Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model

Jose L. Segovia-Juarez¹, Suman Ganguli¹, Denise Kirschner*

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA

Received 14 April 2004; received in revised form 28 June 2004; accepted 30 June 2004
Available online 26 August 2004

Abstract

Infection with Mycobacterium tuberculosis is a major world health problem. An estimated 2 billion people are presently infected and the disease causes approximately 3 million deaths per year. After bacteria are inhaled into the lung, a complex immune response is triggered leading to the formation of multicellular structures termed granulomas. It is believed that the collection of host granulomas either contain bacteria resulting in a latent infection or are unable to do so, leading to active disease. Thus, understanding granuloma formation and function is essential for improving both diagnosis and treatment of tuberculosis. Granuloma formation is a complex spatio–temporal system involving interactions of bacteria, specific immune cells, including macrophages, CD4+ and CD8+ T cells, as well as immune effectors such as chemokine and cytokines. To study this complex dynamical system we have developed an agent-based model of granuloma formation in the lung. This model combines continuous representations of chemokines with discrete agent representations of macrophages and T cells in a cellular automata-like environment. Our results indicate that key host elements involved in granuloma formation are chemokine diffusion, prevention of macrophage overcrowding within the granuloma, arrival time, location and number of T cells within the granuloma, and an overall host ability to activate macrophages. Interestingly, a key bacterial factor is its intracellular growth rate, whereby slow growth actually facilitates survival.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Granuloma formation; Tuberculosis; Agent based model; Mycobacterium tuberculosis

1. Introduction

Tuberculosis (TB) is the world’s leading cause of death due to infectious disease. There are approximately 8 million new cases of the disease annually, resulting in an estimated 2–3 million deaths per year. Even more remarkable, it is estimated that one-third of the world population is infected with Mycobacterium tuberculosis (Mtb), the causative agent of the disease (World Health Organization, 2001).

This large discrepancy between the number of infected individuals (on the order of billions) and the numbers of annual cases resulting in death (on the order of millions) points to an important fact about tuberculosis. Most individuals infected with M. tuberculosis do not progress to active disease. It is believed that only 5–10% of infected individuals develop active disease within 2 years of initial infection (Comstock, 1982; Styblo, 1980). The vast majority are able to contain infection but not clear it, achieving latent tuberculosis through mounting a successful adaptive immune response. Although most individuals are able to maintain latency, they are at risk of developing active TB by reactivation, which occurs at a rate of 5–10% during their lifetime. It is thought that reactivation occurs when the immune system is compromised in some way, such
as due to co-infection with HIV, abuse of alcohol or drugs, or simply waning immunity due to aging. Exogenous reinfection may also occur (Singer and Kirschner, 2004).

The adaptive immune response to *M. tuberculosis* results in the formation of characteristic multicellular structures within lung tissue of infected individuals called granulomas. The formation and maintenance of these granulomas likely plays a central role in the pathogenesis of the disease. It is conjectured that small, solid granulomas contain infection and do not induce significant pathology, whereas large, necrotic granulomas may lead to bacterial dissemination and greater pathology (Saunders and Cooper, 2000). Thus, an understanding of granuloma formation and function is essential to understanding host–pathogen interactions during infection with *M. tuberculosis*, and ultimately toward treatment and prevention.

The adaptive immune response, however, is a complex process involving spatial and temporal organization and interactions of numerous elements: bacteria, chemokines, cytokines, adhesion molecules, and immune effector cells. Particularly in humans, few data exist characterizing the process of granuloma formation and function, and only recently have non-human primate models been developed to begin to study this system in vivo (Capuano et al., 2003). The complexity of the adaptive immune response to *M. tuberculosis*, which we describe in detail in Section 2, indicates that mathematical and computational models may be a key means to further understanding this system (Perelson, 2002). Towards this goal, we have developed an agent-based model of the adaptive, spatio–temporal immune response to *M. tuberculosis*.

Wigginton and Kirschner (2001) did initial work in this direction by developing a model to examine temporal dynamics of the host adaptive immune response to *M. tuberculosis* infection. Their model consisted of a system of nonlinear ordinary differential equations that sought to capture key interactions between various populations of bacteria, macrophages, T cells and cytokines. Marino and Kirschner (2004) and Marino et al. (2004) extended this work to a two-component ODE model to study trafficking of dendritic cells and T cells between the lung and lymph node. Two other papers from our group introduced models for examining spatial aspects of the adaptive immune response to *M. tuberculosis* infection within the lung and specifically the process of granuloma formation. Gammack et al. (2003) developed a partial differential equations model of the innate immune response to Mtb infection and the early stages of granuloma formation. Ganguli et al. (submitted) used a metapopulation framework, in which ordinary differential equations represented spatially distinct cellular subpopulations within a discretized spatial domain.

Differential equations have been the most widely applied formalism for mathematical and computational modeling of biological systems. Another formalism that has more recently been developed and applied to study complex systems are agent-based models (ABMs). ABMs grew out of research in cellular automata and artificial life. The defining feature of agent-based models is that elements of the system are represented primarily as discrete agents with several unique attributes. Individual agents reside in an explicitly represented spatial environment. They interact with one another and with the environment according to sets of rules. Typically these rules are defined such that all interactions occur locally (with respect to the environment). Moreover, the formulation of the rules are often stochastic in nature. This is in contrast to the differential equations framework in which populations are represented by continuous variables, are assumed to be roughly homogeneous and interact deterministically.

In an agent-based model, the local, possibly stochastic, individual-level interactions give rise to global, system-wide dynamics and patterns. Thus, ABMs are particularly useful for studying complex systems in which individual heterogeneity and spatial interactions are important. For those reasons, we believe the agent-based approach is appropriate for modeling the immune response to *M. tuberculosis* and the process of granuloma formation. More generally, we believe that agent-based modeling may be appropriate for modeling many aspects of the immune system.

Agent-based models are a natural extension of cellular automata. Cellular automata have been applied to modeling a wide variety of biological systems (see Ermentrout and Edelstein-Keshet, 1993 for an excellent overview), including some aspects of the immune system (Celada and Seiden, 1992; Seiden and Celada, 1992), tumor growth (Alarcon et al., 2001; Kansal et al., 2000a,b; Qi et al., 1993; Smolle, 1998; Smolle and Stettner, 1993), and angiogenesis (Anderson and Chaplain, 1998; Markus et al., 1999). Agent-based modeling is a natural extension of cellular automata modeling, in which more complex notions can be easily formulated and implemented via object-oriented programming. To date, however, ABMs has been applied most prominently within the social sciences, going back to the early work of Schelling (Schelling, 1969, 1978) and extending to the more recent work of Axelrod (1997) and Epstein and Axtell (1996). Within biology, the approach has been applied within the fields of ecology (where it is often called individual-based modeling (Grimm, 1999)), and bacterial colony growth and biofilms (Kreft et al., 19, 2001). Mansury et al. (2002) and Mansury and Deisboeck (2003) develop and explore an agent-based model of tumor growth. Most relevant to our work here are perhaps the following papers that use ABMs to study aspects of the immune

The goal of this work is to identify control mechanisms that are important for proper granuloma formation during infection with Mtb in humans. In this work this is measured by the ability to control bacterial levels. We formulate and implement an ABM based on a minimal set of rules that qualitatively reproduces granuloma formation corresponding to distinct pathological and bacterial observed outcomes. These rules are based on known or hypothesized mechanisms involved in the immune response to Mtb infection. We describe briefly the immune response to Mtb, as well give details of the agent-based model, its rules, and the adaptation of sensitivity and uncertainty analyses for use in this setting. We describe our result in two main settings of containment and dissemination.

2. Adaptive immune response to M. tuberculosis

In this section, we briefly outline the current knowledge of M. tuberculosis (MtB) infection and immunity. We focus on adaptive immunity, specifically on interactions between bacteria, macrophages, and T cells. These elements and their interactions form the basis of our agent-based model, which we present in the following section. We discuss what is known and/or conjectured about how these interactions contribute to granuloma formation, and how granulomas may contribute to latency.

M. tuberculosis is a rod bacteria, approximately 2–5 μm long and 0.2–0.3 μm thick. It is non-motile gram-positive (Grosset et al., 2000) and is aerosol-transmitted. Exposed individuals typically inhale droplets containing bacteria. Droplets may reach lung alveolae where they encounter resident macrophages. Macrophages phagocytose bacteria that they may kill, resulting in clearance of initial infection via innate immunity (Dannenberg and Rook, 1994). In their “resting” (i.e., inactivated) state, however, these resident macrophages are less efficient at killing bacteria than macrophages that have been activated for the task. Moreover, M. tuberculosis has evolved mechanisms for evading killing by its host macrophages (McDonough et al., 1993). Thus, it is much more likely that resting resident macrophages are unable to clear the bacteria they phagocytose, in which case they become “infected” macrophages.

Mycobacteria replicate well within infected macrophages. M. tuberculosis prefer the intracellular environment, and replicate at a faster rate than they do extracellularly (Zhang et al., 1998). Infected macrophages may burst due to an excessive number of intracellular bacteria. This releases formerly intracellular bacteria into the extracellular environment, inducing a new round of macrophage infections, contributing to infection spread.

Although individuals will most likely not clear infection in such cases, the host immune system can contain infection by mounting an adequate adaptive immune response. Infected macrophages release cytokines and chemokines that attract dendritic cells and additional macrophages (Orme and Cooper, 1999; Sadek et al., 1998). Other cells such as PMNs and mast cells also secrete chemokines, but for this study we only consider macrophages known to participate in the granuloma response (Seiler et al., 2003). Dendritic cells engulf bacteria and then migrate to the nearest draining lymph node where they present antigen to naive T cells. This induces differentiation and activation of T cells that subsequently migrate back to the lung and to specific sites of infection, likely guided by adhesion molecules and chemokine signals produced by infected macrophages (Saunders and Cooper, 2000; Tufariello et al., 2003).

Both CD4+ and CD8+ T cells participate in the immune response. Activated T cells of both types contribute to control of infection by activating macrophages (via production of cytokines such as IFN-γ) and by lysing chronically infected macrophages (via apoptosis and cytotoxic T cell action) (Flynn and Chan, 2001; Flynn and Ernst, 2000). Activated macrophages are highly efficient at phagocytosing and eliminating extracellular bacteria, while lysis of chronically infected macrophages serves to release M. tuberculosis, allowing their uptake by activated macrophages. This migration of macrophages, T cells and other immune cells to the site of infection and their subsequent interactions result in the formation of granulomas. These structures are spherical accumulations with a characteristic spatial pattern, consisting of the various cell types discussed above (bacteria, macrophages, T cells), as well as other types of immune cells (such as natural killer cells, PMNs and B cells) (Dannenberg and Rook, 1994; Seiler et al., 2003). Fig. 1 shows two histological sections of granulomas from a non-human primate model of Mtb infection. Panel A shows an outcome of a solid granuloma containing infection, while in contrast panel B shows a disseminated (caseous) granuloma where bacteria and necrotic tissue spreads. The diameter of both granulomas shown in Panels A and B is 2 mm.

Granulomas are thought to be the means by which the adaptive immune response achieves and maintains latency in tuberculosis. The structure of a functioning granuloma physically contains infection: the accumulation of immune cells around the local site of infection likely prevents its dissemination. Moreover, it has also been conjectured that the spatial structure of granulomas provide a framework for effective localized
interaction of the elements of adaptive immunity (Saunders and Cooper, 2000).

In the following section we present an agent-based model of adaptive immunity to M. tuberculosis infection. Our model is motivated by the biology discussed above and focuses on the process of granuloma formation. The environment of the model represents a two-dimensional cross-section of alveolar lung tissue where infection and granuloma formation occur. The elements of the model represent key factors involved in the processes of infection, adaptive immunity, and granuloma formation: bacteria, chemokines, macrophages, and T cells. The rules of the model represent the biological interactions described above: infection of macrophages following phagocytosis of bacteria; release of chemokines by infected macrophages; recruitment and migration of macrophages and T cells in response to chemokine signals; intracellular bacterial replication within infected macrophages, possibly leading to bursting of the host macrophage; activation and/or lysis of infected macrophages by T cells; and phagocytosis and clearance of extracellular bacteria by activated macrophages.

3. Model description and methods

The model has the following components:

1. The environment where entities reside, representing a section of alveolar tissue.
2. The entities of the model, consisting of discrete macrophage and T cell agents, and continuous chemokine and bacteria variables.
3. The rules that govern the dynamics of the system, representing the biological interactions of the entities.
4. The time-scales on which the rules are executed.

We elaborate on each of these components below.

3.1. The environment

As described in the previous section, humans are infected by M. tuberculosis after inhaling bacteria into the alveolar space of the lung. The majority of infections remain isolated at focal sites of infection in the lung (pulmonary tuberculosis) where granuloma formation initially occurs, and do not spread to other organs (Tufariello et al., 2003). Hence, the spatial environment of our model represents a portion of alveolar lung tissue. Specifically, the environment consists of a two-dimensional $N \times N$ lattice of micro-compartments. In order to avoid boundary effects, opposite edges of the lattice are identified so that the lattice is actually a torus. Model results are not constrained by this assumption, since the lattice is made large enough to contain the relevant phenomena entirely within its interior (see below).

The size of each micro-compartment is defined to contain approximately the largest cell type in our model: the alveolar macrophage. The diameter of human alveolar macrophages has been measured to be approximately 20 μm (Krombach et al., 1997). Hence, we take each micro-compartment in the lattice to represent a square with dimensions $20 \mu m \times 20 \mu m$. Each micro-compartment can simultaneously hold at most one macrophage, one T cell, chemokine and bacteria. This is reasonable since extracellular bacteria and chemokine molecules are orders of magnitude smaller than macrophages.

Bacterial dissemination and rapid progression to disease have been associated with larger necrotic granulomas of diameter 2 mm or more. This has been observed in both humans (Dannenberg and Rook, 1994) and more recently in non-human primates (Capuano et al., 2003)—(see for example, Fig. 1). On the other hand, containment of disease has been associated with smaller solid granulomas of diameter 2 mm and less, as observed in non-human primates infected with M. tuberculosis (Capuano et al., 2003). These animals showed no clinical signs of disease and had presumably contained infection.

Since we intend to simulate the formation of a single granuloma within the spatial domain of the model, we define the lattice to be large enough to contain a larger necrotic granuloma of the type associated with rapid progression to active disease. Thus, a square spatial domain of dimensions $2 mm \times 2 mm$ suffices for
3.2. Time

Time is discrete in this model. Thus, a simulation consists of finite time-steps. Each time-step corresponds to approximately 6 s of "real time". This was determined by considering the fastest process represented in the model, which is the diffusion of chemokine, calculated as described in Section 3.3.1.

The state of the system at time-step \(t + 1 \) is computed by applying a series of rules to the system at time-step \(t \). However, most rules are executed at slower timescales than chemokine diffusion. These processes are the movement and interactions of T cells and macrophages, and are described below in Sections 3.3.3 and 3.3.4.

Rules for macrophages and T cells are updated every 10 min of real time (i.e., every 100 time-steps). This value was chosen by considering what we take to be the next fastest process, movement of T cells.

To determine how often T cell movement should be updated, we used the results of (Miller et al., 2003). By using laser microscopy for high-resolution imaging of T cells within the lymph nodes of mice, it was estimated that T cells move with an average velocity of \(11 \mu m/min, \) i.e., approximately \(10^{-5} m/min \). It is to be expected that their velocity will be considerably slower in lung tissue. For the purposes of this paper we have assumed T cells move approximately a full order of magnitude slower. Hence, it takes 10 min for a T cell to move from a given micro-compartment to a neighboring micro-compartment in the model \((T_{sp}) \).

Of course, actual velocities of T cells in lung tissue likely vary over a wide range depending on states of individual T cells and local environments in which they are moving. Similarly, the frequency with which all other rules are executed could vary depending on the state of the entities involved. Future refinements of this model could include more detailed and heterogeneous treatments of time such as these.

The rate of macrophage movement was calculated from the data of Webb et al. (1996), based on cloned macrophage mouse cell line BAC1.25F. They found macrophage velocities in the range of 0.12–0.5 \(\mu m/min \) using a Dunn chemotaxis chamber. We set the speeds to 1, and 0.0007 \(\mu m/min \) for resting \((M_{rest}) \), and infected macrophages \((M_{inf}) \) respectively. For activated macrophages \((M_{act}) \) we use a range of values between 0.0125 and 1 \(\mu m/min \). Simulations are performed for 200 days and up to 500 days. The typical time frame for development of a granuloma is anywhere from 14 to 100 days in non-human primates (Capuano et al., 2003 and J. Flynn, personal communication). We simulate this time frame for formation of a granuloma and also allow for an extended simulation to track long-term dynamics occurring in an infection that spans the lifetime of the host. We discuss results of both simulation time-frames below.

3.3. Entities of the system and their rules

There are four types of entities in the model: a generic chemokine, extracellular bacteria, T cells, and macrophages. Chemokine and extracellular bacteria are

Figure 2. The two-dimensional alveolar tissue environment is represented by a \(N \times N \) lattice of micro-compartment measuring 2 mm × 2 mm. Certain micro-compartment are designated as blood vessel source \((S) \). Shown here are the initial conditions, where the initial load of (extracellular) bacteria \((BE) \) is placed at the center, and a background level of resting macrophages \((M_R) \) is located at random locations.

Table 3.1: Initial Conditions of the Model

- \(M_R \) represents locations where blood vessels enter the lung tissue through which new macrophages and T cells arrive at the infection site (see Section 3.3).
- \(M_R \) consists of finite time-steps.
- \(T_{sp} \) is located at random.
- \(BE \) are the initial conditions, where the initial load of extracellular bacteria is introduced into a small number of micro-compartments near the center of the lattice, and resting macrophages are randomly distributed across the lattice. Macrophages and extracellular bacteria are among the entities of the model discussed below in Section 3.3. The initial conditions are discussed in more detail in Section 4.1.

2To make the total length of each side of the lattice 2 mm = \(2 \times 10^{-7} \) m (where each micro-compartment has sides of length 20 \(\mu m = 2 \times 10^{-5} \)) requires \(2 \times 10^{-5} m/(2 \times 10^{-5} m) = 100 \) micro-compartments/side.
treated as continuous variables that take on real values in each micro-compartment of the lattice at each time-step, whereas macrophages and T cells are represented as discrete agents. Fig. 3 depicts these entities on the lattice.

3.3.1. Chemokine

Various molecules released by macrophages and other cells act as chemoattractants, attracting other cells to the site of infection. Chemokines perform different roles at different times during granuloma development (Lukacs and Chensue, 1996). In this work, we represent chemokines as attractors for macrophages and T cells. For this initial implementation we have chosen to represent the multiple chemokines involved in the immune response to *M. tuberculosis* infection by a composite chemokine value $C_{ij}(t)$, and extracellular bacteria level, $B_{E,i}(t)$.

![Diagram](image)

Fig. 3. A typical state of the system during infection, consisting of an $N \times N$ lattice of micro-compartment populated with discrete macrophage and T cell agents. Micro-compartment (i,j), for example, contains one macrophage agent, chemokine value $C_{ij}(t)$, and extracellular bacteria level, $B_{E,i}(t)$.

ability we abbreviate the subscripts of the four neighbors by N, E, S, W, and we suppress the ‘‘(t)’’ notation on the chemokine variables on the right-hand side:

$$C_{ij}(t+1) = C_{ij} \cdot (1 - \lambda) + \lambda \ast (C_N + C_E + C_S + C_W)/4.$$

Here λ is a diffusion constant. Intuitively, λ measures the proportion of C_{ij} that diffuses out of micro-compartment (i,j) during each time-step. We calculate a value for λ from $\lambda = 4\delta_t/\Delta x$, (see Ermentrout and Edelstein-Keshet, 1993), where δ_t is the diffusion constant for chemokine molecules in the diffusion PDE, Δx is the scale of the spatial discretization, and Δt is the scale of the time discretization. The values of the latter two in our model are $\Delta t = 0.1$ min and $\Delta x = 10^{-5}$ m, respectively. Values of 10^{-6} to 10^{-7} have been reported as diffusion constants for chemokine molecules (Francis and Palsson, 1997). Using a value of $\delta_t = 10^{-7}$, we obtain a value of $\lambda = 0.6$. In our analyses, for the diffusion constant λ, we use a range of values between 0.5 and 0.8.

We include a decay process in the model for chemokine. At each time-step, a certain proportion δ decays:

$$C_{ij}(t+1) = C_{ij} - \delta \ast C_{ij}.$$

Values of 2–4 h have been reported for the half-life for the chemokine IL-8, which is centrally involved in the immune response to *M. tuberculosis* (Walz et al., 1996). Using a half-life of 2 h, we obtain a value of $\delta_0 = 0.000577$. In our analyses, for the decay constant δ, we use a range of values between 0.000288 and 0.0011.

3.3.2. Extracellular bacteria

The minimal infectious dose for *M. tuberculosis* is on the order of 10 bacteria (Capuano et al., 2003). To simulate initial infection in which a droplet containing bacteria arrives in the lung alveoli, our initial conditions include a small number of bacteria divided over a few micro-compartment near the center of the lattice, as indicated in Fig. 2. We choose the center of the lattice for easy visualization. Initial conditions are discussed in detail in Section 4.1.

Extracellular bacteria (B_E) replicate rather slowly; reports of *M. tuberculosis* in lung tissue of mice have estimated an extracellular doubling time of 62 h (North and Izzo, 1993). For simplicity, we use a doubling time of 75 h. This yields a discretized growth rate of $z_{BE} = 0.00015/\text{min}$ in the following rule for extracellular bacterial replication. We also assume an upper bound of $K_{BE} = 200$ bacteria (10 times the number of bacteria that an infected macrophage can contain before bursting) within each micro-compartment, and that extracellular bacterial replication follows logistic growth with
respect to this upper bound:

\[
B_E(t + 1) = B_E(t) + B_{BE} \star B_E(t) \star (1 - (B_E(t)/(K_{BE} \star 1.1))).
\]

We consider extracellular bacteria diffusion to be a slow process that we do not presently include, however the model can easily incorporate this process.

3.3.3. T cells

T cells are represented as discrete agents that can enter and reside on the lattice. Up to one T cell can share a micro-compartment with a macrophage. T cells have only age and position attributes. At day 10 of infection (\(T_{delay}\)), T cells enter the lattice with a probability \(T_{rec}\), via source micro-compartments in response to chemokine level at those locations (we explore this delay in greater detail below). This captures recruitment of immune cells to the site of infection in response to chemotactic signals. New T cells are assigned a lifespan \(T_{ls}\) randomly selected between 0 and 3 days (Sprent, 1993). The age of each T cell is incremented at each time-step. A T cell is removed from the lattice when its age reaches its lifespan, representing natural death.

Movement of T cells is affected by the local chemokine gradient on the lattice, and T cells can only recognize chemokine values of \(C_{i,j}>1\). Movement of each T cell is a biased random walk with probabilities calculated as a function of the chemokine concentrations of the eight neighboring micro-compartments around the T cell. If the chosen target location is empty, then the T cell moves to the target micro-compartment. If the chosen target location is occupied by another T cell, then the T cell remains stationary. If the target location does not contain a T cell but is occupied by a macrophage, then the T cell moves to the target micro-compartment with a given small probability (\(T_{move}\)). In this way we capture any crowding effects imposed by macrophages on T-cell movement.

Activated T cells are immune effector cells that perform two important functions: they activate infected macrophages and they kill chronically infected macrophages. In our model, we combine the effects of CD4+ T cell and CD8+ T cells into a composite T cell population. These distinct classes of T cells perform different cytotoxic functions, leading to death of infected macrophages. These functions are implemented in the model according to rules described in the next section.

3.3.4. Macrophages

Macrophages are represented as discrete agents that reside on the lattice. At most one macrophage can occupy a given micro-compartment. Macrophages have the following attributes:

- Position.
- Age.

- Number of intracellular bacteria (\(B_I\)), a non-negative integer such that \(0 \leq B_I < K_{BI}\), where \(K_{BI}\) is a parameter representing the average intracellular bacterial carrying capacity of macrophages.3
- State, defined from one of the following 4 states: resting (\(M_R\)), infected (\(M_I\)), chronically infected (\(M_C\)), or activated (\(M_A\)) (see Fig. 4).

Like T cells, new (resting) macrophages enter the lattice with a probability \(M_{rec}\), via the source micro-compartments in response to the chemokine level at those locations (represented by “Recruitment” in Fig. 4). Specifically, if micro-compartment \((i,j)\) is a source and the amount of chemokine \(C_{i,j}\) exceeds a certain threshold, then a new macrophage is placed in micro-compartment \((i,j)\) (provided that \((i,j)\) is not already occupied by a macrophage). New macrophages are randomly assigned an age between 0 and 100 days (\(M_{hs}\)) (Furth et al., 1973). Like T cells, the age of each macrophage is incremented until it reaches its lifespan, at which time it is removed from the environment.

Macrophages move chemotactically similar to T cells, as described above in Section 3.3.3, i.e., according to random walks biased towards neighboring

3For simplicity we have chosen to use the same carrying capacity for all macrophages. This is another aspect of the model that could be used to introduce heterogeneity into the macrophage population in future extensions of this model.
micro-compartment s with higher concentration of chemo-
kin. However, we assume that macrophages move at
slower speeds than T cells.

The rest of this section describes the rules executed
for each macrophage. Additionally, the algorithmic
definition of some rules are given in the appendix.

Briefly, the rules represent the following processes:
Resting macrophages take up bacteria and either kill
them or become infected. Infected macrophages become
activated only if they contain a small number \(N_c\) of
intracellular bacteria. After the number of intracellular
bacteria grows above \(N_c\), infected macrophages are
classified as chronically infected. Chronically infected
macrophages are no longer able to take up and kill
extracellular bacteria, nor can they be activated.

Chronically infected macrophages may burst due to an
excessive intracellular bacterial load, or they may be
killed by T cells.

Resting macrophage rules: To reflect resting macro-
phage dynamics described above, the following rule is
executed for each macrophage in the resting state \(M_R\).

We assume that if there are a small number of
extracellular bacteria present in the same micro-com-
partment as a resting macrophage (namely, less than
\(N_{RK}\)—for which we use a value of 2), then the
macrophage phagocytoses and kills those bacteria and
remains in the resting state.

On the other hand, if there are more than \(N_{RK}\)
bacteria present, then there is some small probability \(p_k\)
that the macrophage still succeeds in killing \(N_{RK}\)
intracellular bacteria; but it is more likely that it cannot,
in which case the macrophage becomes infected \(M_I\)
with an intracellular level of \(N_{RK}\). The value of \(p_k\) is set
to 5%, since for \(M.\ tuberculosis\) the chances that a
resting macrophage can actually kill bacteria is quite low
(Zahrt, 2003). This process is shown in Fig. 5, and the
algorithm is shown in Appendix A.1.

Infected macrophage rules: The following rules are
executed for each infected macrophage \(M_I\) (see the
algorithm in Appendix A.2):

- Chemokine secretion: At every time-step, each in-
fected macrophage releases a given amount \(c_I = 5000\)
units of chemokine into its micro-compartment. The
model is invariant to changes in \(c_I\), for \(c_I > 1\).

\[
C_{ij}(t+1) = C_{ij}(t) + c_I.
\]

- Intracellular bacterial replication: Intracellular bac-
teria replicate within infected macrophages. The
discrete intracellular growth rate \(z_{BI}\) is 0.00048/min,
based on an intracellular doubling time of 24 h for \(M.\ tuberculosis\) (Paul et al., 1996). For intracellular
bacterial replication \(z_{BI}\), we use a range of values
between 0.0002 and 0.0006/min:

\[
B_I(t+1) = B_I(t) + z_{BI} \ast B_I(t).
\]

- Chronic infection: The intracellular bacterial load of
an infected macrophage increases over time due to the
process of bacterial replication (described above).
If the intracellular bacterial load exceeds a threshold
\(N_c\), the macrophage becomes chronically infected (see
the arrow from \(M_I\) to \(M_C\) in Fig. 4).

- T cell activation: Macrophage activation can occur if
there are T cells in or around the micro-compartment
where an infected macrophage resides. Cytokines such
as IFN-\(\gamma\) and TNF are produced by T cells and are
involved in the process of macrophage activation.
Instead of including cytokines in our initial formul-
ation, we use the T cell population (that secretes these
effectors) as a surrogate. This is reasonable as levels of
cytokines are likely proportional to the numbers of
cells that secrete them.

Macrophage activation is a function of the number
of T cells in the immediate (Moore) neighborhood of
an infected macrophage (with a maximum number
\(N_{bac}\)), and the probability that T cells will activate
a macrophage \(T_{actm}\). If the macrophage is acti-
vated, then it eliminates its intracellular bacterial
load, and it will have a lifespan \(M_{al}\) of 10 days. See
Fig. 6.

Chronically infected macrophage rules: The following
rules are executed for each chronically infected macro-
phage (see the algorithm in Appendix A.3):

- Chemokine secretion: Like infected macrophages, a
chronically infected macrophage secretes chemokine
into its micro-compartment.

- Intracellular bacterial replication: We assume that
within chronically infected macrophages, intracellular
bacteria replicate logistically with respect to the
bacterial carrying capacity of macrophages, K_{BI}.

$$B_{I}(t + 1) = B_{I}(t) + z_{BI} * B_{I}(t) * (1 - (B_{I}(t)/(K_{BI} + 30))).$$

We use a value of $K_{BI} = 20$ based on data from Paul et al. (1996) and Zhang et al. (1998).

- **Bursting**: If the intracellular bacterial load of a chronically infected macrophage exceeds the bacterial carrying capacity of macrophages (K_{BI}), the macrophage bursts and its intracellular bacteria are released. We assume that bursting spreads bacteria in the current micro-compartment as well as to neighboring micro-compartments. See Fig. 7 for an illustration.

- **T cell killing**: If there is a T cell in the same micro-compartment as a chronically infected macrophage, the T cell can kill the macrophage with a probability p_{Tk}. The cytotoxic pathway via granulysin kills most of the intracellular bacteria within the cytosol of the macrophage (Lazarevic and Flynn, 2002). The other likely pathway, apoptosis, induces cell death releasing all of the intracellular bacterial pool into the environment (making them extracellular) (Bodnar et al., 2001). Since we include only generalized T cell killing processes in the model, we average the results of these two mechanisms and assume 50% of the bacteria load are killed. As with bursting, we assume that bacteria are spread to neighboring compartments by this process (see Fig. 8).

Activated macrophage rules: The following rules are executed for each activated macrophage:

- **Chemokine secretion**: Like infected and chronically infected macrophages, each activated macrophage secretes chemokine into its micro-compartment.

- **Phagocytosis and killing of extracellular bacteria**: Activated macrophages are highly efficient at phagocytosing and eliminating extracellular bacteria. We assume a certain number N_{phag} of extracellular bacteria are eliminated from a micro-compartment where an activated macrophage resides:

$$B_{EI}(t + 1) = B_{EI}(t) - N_{phag} \geq 0.$$
3.4. Sensitivity and uncertainty analyses

Although we estimated biologically realistic values for a number of the parameters in the model, a number of other parameters cannot be accurately estimated from the biological literature; for instance, the probabilistic parameters used in the stochastic rules (for recruitment of T cells and macrophages, for activation of macrophages, etc.). Thus, there is a high-dimensional parameter space to explore. Uncertainty and sensitivity analysis using LHS/PRCC methods have been used in the analysis of numerous differential equation models, such as models of disease transmission (Blower and Dowlatabadi, 1994) and AIDS (Blower et al., 2002), and complex systems (Helton and Davis, 2003). However, we believe this is the first application of these methods in the context of agent-based models.

We explored the parameter space by performing an uncertainty analysis using Latin hypercube sampling (LHS) method, which is an extension of Latin square sampling. Sensitivity analysis was performed by evaluating partial rank correlation coefficients (PRCCs) (Blower and Dowlatabadi, 1994; Helton et al., 2000) for various input parameters against given outcome variables (discussed below).

We performed uncertainty and sensitivity analyses as described above for 12 parameters using LHS with 1000 samples (i.e. more than 80 samples for each parameter). Parameter ranges are given in Table 2, and a uniform distribution function was used for all parameters, as no weight for any value within the identified ranges is known. To explore the random effect of a given parameter set on output, we performed 10 simulations for both the containment and dissemination parameter sets (see Table 1 columns A and B, respectively). The results shown in Fig. 9 show little variability from stochastic parameters on the outcome within each of the two infection outcome scenarios (i.e. containment or dissemination). This result combined with the high sample size for LHS $N = 1000$ lends confidence that each LHS simulation is among the typical output for the distinct outcomes even given the stochastic nature within those ranges.

To both qualitatively and quantitatively analyse the effects of varying parameters, we used two outcome

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter description</th>
<th>A</th>
<th>B</th>
<th>Units</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>Chemokine diffusion coefficient</td>
<td>0.64</td>
<td>0.65</td>
<td>/0.1 min</td>
<td>d</td>
</tr>
<tr>
<td>δ</td>
<td>Chemokine degradation coefficient</td>
<td>0.001</td>
<td>0.0004</td>
<td>/0.1 min</td>
<td>d</td>
</tr>
<tr>
<td>p_R</td>
<td>Prob. of bacteria being killed within M_R</td>
<td>8.51</td>
<td>2.36</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>p_{Tk}</td>
<td>Prob. T cell kills a macrophage</td>
<td>6.31</td>
<td>3.61</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>p_{MT}</td>
<td>% of B_T being destroyed by killing</td>
<td>50</td>
<td>50</td>
<td>%</td>
<td>d</td>
</tr>
<tr>
<td>K_{MT}</td>
<td>Carrying capacity (B_T) of micro-compartment</td>
<td>200</td>
<td>200</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>γ_B</td>
<td>Intracellular bacteria growth rate</td>
<td>0.00021</td>
<td>0.00049</td>
<td>/min</td>
<td>d</td>
</tr>
<tr>
<td>γ_E</td>
<td>Extracellular bacteria growth rate</td>
<td>0.00015</td>
<td>0.00015</td>
<td>/min</td>
<td>d</td>
</tr>
<tr>
<td>N_e</td>
<td>No. of intracellular bacteria defining transition to chronically infected state</td>
<td>10</td>
<td>10</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>K_{BR}</td>
<td>No. of bacteria that makes a macrophage burst</td>
<td>20</td>
<td>20</td>
<td>Scalar</td>
<td>d</td>
</tr>
<tr>
<td>N_{act}</td>
<td>No. of T cells needed to activate a macrophage</td>
<td>4</td>
<td>5</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>T_{recr}</td>
<td>Prob. of T cell recruitment</td>
<td>32</td>
<td>12.31</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>T_{move}</td>
<td>Prob. of T cell movement, see Section 3.3.3</td>
<td>4.97</td>
<td>5.26</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>T_{actm}</td>
<td>Prob. a T cell will activate a macrophage</td>
<td>6</td>
<td>12.2</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>T_r</td>
<td>T cell lifespan</td>
<td>3</td>
<td>3</td>
<td>days</td>
<td>d</td>
</tr>
<tr>
<td>T_{delay}</td>
<td>T cell delay</td>
<td>10</td>
<td>10</td>
<td>days</td>
<td>d</td>
</tr>
<tr>
<td>M_{recr}</td>
<td>Prob. of macrophage recruitment</td>
<td>2.11</td>
<td>6.82</td>
<td>%</td>
<td>e</td>
</tr>
<tr>
<td>M_{Br}</td>
<td>Resting macrophage lifespan</td>
<td>100</td>
<td>100</td>
<td>days</td>
<td>d</td>
</tr>
<tr>
<td>M_{Br}</td>
<td>Activated macrophage lifespan</td>
<td>10</td>
<td>10</td>
<td>days</td>
<td>e</td>
</tr>
<tr>
<td>N_{neus}</td>
<td>No. of burstings to become necrotic</td>
<td>8</td>
<td>8</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>T_{sp}</td>
<td>T cell speed</td>
<td>10</td>
<td>10</td>
<td>μm/min</td>
<td>d</td>
</tr>
<tr>
<td>M_{sp}</td>
<td>Resting macrophage speed</td>
<td>1</td>
<td>1</td>
<td>μm/min</td>
<td>d</td>
</tr>
<tr>
<td>M_{ap}</td>
<td>Activated macrophage speed</td>
<td>0.025</td>
<td>0.0632</td>
<td>μm/min</td>
<td>e</td>
</tr>
<tr>
<td>M_{ip}</td>
<td>Infected macrophage speed</td>
<td>0.0007</td>
<td>0.0007</td>
<td>μm/min</td>
<td>e</td>
</tr>
<tr>
<td>M_{init}</td>
<td>Initial No. of resting macrophages</td>
<td>105</td>
<td>97</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>N_{BK}</td>
<td>No. of bacteria killed by M_R</td>
<td>2</td>
<td>2</td>
<td>Scalar</td>
<td>e</td>
</tr>
<tr>
<td>N_{phag}</td>
<td>No. of bacteria killed by M_A</td>
<td>10</td>
<td>10</td>
<td>Scalar</td>
<td>e</td>
</tr>
</tbody>
</table>

Values for containment (column A) and dissemination (column B) simulations are given. Parameters d are from references, and e are estimated. See text for more information.
variables to measure the development and spread of infection. One is total extracellular bacteria, which is used as an experimental marker of disease progression and has been used in our previous ODE models (Wigginton and Kirschner, 2001; Ganguli et al., 2004) as a predictor of infection. The second is a spatial measure that approximates the total amount of tissue to which infection has spread: the number of micro-compartments containing either an infected macrophage, a chronically infected macrophage, activated macrophages, and necrosis. We define the latter outcome variable \textit{granuloma size} (as in Gammack et al., 2003). In future work we explore other measures for estimating granuloma size. The correlation between extracellular bacteria and granuloma size is discussed below. For brevity, we report in figures only the first measure.

4. Results

In this section, we describe results that we obtained with the model described above. We define initial conditions used for our simulations, and then outline different infection outcomes that the simulations reproduce. To better understand the dynamics leading to these outcomes, we describe in detail the early dynamics of the system and how this contributes to determining infection outcome. This leads us to examine the effects of certain key parameters. We conclude with the application of the sensitivity and uncertainty analyses that we adopted to explore the effects of variations in parameters on infection outcome.

4.1. Initial conditions

Fig. 2 depicts initial conditions used for all simulations. Some number \(M_{\text{ini}}\) of macrophages are randomly placed on the lattice. Recall that the lattice represents 4 mm\(^2\) of alveolar lung tissue. It has been estimated that in humans there are on the order of \(10^9\)–\(10^{10}\) alveolar macrophages in the lung, and that there is approximately \(10^8\) mm\(^2\) of alveolar surface area (Mercer et al., 1994; Stone et al., 1992). This yields estimates of 10–100 alveolar macrophages per mm\(^2\) of tissue. Thus, we obtain a range of 40–400 for \(M_{\text{ini}}\). These macrophages are all initially in a resting state, since they represent resident alveolar macrophages before infection is introduced.

As mentioned in Section 3.3.2, a small initial infectious dose of extracellular bacteria is divided among a few micro-compartments near the center of the lattice. For the simulations described below, 16 extracellular bacteria were divided among four adjacent micro-compartments closest to the center of the lattice, i.e., \(B_{E49,49}(0) = B_{E95,95}(0) = B_{E50,50}(0) = B_{E50,50}(0) = 4\). There are no T cells and no chemokine on the lattice initially.
4.2. Infection outcomes

We found that by varying parameter values within biologically reasonable ranges using the LHS method, the model reproduces stable outcomes that can be qualitatively classified into three distinct categories corresponding to distinct clinical/pathological outcomes: (1) clearance, (2) small, slow growing solid granulomas leading to containment (including granulomas containing necrotic areas either with or without bacteria), and (3) large, necrotic granulomas leading to disseminated infection.

Clearance is characterized by elimination of extracellular bacteria, absence of infected and chronically infected macrophages, and little or no necrotic tissue. Containment is characterized by the survival of extracellular bacteria in regions surrounded by a small amount of necrotic tissue, and/or slow bacterial growth within infected macrophages; however the immune response in some cases eventually eliminates infected and chronically infected macrophages. In dissemination, on the other hand, there is a large and increasing amount of necrosis, and extracellular bacteria can spread across the environment.

Fig. 9 shows typical outcomes for containment (solid lines) and dissemination (dashed lines) for the outcome variable extracellular bacteria load, each repeated 10 times with the same initial parameter values (from Table 1). Observe that the plots within each case (i.e. containment or dissemination) are clustered.

Figs. 10 and 11 show simulations representing containment and dissemination simulations, respectively, via a series of snapshots of the spatial environment. Fig. 10 shows an example of a containment simulation at days 12, 25, 50, 100, and 200 obtained with parameters from Table 1 column A; while Fig. 11 shows an example of a dissemination simulation at those same time points, with parameters from Table 1 column B. In the following section we analyse the observed dynamics in greater detail.

4.3. Early stages of infection

To better understand and isolate what drives the system towards one of the two infection outcomes discussed above, we compare the dynamics observed in Figs. 10 and 11 showing, respectively, containment and dissemination scenarios. Beginning from the initial state described above, we observe that the system typically evolves as follows.

Resident resting macrophages randomly change position, since each macrophage performs a random walk in the absence of chemokine. This is a corollary of our chemotactic movement rule. When a resting macrophage enters a micro-compartment containing extracellular bacteria, it likely becomes infected. This leads to a small number of infected macrophages, clustered near the center of the lattice. These infected macrophages release large amounts of chemokine (not shown). Chemokine diffusion creates a chemokine gradient on the lattice. This chemokine gradient directs movement of the remaining resident resting macrophages already on the lattice, since their random walks are biased towards higher chemokine levels. Also, recruitment of additional resting macrophages is initiated when sufficient levels of chemokine diffuse to the source microcompartments. These resting macrophages also migrate toward the source of chemokine.

Meanwhile, intracellular bacteria replicate within infected macrophages, which become chronically infected. These dynamics result in an initial “granuloma structure” consisting of a small number of chronically infected macrophages surrounded by resting macrophages. This can be seen in both snapshots at day 12 in Figs. 10A and 11A. In non-human primate models,
Granuloma structures are observed as early as two weeks after infection (J. Flynn, personal communication). As intracellular bacteria continue to replicate within chronically infected macrophages, macrophages eventually burst when their carrying capacity is reached. This spreads extracellular bacteria to neighboring microcompartments where extracellular bacteria is phagocytosed by neighboring resting macrophages. This results in a new round of infected macrophages.

In both settings, after a delay of 10 days, T cells enter the lattice due to chemokine-driven recruitment. We enforce such a delay to account for the time it takes for antigen-presenting cells (such as dendritic cells) to migrate to the lymph node and prime T cells, and for T cells to then migrate from the lymph node to the site of infection. The length of this delay is important since it affects the spatio–temporal distribution of T cells with respect to the growing granuloma structure of infected and resting macrophages, and below we study the effects of variations to the delay length. The spatio–temporal distribution of T cells is significant, and we also discuss this below.

Chemotactic movement of T cells means that, like macrophages, they tend to be recruited and move toward the edges of granuloma. Moreover, according to movement rule of T cells, there is a possibility for T cells to move into micro-compartments where macrophages reside.

Hence, some T cells penetrate the cluster of resting macrophages surrounding chronically infected macrophages. This can be seen in both Figs. 10B and 11B.

The interplay between T cell migration and bursting of chronically infected macrophages leads to a key dynamic influencing spread or containment of infection: What happens when one chronically infected macrophage bursts and causes a new round of infections in neighboring resting macrophages? There are two possibilities. If T cells have migrated to the immediate neighborhood of a chronically infected macrophage when bursting occurs, these T cells may activate the newly infected macrophage(s), contributing to control of infection. On the other hand, if there are no T cell agents nearby, infected macrophages may progress to a chronic infection state, contributing to infection spread.

4.4. Later states of infection

Fig. 10B (Containment scenario at 25 days) shows activated macrophages (in blue) densely concentrated in the center of the granuloma. Fig. 11B (Dissemination scenario at 25 days) also shows activated macrophages but many more infected and chronically infected macrophages.

Fig. 10C (Containment scenario at 50 days) shows infected macrophages surrounded by resting macrophages, a few extracellular bacteria in the center of the granuloma, and a ring of T cells surrounding macrophages as observed in typical granulomas. On the other hand, Fig. 11C (Dissemination scenario at 50 days) shows a larger granuloma with more infected and activated macrophages at the edges of the granuloma; clearly bacteria are not being contained and the granuloma continues to grow.

Fig. 10D (Containment scenario at 100 days) shows infected macrophages at the center of the granuloma, with activated macrophages in a ring, containing the spread of the infection. Conversely, Fig. 11D (Dissemination scenario at 100 days) shows many activated macrophages in a diffuse granuloma structure; bacteria are not being contained.

Fig. 10E (Containment scenario at 200 days) shows infected macrophages walled off by macrophages. On
the other hand, Fig. 11E (Dissemination scenario at 200 days) shows many infected macrophages at the periphery, inducing spread of bacteria outside the granuloma. Necrotic tissue appears due to the high frequency of macrophages bursting and killing in the area, an indication of a strong inflammatory response. Many activated macrophages are found over the site.

A specific set of parameters, identified through uncertainty and sensitivity analyses, controls the distinct outcomes observed. We analyse each of these parameters in the next section.

4.5. Results of uncertainty and sensitivity analysis

To explore the role of parameter values on the dynamics observed, we perform detailed uncertainty and sensitivity analyses as outlined above. To this end, we identified a group of parameters we consider important to control bacterial load. Granuloma size, obtained as the sum of infected, chronically infected, activated macrophages and necrosis, is highly correlated with extracellular bacteria (correlation value of 0.966, $p<0.001$ at 500 days). Table 3 shows a list of these parameters and also gives temporally dependent PRCC values for each parameters related to the outcome variable, B_E. Below we discuss the influence of each parameter on infection outcome in more detail.

Because TB is a long-term disease (even if containment leads to latency), we explore our sensitivity analysis beyond the typical time-frame it takes for a granuloma to form (14–100 days) to up to 500 days. This yields insight into which mechanisms are important to long-term granuloma maintenance rather than granuloma formation. Table 3 presents PRCC values for key parameters out to the 500 day time point for comparison. Some parameters gain (or lose) significance at that later time point and this lends insight into which processes are involved in maintenance of long-term latent infection.

4.5.1. Chemokine diffusion coefficient, λ, and Chemokine decay coefficient, δ

The chemokine diffusion coefficient λ is positively correlated with extracellular bacteria (B_E), meaning higher chemokine diffusion rates enhance total extracellular bacterial load (or granuloma size) (see Table 3). On the other hand, the chemokine decay rate δ is negatively correlated with B_E. An interesting result is that δ has its highest negative correlation around 30 days after infection. This result suggests that granuloma growth could be reduced if the half-life of key chemokines are reduced, or their function is blocked, with the strongest effect expected at 30 days after infection. This effect aligns with the observed crowding effects of macrophages as discussed further below.

4.5.2. Intracellular bacterial growth rate, z_{BI}

One interesting feature of Mycobacterium is their slow growth rate. Their doubling time is order of magnitudes slower than most other pathogenic bacteria. This interesting feature surfaces as a determinant of infection outcome. In fact, the intracellular bacteria growth rate is strongly correlated with extracellular bacterial load and shifts from positive to negative over time. During the first days of infection, large z_{BI} allows the granuloma to grow fast, in particular, between days 5 and 15 post-infection, with a correlation peak of $+0.98$ at day 12 (Table 3). However, we observe a sign shift in the PRCC value around the 25th day of infection, becoming significant negatively correlated at around the 30th day of infection. At day 60, the PRCC value between z_{BE} and bacteria (B_E) is -0.48. Then, there is another sign shift around day 150 post-infection, with PRCC value 0.45 at 180 days and 0.31 at 500 days (see Table 3).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter description</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>Chemokine diffusion coefficient</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Chemokine decay coefficient</td>
<td></td>
</tr>
<tr>
<td>z_{BI}</td>
<td>Intracellular growth rate</td>
<td></td>
</tr>
<tr>
<td>T_{rec}</td>
<td>Prob. of T cell recruitment</td>
<td></td>
</tr>
<tr>
<td>T_{move}</td>
<td>Prob. of T cell movement, see Section 3.3.3</td>
<td></td>
</tr>
<tr>
<td>T_{act}</td>
<td>Prob. of T cell activates a macrophage</td>
<td></td>
</tr>
<tr>
<td>M_{tot}</td>
<td>Initial No. of macrophages</td>
<td></td>
</tr>
<tr>
<td>M_{rec}</td>
<td>Prob. of macrophage recruitment</td>
<td></td>
</tr>
<tr>
<td>M_{act}</td>
<td>Activated macrophage speed</td>
<td></td>
</tr>
</tbody>
</table>

Note that correlations change over time. All values indicated have significance $p<0.001$, n.s. is non-significant. Parameter sets used were from Tables 1 and 2.
These results indicate that between the first and second month post infection, *M. tuberculosis* generates larger granulomas when it grows more slowly (within the biological ranges explored in Table 2).

4.5.3. Rate of macrophage recruitment, \(M_{\text{recr}} \) and initial number of macrophages \(M_{\text{init}} \)

The rate of macrophage recruitment, \(M_{\text{recr}} \), is represented in the model as a probability. At each time-step and at each source compartment, a new macrophage is introduced onto the lattice with probability \(M_{\text{recr}} \). We observe strong positive correlations between \(M_{\text{recr}} \) and the two outcome variables, total extracellular bacteria and granuloma size (see Fig. 12). Increased recruitment of macrophages tends to be detrimental to infection outcome in this model. Increasing this parameter leads to a greater number of resting macrophages crowding around the granuloma center, being susceptible to infection; as a result the “lymphocytic cuff” of T cells is pushed further out, allowing infection to incubate and spread within granuloma structure. This can be interpreted as resting macrophages crowding out T cells. In other words, macrophages create a barrier that prevents T cells from migrating towards the center of the granuloma and activating macrophages. Recall that activated macrophages have the ability to kill large amounts of extracellular bacteria. For similar reasons the initial number of macrophages \(M_{\text{init}} \) is also positively correlated with extracellular bacteria \(B_E \) (see Table 3) and granuloma size (data not shown) as too many initial macrophages can induce the same phenomenon.

From our observations it is expected that a balance in the number of macrophages present in the granuloma exists: an optimal number of macrophages large enough to wall off spread of bacteria, but not too large that it blocks access of T cells towards the center of the granuloma.

4.5.4. Rate of T-cell recruitment (\(T_{\text{recr}} \)) and probability of T-cell movement (\(T_{\text{move}} \))

Macrophage activation is important to controlling granuloma size. In the model, macrophage activation is dependent on T cell abundance near infected macrophages. Thus, we expected both the rate of T cell recruitment (\(T_{\text{recr}} \)) and the probability of T-cell movement (\(T_{\text{move}} \)) to be important parameters. In particular, we expected them to demonstrate strong negative correlations with the outcome variables. However, our results show that \(T_{\text{move}} \) is more strongly correlated with both granuloma size or total extracellular bacteria than is \(T_{\text{recr}} \).

Our results indicate (as shown in Table 3) that the number of T cells (as determined by the value of the parameter \(T_{\text{recr}} \)) is not as significant for halting the spread of infection. Rather, what is more important is how well T cells are able to navigate towards the center of the granuloma. T cell movement (\(T_{\text{move}} \)) is negatively correlated with extracellular bacteria \(B_E \) (see Fig. 13). If T cells have an increased ability to move toward the center of the granuloma (reflected in our model by the parameter \(T_{\text{move}} \)), then they have increased opportunities to activate macrophages and hence limit infection spread.

These findings likely have important implications. There must exist a balance between the number of macrophages and T cells present in the granuloma. Macrophages crowd around the initial site of infection, and in the absence of T cells, become infected. This triggers a positive feedback loop of infection and bursting, leading to infection spread, as measured by either outcome variable (large granuloma size or numbers of extracellular bacteria). This occurs when there are so many resting macrophages clustered around the local site of infection that they prevent T cells from moving close enough to the infection site to activate macrophages.

4.5.5. Other significant parameters

Our uncertainty and sensitivity analyses revealed that several other parameters are significantly correlated with the total extracellular bacteria \(B_E \) (Table 3), indicating that they have a strong influence on spread of infection. For example, the rate of activated macrophage movement is negatively correlated with total extracellular bacteria. This likely follows since increasing the rate at
which activated macrophages change location implies they reach more micro-compartments containing extracellular bacteria. However, since they are not able to clear all bacteria in one micro-compartment before they move to another location, they leave behind extracellular bacteria that could then infect new resting macrophages. On the other hand, the initial number of resting macrophages is positively correlated with total extracellular bacteria. Increasing the initial number of resting macrophages has a similar effect as increasing M_{recr}, as described above.

4.6. Adaptive immunity delay, T_{delay}

In the absence of prior infection or vaccination, the adaptive immune response takes anywhere from 5–10 days to develop activated immune cells specific for responding to the pathogen in question (Lurie, 1964; Janeway, 2001; Jenkins et al., 2001; Medzhitov and Janeway, 2000). In our simulations, we do not capture this delay through a mechanistic priming and trafficking between lymph nodes and the site of infection (we explore this in other work—Marino and Kirschner, 2004). Instead, we capture this effect by imposing a constant time delay before T cells begin arriving at the infection site. To study the impact of variations in this delay we vary the time for initial arrival of effector T cells to the site between 0 and 25 days (T_{delay}) (see Fig. 14).

There are two scenarios to consider. First, we consider the parameter set that leads to containment and vary the T cell arrival time (Fig. 14, Panel A). Fig. 14 shows that the outcome variable (B_E) is significantly affected when T cells arrive in the first few days of infection (i.e. no delay). In this situation we observe complete clearance of bacteria. As most individuals experience latent infection (95%) then we can likely assume their granulomas are containing or clearing infection. This implies that an important role could be played by successful vaccination of most individuals, ensuring an early T cell response upon infection. However, when using the parameter set that leads to dissemination, lower numbers of bacteria are noted rather than clearance (Fig. 12, Panel B). This suggest that for a given parameter set, T cell immunity is crucial at the beginning of the infection. T cells arriving at later times (5, 10, or 20 days) do not have the same effect as when they arrive earlier (<5 days). At the later time, other mechanisms are more important in controlling infection such as macrophage density and T cell parameters (discussed above), and they must work in concert to control infection, with T cells playing a key part in this dynamic. When other parts of the system are prone to containment, T cells can exhibit their greatest effect early in infection (Fig. 14).

5. Discussion

In this paper, we have presented an agent-based model of the adaptive immune response to $M. \text{tuberculosis}$ infection. In particular, we focused on the unique spatial structure that develops during this response, and simulate the formation of a granuloma. We applied uncertainty and sensitivity analyses (LHS/PRCC) with respect to the parameter space for the first time in this setting. The parameters discussed are grouped into those that govern chemokine and cytokine dynamics, those that govern host cell dynamics, namely T cells and macrophages, and those that govern bacterial growth rates.

5.1. Chemokines and cytokines

Chemokines are important molecules governing granuloma formation (Flynn and Chan, 2001). Chemokines are small proteins (8–10 kDa) and are a subset of a general group of effector molecules known as cytokines. These chemoattractants serve to draw macrophages and T cells to the infection site. Human macrophages infected with $M. \text{tuberculosis}$ produce several chemokines such as: CCL, CCL3, CCL4, and CCL5, among others (Scott et al., 2003). These molecules create a concentration gradient for macrophages and T cells. However, recruiting appropriate immune cells to the site of infection is necessary but insufficient to control infection outcome.

Our results show that an increase in chemokine diffusion increases granuloma size. An opposite effect is observed for chemokine degradation, where rapid degradation decreases granuloma size. This result implies that a balance must exist between chemokines attracting macrophages and T cells to kill bacteria, while attempting to maintain smaller granuloma size (i.e. less tissue damage). Conversely, an increase in the concentration and lifespan of chemokines increases granuloma size. Taken together these results imply that if it were possible to control chemokines in this way it could prevent macrophage overcrowding. We have included a

![Fig. 14. The effect of varying T cell arrival delay (T_{delay}) on extracellular bacteria (B_E), using parameters set leading to containment (A) and dissemination (B) from Table 1. Data observed at 200 days of simulation $N = 10$.](image-url)
very generalized chemokine in this model and our goal is to consider the effects of more specific chemokines in future work. Cytokines serve as modulators of immune cell behavior. These include IFN-γ, TNF, IL-2, IL-12, among others (Flynn and Chan, 2001). There is an established complex regulation by TNF such that in the absence of this cytokine a chemokine gradient is not formed, cell migration fails, and granulomas do not form properly (Mohan et al., 2001). In this model we have used the T cells that produce cytokines as surrogates for the effector molecules they secrete. The relevance of TNF and other specific effectors are the subject of our future work.

5.2. Mycobacterium tuberculosis

M. tuberculosis is one of the oldest pathogens known to humans. It has evolved to be the most successful pathogen in that one third of the world is infected. It has a stable genome (Victor et al., 1997) and a curiously pathogen in that one third of the world is infected. It has evolved to be the most successful

5.4. T cells

From uncertainty and sensitivity analyses we observe that the parameter governing T cell movement is more significant to granuloma growth (or extracellular bacterial numbers) than the number of T cells recruited. This indicates that the spatial distribution of T cells in a developing granuloma is more important than merely their raw numbers. Studies in mice without TNF show that, while cell numbers are the same as normal mice, their spatial distribution within the granuloma is diffuse, forming disorganized granulomas (Flynn and Chan, 2001), supporting our findings. Curiously, our results indicate that the timing of T cell recruitment does not independently determine infection outcome, but works in concert with other parameters in the system. If the system is biased toward a containment scenario, then the rate and timing of T cell recruitment can influence the timing of bacterial control. Thus, these results could be applied to vaccine or treatment settings. However, if the system is biased toward a weaker response, then the system will behave almost independent of early T cell dynamics.

The rules of macrophage activation by T cells are a first approximation to a more complex phenomena. In actuality the direct role of T cells in activating macrophages is facilitated by both IFN-γ secretion as well as cell–cell interactions. It may be the case that once IFN-γ is included into the model in a more direct and mechanistic fashion, the importance of macrophage activation mediated by IFN-γ balanced with T cell interactions will be observed. This is the focus of our future work.

5.5. Final comments

In summary, the development of a simple model to explore granuloma formation to determine function has yielded key results that require further testing through both theoretical and experimental approaches. A more detailed model including specific cytokines and chemokines and their mechanisms will likely uncover deeper layers of this complex system. Our results here imply that indeed an agent-based approach is an appropriate tool for exploring this complex spatio–temporal system. However, it is important to determine differences between different mathematical approaches exploring the same system to determine to what extent information is revealed at different scales. In other work we draw this comparison (Gammack et al., 2004).
Acknowledgements

This work was supported by NIH grant No. R01HL68526. The authors thank Dr. Joanne Flynn, Dr. John Chan, Dr. Steven Kunkel, Dr. Stephan Ehlars, Dr. Steven Chensue, Dr. Tom Kepler, Dr. David Gammack and Dr. Simeone Marino for helpful discussions.

Appendix A

This appendix includes a sample of the algorithms we implemented for the rules described for resting, infected and chronically infected macrophages in Section 3. These algorithms were coded in C/C++ and implemented on a LINUX workstation.

A.1. Resting macrophages rules

RESTING MACROPHAGES RULES ()

if \(B_{Ei,j}(t) \leq N_{RR}\) then
\[B_{Ei,j}(t+1) = (B_{Ei,j}(t) - N_{RR}) \geq 0\]
return \(M_R\), Resting macrophage
endif
if \(B_{Ei,j}(t) > N_{RR}\) then
\[r \leftarrow \text{RandomUniform}[0, 100]\]
if \(r \leq p_k\) then
\[B_{Ei,j}(t+1) = (B_{Ei,j}(t) - N_{RR})\]
\(M_R\) succeeds in killing the bacteria and remains in resting state
return \(M_R\), Resting macrophage
else
\[B_{Ei,j}(t+1) = N_{RR}\]
\(M_R\) does not succeed in killing bacteria
The macrophage is infected.
return \(M_I\), Infected macrophage
endif
endif

A.2. Infected macrophages rules

INFECTED MACROPHAGES RULES ()

Chemokines release by macrophages:
\[C_{ij}(t+1) = C_{ij}(t) + c_t\]
Intracellular bacterial replication:
\[B_I(t+1) = B_I(t) + z_{B_i} \times B_I(t)\]
Chronic infection:
if \(B_I(t) \leq N_c\) then
return \(M_C\), Chronically infected macrophage
endif
Macrophage activation:
if \(B_I(t) \leq N_c\) then
\[N_T = \text{Number of T cells in the neighborhood}\]
if \(N_T > N_{act}\) then
\[N_T = N_{act}\]
endif

If the macrophage is activated, then it eliminates its intracellular bacterial load:
\[r \leftarrow \text{RandomUniform}[0, 100]\]
if \(r < (N_T \times T_{act}) \leq 100\) then
\[B_{Ii,j} = 0\]
return \(M_A\), Activated Macrophage
else
return \(M_I\), Infected Macrophage
endif
endif

A.3. Chronically infected macrophages rules

CHRONICALLY INFECTED MACROPHAGES RULES ()

Chemokines release:
\[C_{ij}(t+1) = C_{ij}(t) + c_t\]
Intracellular bacterial growth:
\[B_I(t+1) = B_I(t) + t_{B_i} \times B_I(t) / (1 + (B_I(t)/(K_{B_i} + 30)))\]
Bursting:
if \(B_I(t) > K_{B_i}\) then
\[B_{E_i,j}(t+1) = B_{E_i,j}(t) + B_I(t)/9\]
\[B_{E_i,j+1}(t+1) = B_{E_i,j+1}(t) + B_I(t)/9\]
\[B_{E_i,j+1}(t+1) = B_{E_i,j+1}(t) + B_I(t)/9\]
-etc.
Macrophage is eliminated
return \(Death\)
endif
T cell killing:
if \((B_I(t) \leq K_{RT})\) and \(3\ \text{T-cell at } (i,j)\) then
\[r \leftarrow \text{RandomUniform}[0, 100]\]
if \(r < (pT_k)\) then
\[B_{Ii,j}(t) = (P_{kill}/100) \times B_{Ii,j}\]
\[B_{E_i,j}(t+1) = B_{E_i,j}(t) + B_I(t)/9\]
\[B_{E_i,j+1}(t+1) = B_{E_i,j+1}(t) + B_I(t)/9\]
\[B_{E_i,j+1}(t+1) = B_{E_i,j+1}(t) + B_I(t)/9\]
-etc.
Macrophage is eliminated
return \(Death\)
else
return \(M_C\), Chronic Macrophage
endif

References

