cells that include centrally located epithelioid
macrophages and histiocytes surrounded by lymphocytes. Caseous granulomas (D) are characterized by a central area of necrotic material,
an outer later of epithelioid macrophages, histiocytes, and giant cells ringed by lymphocytes. Hemotoxylin and eosin stain, total magnification
10x. Both granulomas shown are 2 x 2 mm in size. (Photos donated by Dr. P. Ling Lin, in the Flynn Laboratory at the University of Pittsburgh.)
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Models of Tuberculosis Yield General
Insights and Some Surprises

Taken together, several themes emerge from our
mathematical models of tuberculosis. First is the
importance of macrophage activation and up-
take rates in driving infection dynamics. Al-
though the former meets expectations based on
macrophage activation during M. tuberculosis
infections, the latter proved surprising. If rates
of uptake could be slowed or halted, our results
predict that such infections could be contained
or perhaps even cleared.

Second, and consistent with all the spatial
models we have developed, including those as-
sociated with the agent-based model, we identi-
fied a role for the recruitment and movement of
activated macrophages and also their ability to
kill bacteria. Recruiting more resting macro-
phages to the infection site will increase bacte-
rial load, most likely because it provides addi-
tional cells for productive infections.

This effect on bacterial load paradoxically
suggests that this inflammatory response may be
detrimental to the host. Moreover, unless mac-
rophages become activated, they serve to prop-
agate infection rather than halt it. By balancing
inflammation and macrophage activation, T
cells play a crucial role in containing these bac-
teria. Finally, our models predicted that chemo-
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kine dynamics, involving factors such as turnover
and diffusion rates, are key to facilitating an opti-
mal response. Factors that modulate these features
in favor of the host will likely tilt the scale towards
latency rather than active disease.

More generally, applying a mathematical
model to a particular system provides an oppor-
tunity to organize many facts and factors into a
cohesive structure. In addition, doing so may
enable investigators to better visualize a com-
plex system, while forcing them to think more
carefully about relationships among specific fac-
tors. Taking such a rigorous approach thus can
provide an improved appreciation of the whole
system.

Even more broadly, for biologists, instead of
fearing the unknown, embracing mathematical
models provides an alternative means for ap-
proaching complex questions, including many
that may be experimentally intractable, and thus
may yield new leads to follow in the laboratory.
Ideally, and to optimize benefits, mathemati-
cians and biologists need to work together and
to find a common language for asking questions
about biological systems. It can be extremely
exciting to build a new framework for address-
ing such questions, and the findings have the
potential to challenge dogmas and to stimulate
new ideas.

Flynn, J. L., A. M. Cooper, and W. Bishai. 2004. Animal models of tuberculosis, p. 547-560. In S.T. Cole, et al. (ed.),

Tuberculosis. ASM Press, Washington D.C.

Gammack, D., S. Ganguli, S. Marino, J. Segovia-Juarez, and D. Kirschner. 2005. Understanding the immune response in TB
using different mathematical models and biological scales. SIAM J. Multiscale Modeling Simulation, in press.

Marino, S., S. Pawr, T. A. Reinhart, J. L. Flynn, and D. E. Kirschner. 2004. Dendritic cell trafficking and antigen presentation
in the human immune response to Mycobacterium tuberculosis. ]. Immunol. 173:494-506.

Savageau, M. A. 1991. Reconstructionist molecular biology. New Biol. 3:190-197.

Segovia-Juarez, J., S. Ganguli, and D. Kirschner. 2004. Identifying control mechanisms of granuloma formation during M.
tuberculosis infection using and agent based model. J. Theoretical Biol. 231:357-376.

362 « ASM News /Volume 71, Number 8, 2005



