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1. Introduction. Mathematical modeling of host-pathogen interac-
tions is playing an increasingly important role in our understanding of the
pathogenesis of infectious diseases. Many of the results have shaped our
understanding of disease processes both at the population and cellular lev-
els. In this tutorial we give an introduction to modeling the interaction of
the human immune system with viral pathogens. Our collective research
experience is focused on HIV so we use that as our prime example to explore
approaches to understanding host-pathogen interactions and the treatment
of disease. We present basic principles on the interaction of the immune
system in response to the diverse set of pathogens that challenge humans.
We then present a brief review of models for host-pathogen interactions at
the cellular level, a summary of modeling HIV disease progression and sub-
sequent chemotherapy, and finally, we present a model for the treatment of
AIDS using the novel approach of robust control theory.

2. Host-pathogen interactions. The immune response represents
a complex defense system against invading pathogens. Its main features
involve induction, specificity and memory. Most organisms posses a non-
specific procedure for protection against pathogens: an innate response
composed of physical and chemical barriers. Higher organisms also main-
tain an adaptive response comprised by humoral and cellular components
that are pathogen specific (see [1]).

The most popular paradigm in immunology is that the key role of the
immune response is to distinguish between self and non-self. This involves
immune cells known as lymphocytes, that during their development, are
elimintated if they recognize self [2]. Thus, immune cells that participate
in the immune response recognize non-self molecules and can initiate an
immune response cascade.

A second paradigm postulates that adaptive immune cells only respond
if the antigen elicits different types and levels of tissue damage, not based
on the nature of the antigen molecule [3, 4]. This model considers the
immune response as a defense system against pathogens.

When a foreign pathogen invades, an immune response is triggered.
The innate elements attempt to suppress the invader, and days later the
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adaptive immune components are developed. As the response progresses,
the pathogen attempts to survive by various evasion mechanisms. Thus, a

series of complex interactions between the host and the parasite are estab-
lished.

2.1. Immune response to viral pathogens. Unlike bacteria,
viruses must infect host cells to survive and replicate, and thus by defi-
nition, are intracellular microbes. Once virus binds to the host cell, the
virus introduces its genetic material into the cell nucleus, and it remains
there until the cell is activated and the viral genetic material is replicated.
This process eventually kills the host cell. New virions are produced that
are able to infect other cells.

When the invading virus circulates through the blood its receptor could
be blocked by neutralizing antibodies. However, once a virus has already
infected a cell, specific antibodies cannot reach it, and thus a cellular im-
mune response is needed in order to suppress infection. Infected cells also
are recognized by natural killer cells and then killed through the action of
perforin and other molecules secreted by the NK cell. Both CTLs and NK
cells are activated by TH1 cells through the action of cytokines.

Perhaps the main immune evasion mechanism of viruses is mutation.
As the body is preparing to fight the virus by developing specific responses,
the virus changes some of its antigenic proteins, via mutation, so that it is
no longer recognized. Retroviruses (like the human immunodeficiency virus
(HIV)) have a high spontaneous rate of mutation due to the enzyme called
reverse transcriptase that does not possess a repair domain (exonuclease ac-
tivity) which DNA polymerases usually have. This facilitates the mutation
process. A second evasion mechanism comes by virtue of the intracellular
lifestyle of viruses. Residing within host cells offers them protection from
the immune response. Viruses have even developed ways to downregulate
expression of host proteins on cells that signal infection.

2.2. Modeling host-viral interactions. Models of host-viral infec-
tions, namely HIV-host models, have a successful recent history. Many
of the key results that have shaped our understanding of the T-cell and
viral dynamics in HIV disease have come from mathematical modeling ap-
proaches [5-7]. Many others have given insight into HIV-immune dynamics
as well as progression [8-26]. There is also a first attempt on modeling the
interaction of cytokines and the HIV-infected immune system. This work
examined the role of IL-2 immunotherapy in HIV-1 infection ([27]). Other
viruses that have captured recent attention through modeling are Hepatitis
B and C viruses [28, 29]. Most viral-host models are developed using con-
tinuous and deterministic methods, and thus have been formulated using
ordinary or partial differential equations. A few of these models e.g. [30-
34] are discrete and stochastic. The choice of modeling method is based
on several considerations; e.g., the time frame of a study, the population
sizes, and the types of questions posed.
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3. The human immunodeficiency virus. HIV has been recognized
as the etiologic agent of the acquired immunodeficiency syndrome -AIDS
([35]. The United Nations estimates that there have been 8.4 million AIDS
cases since the start of the global pandemic in the 1980s, with an estimated
30 million persons HIV-positive. Only 1.5 million cumulative cases have
been officially reported by countries. An estimated 5 million adults and 1.5
million children have already died from AIDS. The impact of this emerging
infectious disease is clear. Despite the impressive amount of research on
this pathogen and the related areas of study, there are as yet no effective
vaccines or treatment strategies that prevent the ultimate progression to
AIDS and death. This is sentinel in realizing that many of the pathogenic
mechanisms leading to disease progression are still unknown.

HIV is a retrovirus containing two single strands of RNA. It is an
enveloped virus that carries its own reverse transcriptase for transcribing
the viral RNA. HIV is transmitted via three primary routes: sexually,
vertically (mother to child) and intravenously. Once infection takes place,
the interaction of HIV and the immune system begins with CD4% cells. The
CD4 receptor appears mostly on helper T cells and some macrophages,
and binds with the protein (ligand) gp120 (on the surface of the virus)
initiating cellular infection. This is a necessary, but insufficient step — a
co-receptor is also vital for proper cellular infection, and the virus uses a
cytokine receptor on the surface of the host cell near the CD4 receptor to
finish the lock-and-key entry process. It has been shown that individuals
lacking the co-receptor have a natural immunity to infection by HIV [36],
although it is not known how this receptor mutation arose. It has been
observed that initial infection with HIV usually occurs in macrophages, as
the predominately-transmitted strain of HIV is tropic for the cytokine co-
receptor on macrophages [37, 38]. These important phagocytes and antigen
presenting cells serve as a cloak for virus that can now be carried through
the blood and lymph to all parts of the body (including crossing the blood-
brain barrier). As infection progresses, HIV expands its co-receptor usage
repertoire, and can infect both T cells and macrophages. There is much
evidence to support the observation that this infection process occurs more
efficiently in activated cells, and that even when a resting cell binds virus,
the viral DNA may never be inserted into the host genome [39, 40].

Once inside the host cell, the viral DNA can be inserted into the
host-cell’s genome only upon cellular activation, and new viral particles
are created and released. For HIV, viral production per infected cell is
estimated to be on the order of 500 virions per infected cell [41, 42]. It has
been observed that these infected cells (whether resting or active) are at
an increased risk for cell death via apoptosis or other pathways [43]. This
enhanced cell death is also seen in bystander cells (cells not producing HIV)
[44]. Infected cells are also cleared via a CTL response, or may die due to
lysis from infection.
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As the infection develops, immune cells are depleted and a disruption
in the immune system is established so that the host becomes suscepti-
ble to opportunistic infections and pathologies, like Pneumocystis carinii
pneumonia (PNP), Kaposi’s sarcoma, candidiasis, tuberculosis, etc. AIDS
is diagnosed when the count in CD4* T cells is less than 200/mm? and/or
the seropositive patient has one or more AIDS defining illnesses.

3.1. Modeling the mechanisms of HIV disease. Any theory or
model of HIV disease progression needs to reconcile the following aspects
of the disease process: (1) net loss of CD4*" lymphocytes is gradual and
takes, on the average, 10 years; (2) CD41 T cell numbers decrease in the
blood earlier than in lymph nodes, and in the early symptomatic stages
when CD4% lymphocytes are declining in the blood, their numbers are
often increasing in the lymph nodes (lymphadenopathy); (3) there is some
compartmentalization of HIV-infected cells to lymphatic tissues with the
preponderance of cells producing virus residing there, as well as a large
percentage of virus present on follicular dendritic cells; (4) the number of
productively infected cells at any given time is very low, with approximately
107 productively infected cells present in the whole body out of a total of
1012 lymphocytes (1:10° ratio); and (5) CD4" lymphocytes that die, tend
to die in lymph nodes, not in the peripheral blood, and those that are dying
are mostly bystander cells. The factors determining the dynamics of the
T-cell populations during HIV infection can be classified into 3 main areas:
a change in cell productions, a change in cell migration patterns, and a
change in cell life-spans (i.e. increased cell death). Each of these dynamics
is modulated by cytokines as well as other influences. Two hallmarks of
immunopathogenesis in the progression of HIV to AIDS are the loss of
CD4* T cell function in response to antigens and the critical reduction
of CD4%T T cell numbers. It is probable that these two phenomena are
related. Other data point to a reduction in CD8% T cell anti-HIV activity
associated with disease progression, and recent evidence indicates that CD8
T cells can be infected directly by HIV [45].

3.1.1. HIV-1 disease progression. As mentioned above, models of
HIV-immune dynamics have gained much attention since the mid 1980s.
The first three works done in this area were by Cooper [46], Dolezal and
Hraba [47] and Perelson [48]. For recent reviews of HIV-immune models,
see [49, 50]. The Perelson et al. [25] model included populations of un-
infected CD41 T cells, latently infected CD41 T cells, actively infected
CD4% T cells, and free HIV virus. This model provided a reasonable first
approximation to the clinical progression of the disease, although the T-
cell populations never declined to very low levels. (Note that this model
is used in Section 4 of this tutorial.) This model was modified to include
macrophages as a possible site of virus replication [21]; the result was a
slower disease progression and a lower T-cell count, but the collapse of im-
munity (the “crash to AIDS”) was always very abrupt. With both of these



MODELING HOST-VIRAL DYNAMICS AND TREATMENT 5

models chemotherapy was explored using a treatment that was assumed to
reduce viral production.

To improve the mechanistic basis for HIV models, we included anatom-
ical compartments other than the peripheral blood compartment in which
viral loads and T-cell counts are typically measure. We first included the
thymus as there is much evidence that the thymus is infected with HIV and
that this may impair production of naive CD4* T cells [51]. The compart-
ment for the lymph system was included as there is evidence that lymph
nodes become saturated early with infected T-cells and thus provides a
constant supply of virus to the peripheral blood compartment throughout
the infection [42, 52]. Our results have given the most accurate simulations
yet of the disease progression — including the slow decrease in CD4T T
cells, the quasi-constant viral load in peripheral blood until very late in the
progression, and the long delay to the onset of AIDS [53].

3.1.2. Progression models of HIV. Any model of HIV disease
progression should incorporate clinically determined dynamic information
about the HIV-infected immune system. The essential elements are as fol-
lows. After an initial period of acute viremia in the first few weeks after
seroconversion, CD4" T-cell counts decline gradually from approximately
600 to 800/mm? to almost 0/mm? over approximately 10 years (normal
CD4% T-cell counts are 800 to 1200/mm3). Data from [54] is shown in
Figure 1. The decline of CD4™ T cells is more rapid early in the infection
[65]. Infected CD4™ T cells constitute 4% or less of the CD4*+ T-cell pop-
ulation [56]. The half-life of an infected CD4* T cell is approximately 2
days [5-7, 57]. After the initial viremia, plasma virus increases from be-
low 10*/ml to 107 /ml or more during the variable course of infection with
a sharper increase toward the end of the symptomatic phase [54]. The
lifespan of a virus outside the cell is about 7.2 hrs [5-7].

To model the longest stage of HIV infection, the asymptomatic phase,
we developed a model [19, 18] consisting of ordinary differential equations
for the variables T'(t) (the CD4" T-cell population uninfected by virus
at time t), T°(t) (the CD4T T-cell population infected by drug-sensitive
virus (wild-type) at time t), 77(¢) (the CD4t T-cell population infected
by drug-resistant virus (mutant) at time t), V;(t) (the drug-sensitive virus
population at time t), and V,(¢) (the drug-resistant virus population at
time t). All these virus populations reside in the circulating blood, in
which the values of uninfected CD4" T cells and virus can be clinically
measured. The equations are presented below (reprinted from [17]).

dT(t)
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FiG. 1. Data graph taken directly from [54]. Shown are averaged CD4T T-cell
counts and viral loads from a large number of untreated patients.
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Initial conditions are T'(0) = T, 7T°%(0) =0, T7(0) =0, V,(0)=
Vso, Vi(0) = 0. The model is explained as follows. The first two terms of
Eqn. (1) represent the source of new T cells. This incorporates T cells from
the bone marrow, thymus and general production. It is time dependent to
represent the evidence that the source of new cells from the thymus, s(t),
is reduced during HIV infection [58]. The equation also includes a term to
represent proliferative production (whether direct or indirect) due to the
presence of antigen, p(¢t)T'(t). This production changes over the course of
infection, which is accounted for in the time-dependent rate, p(¢). This
general form allows for inclusion of different functional forms representing
cell expansion. We choose to use Michaleis-Menten kinetics of the form
V?(;(-i)c The other proliferation terms, pz(t) follow this same form. The
next term is a natural death term, since cells have a finite lifespan; the
average of which is ;%T The last two terms represent the infection of

CD4T T cells by both resistant and sensitive strains of virus. These terms
are mass-action type terms with constant rates of infectivity ks, k.. We
assume the law of mass action applies here based on the large numbers
of cells and virus involved. P; represents the effects of treatment on viral
infectivity in the plasma. Equations (2) and (3) describe changes in the
infected population of CD41 T cells, T'® and T, respectively. (We assume
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Fi1G. 2. Model of HIV-immune system dynamics. The uninfected CD4t T-cell
population has a source rate of s, and a death rate of u. Cells are infected by either
wild-type or resistant mutant virus, at rate k. These infected cells can produce either
wild-type or mutant viral strains (which is dependent on the presence of drug for biased
selection at rates q and p). Both infected cells and virus are cleared by immune response
and death. There is an external source of virus (both types) from the lymph system.

that, each T cell is dominated by, and hence producing, only one strain of
the virus, either V; or V;..) The first gain terms for each carries over from
the loss terms in Eqn. (1). Then, infected cells are lost by such processes
as natural death, viral killing, apoptosis or homing to LS.

In Equations (4) and (5), the first terms are the source for the virus
population. Newly produced virion come from production by infected
CD4* T cells (from Egs. (2) and (3)), in which new virion are produced
at rates p? (t) and pf,(t), respectively. We assume that upon each replica-
tion there is a probability of (1 — g) that a significant mutation will take
place; and, that the proportion ¢ remain faithful to the original strain. We
account for the mutation effects directly in the production term, although
mutation occurs during the transcription stage which is not directly ac-
counted for in the model.

The next two terms in Equations (4) and (5), —k7T(t)V (t) represent
anti-HIV cytotoxic responses. As we track only CD4* T cells in our model,
and it is known that CD8% T cells can directly kill infected cells, we wish
to account for this cytotoxic response. Quantitative evidence supports that
CD8T T cells are present in numbers twice that of CD4T T cells during
HIV infection (the opposite ratio exists in uninfected individuals). Thus
we use twice the number of CD4" T cells to represent CD8% T cells. We
then use them in mass action form to represent direct interaction for killing
to occur.
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As there is much evidence to support the major production of virus
taking place in the lymphoid system (LS), we account for this phenomenon
as a major contributor of virions, other than the small amount produced
in the blood [52]. The input rates of lymphoid system virus are gs(¢) and
gr(t), for the sensitive and resistant viral strains, respectively. They are
time dependent, as this will vary over the course of infection. We again
use the Michaelis-Menten kinetics here as with the proliferation terms. P
represents the effects of treatment on viral infectivity in the LS. The model
(1)—(5) describes the interaction of the immune system with HIV.

A typical untreated disease course (i.e. P, = P> = 1) based upon
CD4% T-cell counts and viral load is simulated from the model in Figure 3.
The initial virus level is determined by the model’s parameters. This as-
sumption is consistent with recent clinical findings that disease prognosis
is correlated to a set-point of virus level established in each patient soon
after the initial viremia, and viral levels and replication rates remain rela-
tively stable after the set-point [59-62]. In the model, different set-points
are obtained by varying key parameter values, such as viral burst size.
This system is the only model to date that accurately captures clinic data
[18]. This is now corroborated in published work from the Swiss HIV co-
hort study, where our model is used and gives consistent simulation of the
clinical data during the long-term infection with HIV-1 [63].
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F1G. 3. A simulation of HIV dynamics for the model with initial T-cell count at
1000 /mm® and initial viral load at 10*/ml. The curves correspond to data as shown
in Figure 1. The set-point of the virus is in the middle range [61] and corresponds to a
typical disease progression of about 6 years in this simulation.

3.2. Antiretroviral therapy of HIV infection. Clearly there is a
necessity for both prevention and treatment of HIV infection. There are no
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vaccines as yet available, but there are several drugs now employed to lower
viral loads and raise CD4% T-cell counts. These antiviral drugs fall into
two main categories: inhibitors of reverse transcriptase and inhibitors of
protease. The role of reverse transcriptase inhibitors is to interfere with the
transcription of the RNA to DNA thus, halting cellular infection; the role
of protease inhibitors is to interfere with post-translational viral particle
assembly. Unfortunately, these drugs are not cures for the infection, but
only serve as maintenance programs to temporarily prevent further progress
of the virus. Despite this drawback, there is much clinical evidence to
support the use of combinations of these chemotherapies in HIV infected
individuals. Aside from the possibility of prolonging life in an HIV positive
individual, it may make them less infectious to their sexual partners [64],
as well as reduce rates of mother to fetus transmission [65]. Controversy
exists among clinicians, however, as to whom should be treated, when they
should be treated, what treatment scheme should be used, and if it fails,
what should be done in replacement therapy.

HAART (highly active antiretroviral therapy) is a cocktail of different
antiretroviral drugs. The effectiveness of HAART in terms of slowing pro-
gression to ATDS is high for a large percentage of cases although it presents
several problems in terms of drug resistance and compliance.

Most chemotherapies reduce viral production in a dose dependent
manner to the expense of multiple side effects as well as ineffectiveness
of the treatment after a certain time due to the capability of the virus to
mutate and become resistant [66].

3.2.1. Treatment models. Recent clinical trials have had some suc-
cess in using combined drug therapy [67, 59]. Ongoing trials with combi-
nations of drugs have shown sharp declines of viral counts to undetectable
levels within several weeks of treatment; these levels are sustained for 1
year or more [59, 68, 60]. At the same time, CD4% T-cell counts rise
markedly before gradually leveling off [59, 68, 60]. This apparent remission
of HIV infection offers hope for potential chronic control [57]. The long-
term implications of patients on this therapy, however, are not yet fully
understood. Mathematical models provide a means to understand the HIV
infected immune system as a dynamic process. Models formulated as dif-
ferential equations for the dynamic interactions of CD41 lymphocytes and
virus populations thus can be useful in identifying essential characteristics
of HIV pathogenesis and chemotherapy.

3.2.2. Relevance of HIV-1 progression models to treatment
and resistance. In the absence of any chemotherapy, it can be assumed
that the sensitive strain (wildtype) of virus is dominant; but in the presence
of treatment, selection is for resistant strains (mutant). Because of the de-
velopment of resistance and side effects during single drug chemotherapy,
the time frame for which the drug can be administered is finite [69, 70].
This phenomenon can be modelled by treating, for example, for a 52 week
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window during the course of infection. Simulations of viral dynamics can
be made using the total CD4T T-cell population over time together with
HIV levels as indicators of drug effectiveness. To include monotherapy in
the model, it is necessary to mathematically mimic the effects of a drug
which is a reverse transcriptase inhibitor. Such drugs reduce viral infec-
tivity, since they do not allow the viral DNA to be inserted into the host
genome. Since multiple virions may infect a cell, such drugs may inhibit one
virus, but allow another to get through or around the drug barrier. One
can therefore model treatment by inhibiting the infectivity of the virus.
This would affect both the viral infectivity of T cells, and also reduce the
number of infectious virus flowing into the blood from the LS virus com-
partment. One can achieve this by multiplying the parameters k5 and g5 in
the model by functions which are “off” outside the treatment period (thus
having no effect) and “on” during the treatment period (thus reducing viral
infectivity). Treatment functions which achieve this are of a piecewise con-
tinuous form with the value 1 outside the treatment period, and P; within
the treatment period. P; is the treatment effectiveness, 0 < P; < 1. If
P, = 1, treatment is 0% effective; if P; = 0, treatment is 100% effective.
A similar function, with treatment parameter P,, is also applied to the
external LS, however with less effect (i.e. P; < P, since it is proportionate
reduction) as we assume the drug effectiveness is less there [52]. Drugs
such as AZT reduce viral activity in a dose dependent manner. The ef-
ficacy of the chemotherapy may differ from patient to patient; therefore,
P; for i € {1,2} represents the varying effectiveness of the drug in halting
viral activity in a given patient.

Models of treatment by Kirschner and Webb (e.g. [19, 18]) have distin-
guished qualitatively two distinct outcomes as indicated by clinical trials.
The first is resistance. Examples of resistance for three-drug combined
therapy are reported for completed clinical trials by Collier et al. [71]. In
these trials, there was on average an increase of CD4T T-cell counts by
approximately 30% (peaking at approximately 8 weeks and returning to
baseline at approximately 40 weeks) and a decrease of plasma virus by
approximately 70% (peaking at approximately 4 weeks and recovering to
half baseline at approximately 40 weeks). The second treatment outcome
is remission. Examples of remission are indicated in preliminary reports
of ongoing clinical trials [59, 60, 39, 72]. In these trials, two things were
observed: 1) plasma virus decreased sharply to undetectable levels in 2
to 4 weeks, and these levels are sustained for periods of 1 year or more,
and 2) CD4* T-cell counts increased steadily by 100/mm?® or more before
gradually leveling off to below normal levels (this below normal recovery is
believed to be due to an impaired production of new CD4T T cells from
the thymus and other sources [54, 73]; this assumption is incorporated into
the model).

Multi-drug treatment can be incorporated into the existing model as
the reduction of two separate rates. The reduction of these rates provides



MODELING HOST-VIRAL DYNAMICS AND TREATMENT 11

treatment control variables corresponding to the intensity and velocity of
HAART drug action. The variables are the rate at which virus infects
uninfected CD4% T cells and the rate of virus influx into the plasma from
the lymph system. Reduction of this second rate is the most important for
treatment outcome, since it is believed that as much as 98% of the virus in
the circulating blood is contributed by the external lymphoid compartment
[59, 60]. In the simulations, the dynamics in the lymphoid compartment are
modeled as a viral source term rather than mechanistically, since limited
data are available for the host-pathogen dynamics in this compartment
[62, 42]. When treatment begins, the model assumes that a proportion of
drug-sensitive virus mutates to drug-resistant virus. This proportion is also
a treatment control variable corresponding to the combination of drugs used
or the presence of genetic diversity at different disease stages [16]. Figure 4
shows the different outcomes of the treatment model simulations.
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Fi1G. 4. Treatment simulations for four starting viral levels. The simulations have a
common viral set-point of disease progression, and the treatment starting values are from
Figure 3. Initiation of treatment with the lowest starting viral load achieves remission
(a), while the other three develop resistance.

The model distinguishes primarily between resistance and remission
in the assumption of a threshold condition for the virus population in the
plasma (and thus for the virus population in the lymphoid compartment).
The threshold condition is incorporated into the rate that controls the con-
tribution of drug-resistant virus from the external lymphoid compartment
to the plasma. When treatment drives the plasma virus level below the
threshold, the drug-resistant virus population does not emerge, and the
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drug-sensitive virus population falls to undetectable levels. This threshold
cannot be reached simply by gradually lowering the drug-sensitive virus
population. Two additional factors must be considered: 1) when the virus
population is above threshold, the high mutational capacity and short lifes-
pan of the virus results in rapid production of drug-resistant variants; and
2) as the virus population approaches the threshold, Darwinian competi-
tion gives competitive advantage to the resistant viral strain as the sensitive
viral strain diminishes in fitness and in numbers.

To reach the threshold, the virus population must be brought down
extremely fast before mutation and selection pressure allow resistant virus
to propagate in the drug-altered environment. In the simulations (see Fig-
ure 4, (reprinted from [17])), this rapid fall to the threshold can be achieved
if treatment inhibits the rate of viral influx from the external lymphoid com-
partment term sufficiently fast. The threshold value depends on the drugs
used and the capacity of the virus to mutate against these drugs. In some
patients, plasma levels were reduced to undetectable levels, yet remission
did not occur [5, 6]. In these cases, there may have been an extremely low
threshold specific to the drugs used or a disproportionately lower suppres-
sion of virus in the lymphoid compartment than in the plasma.

Although computer models of HIV therapy are no substitute for clin-
ical trials, they can bring into focus essential elements of the dynamic
processes involved. The treatment simulations presented here identify the
following qualitative dynamic elements involved in resistance and remission:
1) remission can occur if the viral production in the lymphoid tissues is sup-
pressed below a threshold level; 2) drug action must be strong enough and
fast enough to drive the virus population to the threshold before resistant
virus appears and propagates; 3) combination therapy or early treatment
lowers the capacity of the virus to mutate to resistant strains and thus fore-
stalls their emergence until the threshold is reached. In the next section
we present a different approach to modeling of chemotherapy in HIV.

4. A chemotherapy feedback control model. The question of
whether or not treatment should be given in a constant or dynamic way
remains open. Some scientists believe that it is too difficult to taylor treat-
ment regimes for individual patients. Others believe that in life-threatening
diseases such as HIV, we should treat each patient with all available options.
To this end, Kirschner et al. [66] used optimal control methods to explore
the issue of a dynamic treatment regime. They addressed this problem
concentrating on when and how treatment should be initiated for patients
who are in the early stages of infection where uninfected cell counts are
high. Their optimal control approach has an objective function based on
benefit, measured as the number of uninfected cell counts less the systemic
cost of chemotherapy. Using a previously studied simple model of HIV-T
cell dynamics ([25] given in (6-9) below), the authors concluded that a
dynamically scheduled treatment protocol can maintain the uninfected cell
counts in normal levels while reducing the side effects of chemotherapy.
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Optimal control based solutions lack robustness against modeling er-
rors and imperfect measurements, and depend strongly on the model used
to compute the treatment scheduling. Host HIV dynamics are poorly un-
derstood. Therefore, misconstructed model dynamics and uncertainty in
parameters may lead to faulty conclusions, such as failure of treatment due
to unnecessary high doses or high virus counts due to low doses. We now
present a different approach to HIV chemotherapy modeling using robust
control summarizing the results from [74].

An alternative to optimal control strategies is the method of feedback
control. The aim of this section is to summarize recent results that ex-
plore the use of robust control theory to design treatment scheduling for
the treatment of HIV infected patients. Alvarez-Ramirez et al. [74] consid-
ers the percentage effect of the chemotherapy on viral production as the
target variable seeking to regulate the viral production via a feedback func-
tion where the percent of effect of chemotherapy is computed from actual
measurements of viral and cells counts.

4.1. The HIV-immune system model. To illustrate the possibili-
ties of the application of feedback control, the authors in [74] make use of
an early model for HIV dynamics from Perelson et al. [25] (given in (6-9)
below), which was also used for the optimal control strategies applied to
treatment as described above [66].

In the model, T' denotes the numbers of uninfected CD4t T cells per
mm?3, T} and T denote respectively the numbers of both latently infected
(cells that contains virus but do not release them) and actively infected
CDA4™* T cells (virus releasing cells) per mm3. The number of free infectious
virus particles per ml is V. Definitions and numerical information for the
parameters can be found in Table 2 of Kirschner et al. [66].

© = Ty P TO+rTO0 - 10) - RTOV (@),
) %t(t) = BTOV() - urTi(t) - kT (0),
(8) d:,:;t(t) = kaT1(t) — wT2(t),

av(t)

©) =5 = NwDh(t) - kVET{?) - pV (),

where f(t) = (T'(t) + T1(t) + T2(t))/ Tmax-

The model is briefly explained as follows (for a more complete descrip-
tion see [25]). The first term of Equation (6) represents the source of new
CD4* T cells from the thymus. As in the first model (see Eqn. 1) this
term is a function of viral load to represent the reduction in the number
of newly produced T cells during HIV infection [58]. The next term is
a natural death term, followed by a term representing the stimulation of
CD4t T to proliferate in the presence of virus. The last term represents
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the infection of CD4% T cells by virus and is determined by the rate of
encounters of CD4™ T cells with virus. This is based on the law of mass
action. In Equation (7), latently infected CD4™ T cells are assumed to have
the same death rate ur as uninfected T cells, although other factors can
augment their death rate [66]. Equation (8) models the rate of change of
actively infected CD41 T cells. The first term represents the rate at which
latently infected cells become actively infected cells. Actively infected cells
produce virus and die at per capita rate up. Equation (9) models the rate of
change of free virus population. The model assumes that when an actively
CD4* T cell becomes activated through exposure to antigen, replication
of the virus is initiated and IV virus are produced before the host cell dies.
The middle term in the viral equation represents the idea that, as we are
tracking only free viral particles in V' (¢), The term —puyV accounts for
viral loss and/or removal from the body. In the absence of virus, the T
cell population has a unique steady state known as the uninfected steady
state such that T; > 0. Reasonable initial conditions for the differential
equations system are 7'(0) = Tp, 71(0) = T, T2(0) = T9 and V(0) = V.
In particular, if the initial innoculum is free virus and not infected cells,
then T7(0) = T>(0) = 0.

The system (6)—(9) has a second steady state [25]. The uninfected
steady state represents a healthy individual, while the second steady state
corresponds to a successful invasion of HIV (infected steady state), in which
uninfected T cells have a low, positive concentration. It has been shown
in [25] that if the parameter N is below a critical value N, the uninfected
steady state is stable and the infected steady state is unstable. If N < N,
the uninfected steady state is globally asymptotically stable. At N = N,
a transcritical bifurcation occurs. Once N > N, stability is reversed, and
the infected state is locally stable. Model (6)—(9) can be used to study the
effects of chemotherapy [66, 25] by representing the effect of drug treatment
as a reduction of the viral production rate as shown in [66]. Obviously, if
chemotherapy reduces the number of virus production below the value N,
then the immune system could recover and lead to the uninfected steady
state. Thus, a treatment scheduling design is required to avoid proliferation
of free infectious virus particles.

4.2. The feedback treatment model. The control variable repre-
sents the percentage of effect the chemotherapy has on viral production.
The authors in [74, 66, 25] mimic the effects of HAART, by assuming that
chemotherapy reduces viral load; thus in Equation (9), the control u(t)
multiplies the number of free virus produced by T5(¢) cells:

av(t
(10) WO — w)NwTo(t) ~ WV OT(E) ~ w7 ()
We require the control to satisfy the restriction 0 < u(t) < 1 where
u(t) = 1 is the maximal use of chemotherapy. For design purposes, it is
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assumed that N > N, so the model does not evolve in the region of sta-
bility of the uninfected state (i.e. the individual has active HIV infection).
Kirschner et al. [66] defined a control objective functional that maximizes
chemotherapy benefits based on the uninfected T-cell counts. Alvarez-
Ramirez et al [74] use a different control objective: the regulation of the
free infectious virus particles about a low reference value by scheduling the
chemotherapy dosage. This follows since a reduction of free infectious virus
leads to a reduction of (latently and active) infected cells and, consequently,
to an increase in uninfected cells. A feature of this approach is that the
virus reference value is a design variable that can be prescribed in terms of
the degree of infection and patient characteristics. As pointed out in [66],
public health policies are being designed to determine the time and degree
of infection of each particular case and therefore health officials may want
to treat under asymptomatic or symptomatic infection scenarios depending
on viral load.

If V,. denotes the virus reference value, then it is assumed that the
dynamic behavior of the free infectious virus particles is:
= v -7,
where 7. > 0 is a closed loop time constant. Notice that the dynamics of the
above equation are asymptotically stable around the reference value V,. with
T. as the convergence time. The feedback control law is based on a matching
scheme. Provided Nu,T> # 0 for all positive ¢, exact model matching
between (10) and (11) is achieved by the following feedback function:

dv (t)
dt

The above function corresponds to feedback treatment since it is a
function of the actual values of actively infected cell concentration T(t)
and of free infectious virus particles V' (t). Under the above control (12),
the controlled dynamics are given by system (6-8) plus Equation (11).
It can be proved that feedback control u(t) given above can regulate the
immune system-HIV dynamics to either steady state.

A major drawback of the feedback control function (12) is that perfect
knowledge of the parameters and dynamics are required for its implemen-
tation. It is in this sense that the feedback function (12) is called an ideal
scheduling treatment. The model above is only an approximation of the real
immune system-HIV dynamics and in fact, it does not account for some
key aspects of the dynamics. In particular, parameter estimation from ac-
tual clinical data parameters is inexact as well as time varying, and even
some model parameters are unobtainable from clinical data. For instance,
only rough estimates of the number of free virus produced by Tx(t) cells
are presently available. As in the case of optimal control based approaches
[66], the design of treatment scheduling under these uncertainties may lead

(11)

(12) u(t) = (V)T () + pvV(t) - )/N T (t).
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to undesired results (e.g. premature ineffectiveness of treatment due to
unnecessary high doses or high virus counts due to low doses). The aim
of this section is to use control theory tools to design a robust treatment
scheduling in the face of model uncertainties.

The following assumptions are made for control design purposes:

e Free infectious virus particles and actively infected cell concentra-
tions are available from (periodic) measurements. This is a reason-
able assumption, since cell and virus counts can be obtained with
present clinical techniques.

e Estimates of N, up, uy are known denoted by N, [, by respec-
tively. Clinical data are becoming more accessible, making it pos-
sible to get estimates for them.

We write the viral dynamics, V (t), as

V() = —py V(2) + n(V (1), Ta(t), u(t)) + Bu(t),
where B =N [y and
n(V (1), Ta(t), u(t)) = —(uv — iv)V(t) — b V()T () + (N — B)Ta(t)u(t)

is the model error function. The aim is to estimate n(V(t), T»(t), u(t))
and to design a feedback function to approximate the optimal scheduling
treatment function (12).

To estimate the model error 7(t), we introduce the observer

A'(t) = we(n(t) — (t),

where 7j(t) is the estimate of 7(t) and w, > 0 is the estimation frequency,
which is an adjustable parameter. If e = 1 — 7j is the estimation error then
e’ = —wee + 1. If the model error dynamics are bounded the idea is to
pick a sufficiently large estimation frequency value and push the estimate
modeling error towards the real modeling error. The implementation of
this idea can be consulted in [74]. We now proceed to some numerical
examples.

4.2.1. Numerical simulations. In this section we study the con-
trolled immune system HIV dynamics numerically to illustrate our treat-
ment scheduling design as well as to provide evidence that our feedback
control design is likely to work in more general situations. We assumed the
following scenarios:

e Free virus and actively infected cell concentrations are measured
every P days. Moreover, such measurement is delayed P days.
This means that the sample for measurement is taken every P
days and the actual measurement is available at the next sampling
instant. A

¢ An upperbound for the parameter N is N = 1800 virus counts /cell
[25]. Note that the estimated value N = 1800 virus counts/cell has
about 80% error with respect to the real value.
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o We use the estimate [ = 0.3/d, such that the death rate of the
T2(t) cell population is overestimated about 25%.

e Chemotherapy begins D days after the onset of infection. The
estimated parameter becomes 3 = 240 virion counts cell 'd 1.

Initial conditions are: 7'(0) = 1000 cells mm~—2, T7(0) = 75(0) = 0
cell mm~=3, and V(0) = 0.001 particles mm~3. The control parameters
are: 7, = 7 and w, = 0.05 d—!; therefore, the desired reference value can
ideally be achieved in about a week, and the cutoff period of the modeling
error estimation about two weeks. Thus, system parameter changes can be
detected in at most two weeks.

For comparison purposes the dynamical behavior of the uninfected
cells and virus populations in absence of treatment are presented in Fig-
ure 5. Notice that for this set of parameters, the stage where the uninfected
cell concentration decreases rapidly starts 2—2.5 years after the onset of in-
fection. In the first year, the virus and infected cell concentration are very
small. This can be a drawback for treatment scheduling based on feed-
back control because the modeling error estimator may be insensitive to
excessively small values of virus concentrations. Based on the numerical
simulation displayed in Figure 5, we propose to use our feedback control
scheme for treatment scheduling about 400 days after the onset of infection.
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F1G. 5. Time series plot of the solution to the model in Equations (6-9) showing
the virus and uninfected T-cell populations.
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Let the reference V, = 0.05 particles mm™2, correspond to a steady
state with about a 10% decrease in the normal uninfected T-cell population.
Figure 6 presents the dynamics of the immune system-HIV interactions un-
der chemotherapy computed from the proposed feedback control for three
different values of the sampling period P; namely, 7, 15 and 30 days, and
D = 1000, corresponding to the beginning of the catastrophic stage of fast,
uninfected T cell decrease. Examining the results, two things are evident.
First, the reference value V.. is achieved in about 250 days. After this
time, the treatment achieves a stationary value. Second, the smaller the
sampling period, the better the performance of the chemotherapy adminis-
tration. This point highlights the importance of monitoring frequently the
evolution of T cell populations in HIV infected patients.
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F1G. 6. Dynamics of the immune-HIV interaction for different reference values of
the sampling period, P at 7, 15 and 30 days.

We also did studies where we varied the treatment initiation times,
D at times 1500, 1000 and 2000 days. These results reveal that early
treatment leads to moderate treatment scheduling. On the other hand,
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late treatment induces the highest dose possible for long periods, which
may lead to premature resistance (data not shown).

Finally, we studied the performance of the feedback-control based
treatment under the instantaneous development of viral resistance to
chemotherapy (data not shown). To this end, we assumed a successive
15% sudden change at day 1500 of the parameter N; the ‘number of free
virus produced by T5(t) cells. Although the parameter N can not veri-
fied from clinical data, the modeling error estimator is able to detect these
changes. In this case after a sudden change in N, the control feedback has
to rectify the steady state value of chemotherapy, which increases as IV also
increases. These results suggest that the steady state value of the control,
say u, can be used to monitor mutations and resistance of the virus to
drugs. In this way, large values of 4 may indicate adaptation of the virus
to chemotherapies.

It should be stressed that the numerical results presented above do not
imply that the feedback control approach to HIV chemotherapy proposed
in this work is a finished methodology. Instead, our objective has shown the
strength of using control theory tools within a cross disciplinary framework
to attack problems in medicine.
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