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Abstract

Infection with Mycobacterium tuberculosis is a major world health problem. An estimated 2 billion people are presently infected

and the disease causes approximately 3 million deaths per year. After bacteria are inhaled into the lung, a complex immune response

is triggered leading to the formation of multicellular structures termed granulomas. It is believed that the collection of host

granulomas either contain bacteria resulting in a latent infection or are unable to do so, leading to active disease. Thus,

understanding granuloma formation and function is essential for improving both diagnosis and treatment of tuberculosis.

Granuloma formation is a complex spatio–temporal system involving interactions of bacteria, specific immune cells, including

macrophages, CD4+ and CD8+ T cells, as well as immune effectors such as chemokine and cytokines. To study this complex

dynamical system we have developed an agent-based model of granuloma formation in the lung. This model combines continuous

representations of chemokines with discrete agent representations of macrophages and T cells in a cellular automata-like

environment. Our results indicate that key host elements involved in granuloma formation are chemokine diffusion, prevention of

macrophage overcrowding within the granuloma, arrival time, location and number of T cells within the granuloma, and an overall

host ability to activate macrophages. Interestingly, a key bacterial factor is its intracellular growth rate, whereby slow growth

actually facilitates survival.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Tuberculosis (TB) is the world’s leading cause of
death due to infectious disease. There are approximately
8 million new cases of the disease annually, resulting in
an estimated 2–3 million deaths per year. Even more
remarkable, it is estimated that one-third of the world
population is infected with Mycobacterium tuberculosis

(Mtb), the causative agent of the disease (World Health
Organization, 2001).
e front matter r 2004 Elsevier Ltd. All rights reserved.
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ors with equal contribution—no order is implied.
This large discrepancy between the number of infected
individuals (on the order of billions) and the numbers of
annual cases resulting in death (on the order of millions)
points to an important fact about tuberculosis. Most
individuals infected with M. tuberculosis do not pro-
gress to active disease. It is believed that only 5–10%
of infected individuals develop active disease within
2 years of initial infection (Comstock, 1982; Styblo,
1980). The vast majority are able to contain infection
but not clear it, achieving latent tuberculosis through
mounting a successful adaptive immune response.
Although most individuals are able to maintain latency,
they are at risk of developing active TB by reacti-
vation, which occurs at a rate of 5–10% during their
lifetime. It is thought that reactivation occurs when
the immune system is compromised in some way, such
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as due to co-infection with HIV, abuse of alcohol or
drugs, or simply waning immunity due to aging.
Exogenous reinfection may also occur (Singer and
Kirschner, 2004).

The adaptive immune response to M. tuberculosis

results in the formation of characteristic multicellular
structures within lung tissue of infected individuals
called granulomas. The formation and maintenance of
these granulomas likely plays a central role in the
pathogenesis of the disease. It is conjectured that small,
solid granulomas contain infection and do not induce
significant pathology, whereas large, necrotic granulo-
mas may lead to bacterial dissemination and greater
pathology (Saunders and Cooper, 2000). Thus, an
understanding of granuloma formation and function is
essential to understanding host–pathogen interactions
during infection with M. tuberculosis, and ultimately
toward treatment and prevention.

The adaptive immune response, however, is a complex
process involving spatial and temporal organization and
interactions of numerous elements: bacteria, chemo-
kines, cytokines, adhesion molecules, and immune
effector cells. Particularly in humans, few data exist
characterizing the process of granuloma formation and
function, and only recently have non-human primate
models been developed to begin to study this system
in vivo (Capuano et al., 2003). The complexity of
the adaptive immune response to M. tuberculosis, which
we describe in detail in Section 2, indicates that
mathematical and computational models may be a key
means to further understanding this system (Perelson,
2002). Towards this goal, we have developed an agent-
based model of the adaptive, spatio–temporal immune
response to M. tuberculosis.

Wigginton and Kirschner (2001) did initial work in
this direction by developing a model to examine
temporal dynamics of the host adaptive immune
response to M. tuberculosis infection. Their model
consisted of a system of nonlinear ordinary differential
equations that sought to capture key interactions
between various populations of bacteria, macrophages,
T cells and cytokines. Marino and Kirschner (2004) and
Marino et al. (2004) extended this work to a two-
compartment ODE model to study trafficking of
dendritic cells and T cells between the lung and lymph
node. Two other papers from our group introduced
models for examining spatial aspects of the adaptive
immune response to M. tuberculosis infection within the
lung and specifically the process of granuloma forma-
tion. Gammack et al. (2003) developed a partial
differential equations model of the innate immune
response to Mtb infection and the early stages of
granuloma formation. Ganguli et al. (submitted) used
a metapopulation framework, in which ordinary differ-
ential equations represented spatially distinct cellular
subpopulations within a discretized spatial domain.
Differential equations have been the most widely
applied formalism for mathematical and computational
modeling of biological systems. Another formalism that
has more recently been developed and applied to study
complex systems are agent-based models (ABMs).
ABMs grew out of research in cellular automata and
artificial life. The defining feature of agent-based models
is that elements of the system are represented primarily
as discrete agents with several unique attributes.
Individual agents reside in an explicitly represented
spatial environment. They interact with one another and
with the environment according to sets of rules.
Typically these rules are defined such that all interac-
tions occur locally (with respect to the environment).
Moreover, the formulation of the rules are often
stochastic in nature. This is in contrast to the differential
equations framework in which populations are repre-
sented by continuous variables, are assumed to be
roughly homogeneous and interact deterministically.

In an agent-based model, the local, possibly stochas-
tic, individual-level interactions give rise to global,
system-wide dynamics and patterns. Thus, ABMs are
particularly useful for studying complex systems in
which individual heterogeneity and spatial interactions
are important. For those reasons, we believe the agent-
based approach is appropriate for modeling the immune
response to M. tuberculosis and the process of granu-
loma formation. More generally, we believe that agent-
based modeling may be appropriate for modeling many
aspects of the immune system.

Agent-based models are a natural extension of cellular
automata. Cellular automata have been applied to
modeling a wide variety of biological systems (see
Ermentrout and Edelstein-Keshet, 1993 for an excellent
overview), including some aspects of the immune system
(Celada and Seiden, 1992; Seiden and Celada, 1992),
tumor growth (Alarcon et al., 2001; Kansal et al.,
2000a,b; Qi et al., 1993; Smolle, 1998; Smolle and
Stettner, 1993), and angiogenesis (Anderson and
Chaplain, 1998; Markus et al., 1999). Agent-based
modeling is a natural extension of cellular automata
modeling, in which more complex notions can be easily
formulated and implemented via object-oriented pro-
gramming. To date, however, ABMs has been applied
most prominently within the social sciences, going back
to the early work of Schelling (Schelling, 1969, 1978)
and extending to the more recent work of Axelrod
(1997) and Epstein and Axtell (1996). Within biology,
the approach has been applied within the fields of
ecology (where it is often called individual-based
modeling (Grimm, 1999)), and bacterial colony growth
and biofilms (Kreft et al., 19, 2001). Mansury et al.
(2002) and Mansury and Deisboeck (2003) develop and
explore an agent-based model of tumor growth. Most
relevant to our work here are perhaps the following
papers that use ABMs to study aspects of the immune
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response at the cellular level: An (2001), who presents an
agent-based model of inflammation with an aim of
explicating systemic inflammatory response syndrome,
and Edelstein-Keshet and Spiros (2002) who develop a
model of Alzheimer’s Disease plaque formation.

The goal of this work is to identify control mechan-
isms that are important for proper granuloma formation
during infection with Mtb in humans. In this work this
is measured by the ability to control bacterial levels. We
formulate and implement an ABM based on a minimal
set of rules that qualitatively reproduces granuloma
formation corresponding to distinct pathological and
bacterial observed outcomes. These rules are based on
known or hypothesized mechanisms involved in the
immune response to Mtb infection. We describe briefly
the immune response to Mtb, as well give details of the
agent-based model, its rules, and the adaptation of
sensitivity and uncertainty analyses for use in this
setting. We describe our result in two main settings of
containment and dissemination.
2. Adaptive immune response to M. tuberculosis

In this section, we briefly outline the current knowl-
edge of M. tuberculosis (Mtb) infection and immunity.
We focus on adaptive immunity, specifically on interac-
tions between bacteria, macrophages, and T cells. These
elements and their interactions form the basis of our
agent-based model, which we present in the following
section. We discuss what is known and/or conjectured
about how these interactions contribute to granuloma
formation, and how granulomas may contribute to
latency.

M. tuberculosis is a rod bacteria, approximately 2–5
mm long and 0.2–0.3 mm thick. It is non-motile
gram-positive (Grosset et al., 2000) and is aerosol-
transmitted. Exposed individuals typically inhale droplets
containing bacteria. Droplets may reach lung alveloae
where they encounter resident macrophages. Macro-
phages phagocytose bacteria that they may kill, resulting
in clearance of initial infection via innate immunity
(Dannenberg and Rook, 1994). In their ‘‘resting’’ (i.e.,
inactivated) state, however, these resident macrophages
are less efficient at killing bacteria than macrophages that
have been activated for the task. Moreover, M.

tuberculosis has evolved mechanisms for evading killing
by its host macrophages (McDonough et al., 1993). Thus,
it is much more likely that resting resident macrophages
are unable to clear the bacteria they phagocytose, in
which case they become ‘‘infected’’ macrophages.

Mycobacteria replicate well within infected macro-
phages. M. tuberculosis prefer the intracellular environ-
ment, and replicate at a faster rate than they do
extracellularly (Zhang et al., 1998). Infected macro-
phages may burst due to an excessive number of
intracellular bacteria. This releases formerly intracellu-
lar bacteria into the extracellular environment, inducing
a new round of macrophage infections, contributing to
infection spread.

Although individuals will most likely not clear
infection in such cases, the host immune system can
contain infection by mounting an adequate adaptive
immune response. Infected macrophages release cyto-
kines and chemokines that attract dendritic cells and
additional macrophages (Orme and Cooper, 1999;
Sadek et al., 1998). Other cells such as PMNs and mast
cells also secrete chemokines, but for this study we only
consider macrophages known to participate in the
granuloma response (Seiler et al., 2003). Dendritic cells
engulf bacteria and then migrate to the nearest draining
lymph node where they present antigen to naive T cells.
This induces differentiation and activation of T cells
that subsequently migrate back to the lung and to
specific sites of infection, likely guided by adhesion
molecules and chemokine signals produced by infected
macrophages (Saunders and Cooper, 2000; Tufariello
et al., 2003).

Both CD4+ and CD8+ T cells participate in the
immune response. Activated T cells of both types
contribute to control of infection by activating macro-
phages (via production of cytokines such as IFN-g) and
by lysing chronically infected macrophages (via apop-
tosis and cytotoxic T cell action) (Flynn and Chan, 2001;
Flynn and Ernst, 2000). Activated macrophages are
highly efficient at phagocytosing and eliminating extra-
cellular bacteria, while lysis of chronically infected
macrophages serves to release M. tuberculosis, allowing
their uptake by activated macrophages. This migration
of macrophages, T cells and other immune cells to the
site of infection and their subsequent interactions result
in the formation of granulomas. These structures are
spherical accumulations with a characteristic spatial
pattern, consisting of the various cell types discussed
above (bacteria, macrophages, T cells), as well as other
types of immune cells (such as natural killer cells, PMNs
and B cells) (Dannenberg and Rook, 1994; Seiler et al.,
2003). Fig. 1 shows two histological sections of
granulomas from a non-human primate model of Mtb
infection. Panel A shows an outcome of a solid
granuloma containing infection, while in contrast panel
B shows a disseminated (caseous) granuloma where
bacteria and necrotic tissue spreads. The diameter of
both granulomas shown in Panels A and B is 2 mm.

Granulomas are thought to be the means by which the
adaptive immune response achieves and maintains
latency in tuberculosis. The structure of a functioning
granuloma physically contains infection: the accumula-
tion of immune cells around the local site of infection
likely prevents its dissemination. Moreover, it has
also been conjectured that the spatial structure of
granulomas provide a framework for effective localized
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(A) (B)

Fig. 1. Histopathologic comparison of solid (A) and caseous

(disseminated) (B) pulmonary granulomas in the lungs of M.

tuberculosis-infected cynomolgus macaques. Solid granulomas (A)

consist of a densely populated collection of inflammatory cells that

include centrally located macrophages and histiocytes with surround-

ing rings of T cells. Caseous granulomas (B) are characterized by a

central area of necrotic material, an outer later of macrophages,

histiocytes and giant cells ringed by T cells. Hemotoxylin and eosin

stain, total magnification 100� : Both granulomas shown are 2mm�

2mm in size. (Photos donated by Dr. P. Ling Lin, in the Flynn

Laboratory at the University of Pittsburgh).
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interaction of the elements of adaptive immunity
(Saunders and Cooper, 2000).

In the following section we present an agent-based
model of adaptive immunity to M. tuberculosis infec-
tion. Our model is motivated by the biology discussed
above and focuses on the process of granuloma
formation. The environment of the model represents a
two-dimensional cross-section of alveolar lung tissue
where infection and granuloma formation occur. The
elements of the model represent key factors involved in
the processes of infection, adaptive immunity, and
granuloma formation: bacteria, chemokines, macro-
phages, and T cells. The rules of the model represent
the biological interactions described above: infection of
macrophages following phagocytosis of bacteria; release
of chemokines by infected macrophages; recruitment
and migration of macrophages and T cells in response to
chemokine signals; intracellular bacterial replication
within infected macrophages, possibly leading to burst-
ing of the host macrophage; activation and/or lysis of
infected macrophages by T cells; and phagocytosis
and clearance of extracellular bacteria by activated
macrophages.
3. Model description and methods

The model has the following components:
(1)
 The environment where entities reside, representing a
section of alveolar tissue.
(2)
 The entities of the model, consisting of discrete
macrophage and T cell agents, and continuous
chemokine and bacteria variables.
(3)
 The rules that govern the dynamics of the system,
representing the biological interactions of the
entities.
(4)
 The time-scales on which the rules are executed.
We elaborate on each of these components below.
3.1. The environment

As described in the previous section, humans are
infected by M. tuberculosis after inhaling bacteria into
the alveolar space of the lung. The majority of infections
remain isolated at focal sites of infection in the lung
(pulmonary tuberculosis) where granuloma formation
initially occurs, and do not spread to other organs
(Tufariello et al., 2003). Hence, the spatial environment
of our model represents a portion of alveolar lung
tissue. Specifically, the environment consists of a two-
dimensional N �N lattice of micro-compartments. In
order to avoid boundary effects, opposite edges of
the lattice are identified so that the lattice is actually a
torus. Model results are not constrained by this
assumption, since the lattice is made large enough to
contain the relevant phenomena entirely within its
interior (see below).

The size of each micro-compartment is defined to
contain approximately the largest cell type in our model:
the alveolar macrophage. The diameter of human
alveolar macrophages has been measured to be approxi-
mately 20mm (Krombach et al., 1997). Hence, we take
each micro-compartment in the lattice to represent a
square with dimensions 20mm� 20 mm: Each micro-
compartment can simultaneously hold at most one
macrophage, one T cell, chemokine and bacteria. This is
reasonable since extracellular bacteria and chemo-
kine molecules are orders of magnitude smaller than
macrophages.

Bacterial dissemination and rapid progression to
disease have been associated with larger necrotic
granulomas of diameter 2 mm or more. This has been
observed in both humans (Dannenberg and Rook, 1994)
and more recently in non-human primates (Capuano
et al., 2003)—(see for example, Fig. 1). On the other
hand, containment of disease has been associated with
smaller solid granulomas of diameter 2mm and less, as
observed in non-human primates infected with M.

tuberculosis (Capuano et al., 2003). These animals
showed no clinical signs of disease and had presumably
contained infection.

Since we intend to simulate the formation of a single
granuloma within the spatial domain of the model,
we define the lattice to be large enough to contain
a larger necrotic granuloma of the type associated
with rapid progression to active disease. Thus, a square
spatial domain of dimensions 2mm� 2mm suffices for
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our purposes, corresponding to a value of N ¼ 100:2

The results are not constrained by the size of the lattice.
A certain number of micro-compartments on the

lattice are designated as source compartments. They
represent locations where blood vessels enter the lung
tissue through which new macrophages and T cells
arrive at the infection site (see Section 3.3).

Fig. 2 depicts the spatial environment, including
source compartments. The diagram indicates the initial
state of the system: an initial innoculum of extracellular
bacteria is introduced into a small number of micro-
compartments near the center of the lattice, and
resting macrophages are randomly distributed across
the lattice. Macrophages and extracellular bacteria are
among the entities of the model discussed below in
Section 3.3. The initial conditions are discussed in more
detail in Section 4.1.
3.2. Time

Time is discrete in this model. Thus, a simulation
consists of finite time-steps. Each time-step corresponds
to approximately 6 s of ‘‘real time’’. This was determined
by considering the fastest process represented in the
2To make the total length of each side of the lattice 2mm ¼

2� 10�3 m (where each micro-compartment has sides of length

20mm ¼ 2� 10�5) requires 2� 10�3 m=ð2� 10�5 mÞ ¼ 100 micro-

compartments/side.
model, which is the diffusion of chemokine, calculated
as described in Section 3.3.1.

The state of the system at time-step tþ 1 is computed
by applying a series of rules to the system at time-step t:
However, most rules are executed at slower timescales
than chemokine diffusion. These processes are the
movement and interactions of T cells and macrophages,
and are described below in Sections 3.3.3 and 3.3.4.

Rules for macrophages and T cells are updated every
10 min of real time (i.e., every 100 time-steps). This
value was chosen by considering what we take to be the
next fastest process, movement of T cells.

To determine how often T cell movement should be
updated, we used the results of (Miller et al., 2003).
By using laser microscopy for high-resolution imaging
of T cells within the lymph nodes of mice, it was
estimated that T cells move with an average velocity of
11mm=min; i.e., approximately 10�5 m=min : It is to be
expected that their velocity will be considerably slower
in lung tissue. For the purposes of this paper we have
assumed T cells move approximately a full order of
magnitude slower. Hence, it takes 10 min for a T cell to
move from a given micro-compartment to a neighboring
micro-compartment in the model ðTspÞ:

Of course, actual velocities of T cells in lung tissue
likely vary over a wide range depending on states of
individual T cells and local environments in which they
are moving. Similarly, the frequency with which all
other rules are executed could vary depending on the
state of the entities involved. Future refinements of this
model could include more detailed and heterogeneous
treatments of time such as these.

The rate of macrophage movement was calculated
from the data of Webb et al. (1996), based on cloned
macrophage mouse cell line BAC1.25F. They found
macrophage velocities in the range of 0.12–0.5 mm=min
using a Dunn chemotaxis chamber. We set the speeds to
1, and 0:0007mm=min for resting ðMrspÞ; and infected
macrophages ðMispÞ respectively. For activated macro-
phages ðMaspÞ we use a range of values between 0.0125
and 1mm=min : Simulations are performed for 200 days
and up to 500 days. The typical time frame for
development of a granuloma is anywhere from 14 to
100 days in non-human primates (Capuano et al., 2003
and J. Flynn, personal communication). We simulate
this time frame for formation of a granuloma and also
allow for an extended simulation to track long-term
dynamics occurring in an infection that spans the life-
time of the host. We discuss results of both simulation
time-frames below.

3.3. Entities of the system and their rules

There are four types of entities in the model: a generic
chemokine, extracellular bacteria, T cells, and macro-
phages. Chemokine and extracellular bacteria are
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treated as continuous variables that take on real values
in each micro-compartment of the lattice at each time-
step, whereas macrophages and T cells are represented
as discrete agents. Fig. 3 depicts these entities on the
lattice.

3.3.1. Chemokine

Various molecules released by macrophages and
other cells acts as chemoattractants, attracting other
cells to the site of infection. Chemokines perform
different roles at different times during granuloma
development (Lukacs and Chensue, 1996). In this
work, we represent chemokines as attractors for
macrophages and T cells. For this initial implementation
we have chosen to represent the multiple chemokines
involved in the immune response to M. tuberculosis

infection by a composite chemokine value. We treat this
chemokine concentration as a continuous variable.
Thus, chemokines are represented in our model by a
concentration value Ci;j in each micro-compartment
ði; jÞ: Chemokines create a field where macrophages
and T cells move toward higher concentrations. In
this setting, a larger lattice (i.e. the torus) does not affect
the dynamics of T cells, macrophages, or the overall
infection outcome.

Chemokine molecules are very small in comparison
with macrophages, so we assume that they can co-reside
in a micro-compartment with macrophages. Sources of
chemokine are derived from infected, chronically
infected and activated macrophages (Scott et al.,
2003). Chemokine is secreted from these sources and
then diffuses and decays over time. Chemokine diffusion
is implemented with the following rule: in each micro-
compartment ði; jÞ the chemokine concentration Ci;j

diffuses to and from the four micro-compartments in its
immediate (von Neumann) neighborhood. For read-
ability we abbreviate the subscripts of the four
neighbors by N;E;S;W ; and we suppress the ‘‘ðtÞ’’
notation on the chemokine variables on the right-hand
side:

Ci;jðtþ 1Þ ¼ Ci;j � ð1� lÞ þ l

� ðCN þ CE þ CS þ CW Þ=4:

Here l is a diffusion constant. Intuitively, l measures
the proportion of Ci;j that diffuses out of micro-
compartment ði; jÞ during each time-step. We calculate
a value for l from l ¼ 4dcDt=Dx; (see Ermentrout
and Edelstein-Keshet, 1993), where dc is the diffusion
constant for chemokine molecules in the diffusion PDE,
Dx is the scale of the spatial discretization, and Dt is the
scale of the time discretization. The values of the latter
two in our model are Dt ¼ 0:1 min and Dx ¼ 10�5 m;
respectively. Values of 10�6 to 10�7 have been reported
as diffusion constants for chemokine molecules (Francis
and Palsson, 1997). Using a value of dc ¼ 10�7; we
obtain a value of l ¼ 0:6: In our analyses, for the
diffusion constant l; we use a range of values between
0.5 and 0.8.

We include a decay process in the model for
chemokine. At each time-step, a certain proportion d
decays:

Ci;jðtþ 1Þ ¼ Ci;j � d � Ci;j :

Values of 2–4 h have been reported for the half-life for
the chemokine IL-8, which is centrally involved in the
immune response to M. tuberculosis (Walz et al., 1996).
Using a half-life of 2 h, we obtain a value of d ¼
0:000577: In our analyses, for the chemokine degrada-
tion coefficient d; we use a range of values between
0.000288 and 0.0011.

3.3.2. Extracellular bacteria

The minimal infectious dose for M. tuberculosis is on
the order of 10 bacteria (Capuano et al., 2003). To
simulate initial infection in which a droplet containing
bacteria arrives in the lung alveoli, our initial conditions
include a small number of bacteria divided over a few
micro-compartments near the center of the lattice, as
indicated in Fig. 2. We choose the center of the lattice
for easy visualization. Initial conditions are discussed in
detail in Section 4.1.

Extracellular bacteria ðBEÞ replicate rather slowly;
reports of M. tuberculosis in lung tissue of mice have
estimated an extracellular doubling time of 62 h (North
and Izzo, 1993). For simplicity, we use a doubling time
of 75 h. This yields a discretized growth rate of aBE ¼

0:00015=min in the following rule for extracellular
bacterial replication. We also assume an upper bound
of KBE ¼ 200 bacteria (10 times the number of bacteria
that an infected macrophage can contain before burst-
ing) within each micro-compartment, and that extra-
cellular bacterial replication follows logistic growth with
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respect to this upper bound:

BEðtþ 1Þ ¼ BEðtÞ þ aBE � BEðtÞ

� ð1� ðBEðtÞ=ðKBE � 1:1ÞÞÞ:

We consider extracellular bacteria diffusion to be a slow
process that we do not presently include, however the
model can easily incorporate this process.

3.3.3. T cells

T cells are represented as discrete agents that can
enter and reside on the lattice. Up to one T cell can share
a micro-compartment with a macrophage. T cells have
only age and position attributes. At day 10 of infection
ðTdelayÞ; T cells enter the lattice with a probability Trecr;
via source micro-compartments in response to chemo-
kine level at those locations (we explore this delay
in greater detail below). This captures recruitment of
immune cells to the site of infection in response to
chemotactic signals. New T cells are assigned a lifespan
ðTlsÞ randomly selected between 0 and 3 days (Sprent,
1993). The age of each T cell is incremented at each
time-step. A T cell is removed from the lattice when its
age reaches its lifespan, representing natural death.

Movement of T cells is affected by the local
chemokine gradient on the lattice, and T cells can only
recognize chemokine values of Ci;j41: Movement of
each T cell is a biased random walk with probabilities
calculated as a function of the chemokine concentra-
tions of the eight neighboring micro-compartments
around the T cell. If the chosen target location is empty,
then the T cell moves to the target micro-compartment.
If the chosen target location is occupied by another
T cell, then the T cell remains stationary. If the target
location does not contain a T cell but is occupied by a
macrophage, then the T cell moves to the target micro-
compartment with a given small probability ðTmoveÞ: In
this way we capture any crowding effects imposed by
macrophages on T-cell movement.

Activated T cells are immune effector cells that
perform two important functions: they activate infected
macrophages and they kill chronically infected macro-
phages. In our model, we combine the effects of CD4+
T cell and CD8+ T cells into a composite T cell
population. These distinct classes of T cells perform
different cytotoxic functions, leading to death of infected
macrophages. These functions are implemented in the
model according to rules described in the next section.

3.3.4. Macrophages

Macrophages are represented as discrete agents that
reside on the lattice. At most one macrophage can
occupy a given micro-compartment. Macrophages have
the following attributes:
all macrophages. This is another aspect of the model that could be used

to introduce heterogeneity into the macrophage population in future
�
 Position.

extensions of this model.
�
 Age.
�
 Number of intracellular bacteria ðBI Þ; a non-negative
integer such that 0pBIoKBI ; where KBI is a
parameter representing the average intracellular bac-
terial carrying capacity of macrophages.3
�
 State, defined from one of the following 4 states:
resting ðMRÞ; infected ðMI Þ; chronically infected
ðMCÞ; or activated ðMAÞ (see Fig. 4).

Like T cells, new (resting) macrophages enter the
lattice with a probability Mrecr; via the source micro-
compartments in response to the chemokine level
at those locations (represented by ‘‘Recruitment’’ in
Fig. 4). Specifically, if micro-compartment ði; jÞ is a
source and the amount of chemokine Ci;j exceeds a
certain threshold, then a new macrophage is placed in
micro-compartment ði; jÞ (provided that ði; jÞ is not
already occupied by a macrophage). New macrophages
are randomly assigned an age between 0 and 100 days
ðMrlsÞ (Furth et al., 1973). Like T cells, the age of each
macrophage is incremented until it reaches its lifespan,
at which time it is removed from the environment.

Macrophages move chemotactically similar to T
cells, as described above in Section 3.3.3, i.e., accord-
ing to random walks biased towards neighboring
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micro-compartments with higher concentration of che-
mokine. However, we assume that macrophages move at
slower speeds than T cells.

The rest of this section describes the rules executed
for each macrophage. Additionally, the algorithmic
definition of some rules are given in the appendix.
Briefly, the rules represent the following processes:
Resting macrophages take up bacteria and either kill
them or become infected. Infected macrophages become
activated only if they contain a small number ðNcÞ of
intracellular bacteria. After the number of intracellular
bacteria grows above Nc; infected macrophages are
classified as chronically infected. Chronically infected
macrophages are no longer able to take up and kill
extracellular bacteria, nor can they be activated.
Chronically infected macrophages may burst due to an
excessive intracellular bacterial load, or they may be
killed by T cells.

Resting macrophage rules: To reflect resting macro-
phage dynamics described above, the following rule is
executed for each macrophage in the resting state ðMRÞ:
We assume that if there are a small number of
extracellular bacteria present in the same micro-com-
partment as a resting macrophage (namely, less than
NRK—for which we use a value of 2), then the
macrophage phagocytoses and kills those bacteria and
remains in the resting state.

On the other hand, if there are more than NRK

bacteria present, then there is some small probability pk

that the macrophage still succeeds in killing NRK

intracellular bacteria; but it is more likely that it cannot,
in which case the macrophage becomes infected ðMI Þ

with an intracellular level of NRK : The value of pk is set
to 5%, since for M. tuberculosis the chances that a
resting macrophage can actually kill bacteria is quite low
(Zahrt, 2003). This process is shown in Fig. 5, and the
algorithm is shown in Appendix A.1.

Infected macrophage rules: The following rules are
executed for each infected macrophage ðMI Þ (see the
algorithm in Appendix A.2):
�
 Chemokine secretion: At every time-step, each in-
fected macrophage releases a given amount cI ¼ 5000
units of chemokine into its micro-compartment. The
model is invariant to changes in cI ; for cI41:

Ci;jðtþ 1Þ ¼ Ci;jðtÞ þ cI :
�
 Intracellular bacterial replication: Intracellular bac-
teria replicate within infected macrophages. The
discrete intracellular growth rate aBI is 0.00048/min,
based on an intracellular doubling time of 24 h for M.

tuberculosis (Paul et al., 1996). For intracellular
bacterial replication aBI ; we use a range of values
between 0.0002 and 0.0006/min:

BI ðtþ 1Þ ¼ BI ðtÞ þ aBI � BI ðtÞ:
�
 Chronic infection: The intracellular bacterial load of
an infected macrophage increases over time due to
the process of bacterial replication (described above).
If the intracellular bacterial load exceeds a threshold
Nc; the macrophage becomes chronically infected (see
the arrow from MI to MC in Fig. 4).

�
 T cell activation: Macrophage activation can occur if

there are T cells in or around the micro-compartment
where an infected macrophage resides. Cytokines such
as IFN-g and TNF are produced by T cells and are
involved in the process of macrophage activation.
Instead of including cytokines in our initial formula-
tion, we use the T cell population (that secretes these
effectors) as a surrogate. This is reasonable as levels of
cytokines are likely proportional to the numbers of
cells that secrete them.

Macrophage activation is a function of the number
of T cells in the immediate (Moore) neighborhood of
an infected macrophage (with a maximum number
Ntact), and the probability that T cells will activate
a macrophage ðTactmÞ: If the macrophage is acti-
vated, then it eliminates its intracellular bacterial
load, and it will have a lifespan ðMalsÞ of 10 days. See
Fig. 6.

Chronically infected macrophage rules: The following
rules are executed for each chronically infected macro-
phage (see the algorithm in Appendix A.3):
�
 Chemokine secretion: Like infected macrophages, a
chronically infected macrophage secretes chemokine
into its micro-compartment.

�
 Intracellular bacterial replication: We assume that

within chronically infected macrophages, intracellular
bacteria replicate logistically with respect to the
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bacterial carrying capacity of macrophages, KBI :

BI ðtþ 1Þ ¼ BI ðtÞ þ aBI � BI ðtÞ

� ð1� ðBI ðtÞ=ðKBI þ 30ÞÞÞ:

We use a value of KBI ¼ 20 based on data from Paul
Fig. 8. Rule for T cell killing of a chronically infected macrophage.
et al. (1996) and Zhang et al. (1998).
�
 Bursting: If the intracellular bacterial load of a
chronically infected macrophage exceeds the bacterial
carrying capacity of macrophages ðKBI Þ; the macro-
phage bursts and its intracellular bacteria are released.
We assume that bursting spreads bacteria in the
current micro-compartment as well as to neighboring
micro-compartments. See Fig. 7 for an illustration.

�
 T cell killing: If there is a T cell in the same micro-

compartment as a chronically infected macrophage,
the T cell can kill the macrophage with a probability
pTk: The cytotoxic pathway via granulysin kills most
of the intracellular bacteria within the cytosol of the
macrophage (Lazarevic and Flynn, 2002). The other
likely pathway, apoptosis, induces cell death releasing
all of the intracellular bacterial pool into the environ-
ment (making them extracellular) (Bodnar et al.,
2001). Since we include only generalized T cell killing
processes in the model, we average the results of these
two mechanisms and assume 50% of the bacteria load
are killed. As with bursting, we assume that bacteria
are spread to neighboring compartments by this
process (see Fig. 8).

Activated macrophage rules: The following rules are
executed for each activated macrophage:
�
 Chemokine secretion: Like infected and chronically
infected macrophages, each activated macrophage
secretes chemokine into its micro-compartment.

�
 Phagocytosis and killing of extracellular bacteria:

Activated macrophages are highly efficient at phago-
cytosing and eliminating extracellular bacteria. We
assume a certain number Nphag of extracellular
bacteria are eliminated from a micro-compartment
where an activated macrophage resides:

BEi;jðtþ 1Þ ¼ BEi;jðtÞ �NphagX0:
3.3.5. Necrosis

The presence of dead or necrotic lung tissue is

common in TB. Cytotoxic conditions are created when,
for example, reactive nitrogen and oxygen intermediates
are released from infected macrophages. These mole-
cules are created by macrophages to kill bacterial cells
in specialized compartments within macrophages; how-
ever, when macrophages die, these molecules are
released into surrounding tissues and are also cytotoxic
to lung tissue cells causing damage and necrosis.

We model necrosis of lung tissue by counting how
many times a chronically infected macrophage bursts or
is killed by a T cell in each micro-compartment ði; jÞ:
A micro-compartment ði; jÞ is declared to be necrotic if
the number for bursting or T cell killings exceeds Nnecr;
we use a value of Nnecr ¼ 8: We explore the process of
necrosis and its effect in other work.

3.3.6. Implementation

The ABM was implemented in C/C++. The lattice is
represented by a two-dimensional array. Each element
of the array contains data of macrophages, T cells,
chemokine and bacteria. Objects were created for
macrophages and T cells. Real variables were used for
extracellular bacteria and chemokine. For each
time-step we updated chemokine values. On a longer
time-scale (10 min) we asynchronously update T cell
movement, and on even longer time-scale (e.g. 20 min),
we update macrophage movement. We also update
macrophage and T cell states. This algorithm loops
during a simulation time of 200 days. Each simulation
took about 15 min on a Pentium Xeon 2.6GHhz
workstation. As an example, some algorithms and
equations for macrophages are given in the appendix.

Table 1 summarizes all parameter values used for
two distinct simulation scenarios, namely containment
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Table 1

Parameter definitions for the model

Symbol Parameter description A B Units Source

l Chemokine diffusion coefficient 0.64 0.65 =0:1 min d

d Chemokine degradation coefficient 0.001 0.0004 =0:1 min d

pk Prob. of bacteria being killed within MR 8.51 2.36 % e

pTk Prob. T cell kills a macrophage 6.31 3.61 % e

Pkill % of BI being destroyed by killing 50 50 % d

KBE Carrying capacity ðBEÞ of micro-compartment 200 200 Scalar e

aBI Intracellular bacteria growth rate 0.00021 0.00049 /min d

aBE Extracellular bacteria growth rate 0.00015 0.00015 /min d

Nc No. of intracellular bacteria defining

transition to chronically infected state 10 10 Scalar e

KBI No. of bacteria that makes a macrophage burst 20 20 Scalar d

Ntact No. of T cells needed to activate a macrophage 4 5 Scalar e

Trecr Prob. of T cell recruitment 32 12.31 % e

Tmove Prob. of T cell movement, see Section 3.3.3 4.97 5.26 % e

Tactm Prob. a T cell will activate a macrophage 6 12.2 % e

Tls T cell lifespan 3 3 days d

Tdelay T cell delay 10 10 days d

Mrecr Prob. of macrophage recruitment 2.11 6.82 % e

Mrls Resting macrophage lifespan 100 100 days d

Mals Activated macrophage lifespan 10 10 days e

Nnecr No. of burstings to become necrotic 8 8 Scalar e

Tsp T cell speed 10 10 mm=min d

Mrsp Resting macrophage speed 1 1 mm=min d

Masp Activated macrophage speed 0.025 0.0632 mm=min e

Misp Infected macrophage speed 0.0007 0.0007 mm=min e

Minit Initial No. of resting macrophages 105 97 Scalar e

NRK No. of bacteria killed by MR 2 2 Scalar e

Nphag No. of bacteria killed by MA 10 10 Scalar e

Values for containment (column A) and dissemination (column B) simulations are given. Parameters d are from references, and e are estimated. See

text for more information.
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(Column A) and dissemination (Column B), selected
from the 1000 scenarios obtained in Section 3.4.

3.4. Sensitivity and uncertainty analyses

Although we estimated biologically realistic values for
a number of the parameters in the model, a number of
other parameters cannot be accurately estimated from
the biological literature; for instance, the probabilistic
parameters used in the stochastic rules (for recruitment
of T cells and macrophages, for activation of macro-
phages, etc.). Thus, there is a high-dimensional para-
meter space to explore. Uncertainty and sensitivity
analysis using LHS/PRCC methods have been used in
the analysis of numerous differential equation models,
such as models of disease transmission (Blower and
Dowlatabadi, 1994) and AIDS (Blower et al., 2002), and
complex systems (Helton and Davis, 2003). However,
we believe this is the first application of these methods in
the context of agent-based models.

We explored the parameter space by performing an
uncertainty analysis using Latin hypercube sampling
(LHS) method, which is an extension of Latin square
sampling. Sensitivity analysis was performed by evalu-
ating partial rank correlation coefficients (PRCCs)
(Blower and Dowlatabadi, 1994; Helton et al., 2000)
for various input parameters against given outcome
variables (discussed below).

We performed uncertainty and sensitivity analyses as
described above for 12 parameters using LHS with 1000
samples (i.e. more than 80 samples for each parameter).
Parameter ranges are given in Table 2, and a uniform
distribution function was used for all parameters, as no
weight for any value within the identified ranges is
known. To explore the random effect of a given
parameter set on output, we performed 10 simulations
for both the containment and dissemination parameter
sets (see Table 1 columns A and B, respectively). The
results shown in Fig. 9 show little variability from
stochastic parameters on the outcome within each of the
two infection outcome scenarios (i.e. containment or
dissemination). This result combined with the high
sample size for LHS ðN ¼ 1000Þ lends confidence that
each LHS simulation is among the typical output for the
distinct outcomes even given the stochastic nature
within those ranges.

To both qualitatively and quantitatively analyse the
effects of varying parameters, we used two outcome
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Table 2

Parameter ranges for LHS/PRCC analysis. All parameters have a uniform distribution

Symbol Parameter Min Max Units

l Chemokine diffusion coefficient 0.5 0.8 =0:1 min

d Chemokine degradation coefficient 0.000288 0.0011 =0:1 min

aBI Intracellular growth rate 0.0002 0.0006 /min

Trecr Prob. of T cell recruitment 10 40 %

Tmove Prob. of T cell movement, see Section 3.3.3 1 20 %

Tactm Prob. a T cell will activate a macrophage 5 20 %

Minit Initial No. of macrophages 40 400 Scalar

Mrecr Prob. of macrophage recruitment 2 7 %

Masp Activated macrophage speed 0.0125 1 mm=min

Ntact No. of T cells needed to activate a macrophage 1 10 Scalar

pk Prob. of bacteria being killed by resting macrophage 1 10 %

pTk Prob. T cell kills a macrophage 1 10 %
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Fig. 9. Ten simulations for each outcome, containment (solid lines)

and dissemination (dashed lines), are shown. The outcome variable

here is extracellular bacteria load (this is also the same result for the

other outcome variable, granuloma size- data not shown). These two

classes of simulations are obtained from two given sets of parameters

(Table 1). Simulations show little stochastic variability within each

class.
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variables to measure the development and spread of
infection. One is total extracellular bacteria, which is
used as an experimental marker of disease progression
and has been used in our previous ODE models
(Wigginton and Kirschner, 2001; Ganguli et al., 2004)
as a predictor of infection. The second is a spatial
measure that approximates the total amount of tissue to
which infection has spread: the number of micro-
compartments containing either an infected macro-
phage, a chronically infected macrophage, activated
macrophages, and necrosis. We define the latter out-
come variable granuloma size (as in Gammack et al.,
2003). In future work we explore other measures for
estimating granuloma size. The correlation between
extracellular bacteria and granuloma size is discussed
below. For brevity, we report in figures only the first
measure.
4. Results

In this section, we describe results that we obtained
with the model described above. We define initial
conditions used for our simulations, and then outline
different infection outcomes that the simulations repro-
duce. To better understand the dynamics leading to
these outcomes, we describe in detail the early dynamics
of the system and how this contributes to determining
infection outcome. This leads us to examine the effects
of certain key parameters. We conclude with the
application of the sensitivity and uncertainty analyses
that we adopted to explore the effects of variations in
parameters on infection outcome.
4.1. Initial conditions

Fig. 2 depicts initial conditions used for all simula-
tions. Some number ðMinitÞ of macrophages are ran-
domly placed on the lattice. Recall that the lattice
represents 4mm2 of alveolar lung tissue. It has been
estimated that in humans there are on the order of
109–1010 alveolar macrophages in the lung, and that
there is approximately 108 mm2 of alveolar surface area
(Mercer et al., 1994; Stone et al., 1992). This yields
estimates of 10–100 alveolar macrophages per mm2 of
tissue. Thus, we obtain a range of 40–400 for Minit:
These macrophages are all initially in a resting state,
since they represent resident alveolar macrophages
before infection is introduced.

As mentioned in Section 3.3.2, a small initial
infectious dose of extracellular bacteria is divided
among a few micro-compartments near the center of
the lattice. For the simulations described below, 16
extracellular bacteria were divided among four adjacent
micro-compartments closest to the center of the lattice,
i.e., BE49;49ð0Þ ¼ BE49;50ð0Þ ¼ BE50;49ð0Þ ¼ BE50;50ð0Þ ¼ 4:
There are no T cells and no chemokine on the lattice
initially.
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Fig. 10. (A) Granuloma showing containment at 12 days. Simulation

parameters in Table 1, column A. (B) Granuloma showing contain-

ment at 25 days. (C) Granuloma showing containment at 50 days. (D)

Granuloma showing containment at 100 days. (E) Granuloma showing

containment at 200 days. The colors represent resting macrophages

(green), activated macrophages (blue), infected macrophages (orange),

chronically infected macrophages (red), T cells (pink), necrotic tissue

(brown), and extracellular bacteria (yellow). Simulation movies in AVI

format can be found at http://malthus.micro.med.umich.edu/lab/abm/

movies/
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4.2. Infection outcomes

We found that by varying parameter values within
biologically reasonable ranges using the LHS method,
the model reproduces stable outcomes that can be
qualitatively classified into three distinct categories
corresponding to distinct clinical/pathological out-
comes: (1) clearance, (2) small, slow growing solid
granulomas leading to containment (including granulo-
mas containing necrotic areas either with or without
bacteria), and (3) large, necrotic granulomas leading to
disseminated infection.

Clearance is characterized by elimination of extra-
cellular bacteria, absence of infected and chronically
infected macrophages, and little or no necrotic tissue.
Containment is characterized by the survival of extra-
cellular bacteria in regions surrounded by a small
amount of necrotic tissue, and/or slow bacterial growth
within infected macrophages; however the immune
response in some cases eventually eliminates infected
and chronically infected macrophages. In dissemination,
on the other hand, there is a large and increasing
amount of necrosis, and extracellular bacteria can
spread across the environment.

Fig. 9 shows typical outcomes for containment (solid
lines) and dissemination (dashed lines) for the outcome
variable extracellular bacteria load, each repeated 10
times with the same initial parameter values (from
Table 1). Observe that the plots within each case (i.e.
containment or dissemination) are clustered.

Figs. 10 and 11 show simulations representing
containment and dissemination simulations, respec-
tively, via a series of snapshots of the spatial environ-
ment. Fig. 10 shows an example of a containment
simulation at days 12, 25, 50, 100, and 200 obtained with
parameters from Table 1 column A; while Fig. 11 shows
an example of a dissemination simulation at those same
time points, with parameters from Table 1 column B. In
the following section we analyse the observed dynamics
in greater detail.

4.3. Early stages of infection

To better understand and isolate what drives the
system towards one of the two infection outcomes
discussed above, we compare the dynamics observed in
Figs. 10 and 11 showing, respectively, containment and
dissemination scenarios. Beginning from the initial state
described above, we observe that the system typically
evolves as follows.

Resident resting macrophages randomly change posi-
tion, since each macrophage performs a random walk in
the absence of chemokine. This is a corollary of our
chemotactic movement rule. When a resting macro-
phage enters a micro-compartment containing extra-
cellular bacteria, it likely becomes infected. This leads to
a small number of infected macrophages, clustered near
the center of the lattice. These infected macrophages
release large amounts of chemokine (not shown).
Chemokine diffusion creates a chemokine gradient on
the lattice. This chemokine gradient directs movement
of the remaining resident resting macrophages already
on the lattice, since their random walks are biased
towards higher chemokine levels. Also, recruitment of
additional resting macrophages is initiated when suffi-
cient levels of chemokine diffuse to the source micro-
compartments. These resting macrophages also migrate
toward the source of chemokine.

Meanwhile, intracellular bacteria replicate within
infected macrophages, which become chronically in-
fected. These dynamics result is an initial ‘‘granuloma
structure’’ consisting of a small number of chronically
infected macrophages surrounded by resting macro-
phages. This can be seen in both snapshots at day 12 in
Figs. 10A and 11A. In non-human primate models,

http://malthus.micro.med.umich.edu/lab/abm/movies/
http://malthus.micro.med.umich.edu/lab/abm/movies/
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Fig. 11. (A) Granuloma showing dissemination 12 days. Simulation

parameters in Table 1, column B. (B) Granuloma showing dissemina-

tion at 25 days. (C) Granuloma showing dissemination at 50 days. (D)

Granuloma showing dissemination at 100 days. (E) Granuloma

showing dissemination at 200 days. The colors represent resting

macrophages (green), activated macrophages (blue), infected macro-

phages (orange), chronically infected macrophages (red), T cells (pink),

necrotic tissue (brown), and extracellular bacteria (yellow). Simulation

movies in AVI format can be found at http://malthus.micro.med.

umich.edu/lab/abm/movies/
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granuloma structures are observed as early as two weeks
after infection (J. Flynn, personal communication).

As intracellular bacteria continue to replicate within
chronically infected macrophages, macrophages even-
tually burst when their carrying capacity is reached. This
spreads extracellular bacteria to neighboring micro-
compartments where extracellular bacteria is phagocy-
tosed by neighboring resting macrophages. This results
in a new round of infected macrophages.

In both settings, after a delay of 10 days, T cells enter
the lattice due to chemokine-driven recruitment. We
enforce such a delay to account for the time it takes for
antigen-presenting cells (such as dendritic cells) to
migrate to the lymph node and prime T cells, and for
T cells to then migrate from the lymph node to the site
of infection.4 The length of this delay is important since
4Future extensions of this model could include these antigen-

presenting cells and T cell activation in the lymph node, thus

developing an agent-based version of the two-compartmental model

of Marino and Kirschner (2004).
it affects the spatio–temporal distribution of T cells with
respect to the growing granuloma structure of infected
and resting macrophages, and below we study the effects
of variations to the delay length. The spatio–temporal
distribution of T cells is significant, and we also discuss
this below.

Chemotactic movement of T cells means that, like
macrophages, they tend to be recruited and move
toward the edges of granuloma. Moreover, according
to movement rule of T cells, there is a possibility for
T cells to move into micro-compartments where macro-
phages reside.

Hence, some T cells penetrate the cluster of resting
macrophages surrounding chronically infected macro-
phages. This can be seen in both Figs. 10B and 11B.

The interplay between T cell migration and bursting
of chronically infected macrophages leads to a key
dynamic influencing spread or containment of infection:
What happens when one chronically infected macro-
phage bursts and causes a new round of infections in
neighboring resting macrophages? There are two possi-
bilities. If T cells have migrated to the immediate
neighborhood of a chronically infected macrophage
when bursting occurs, these T cells may activate the
newly infected macrophage(s), contributing to control of
infection. On the other hand, if there are no T cell agents
nearby, infected macrophages may progress to a chronic
infection state, contributing to infection spread.

4.4. Later states of infection

Fig. 10B (Containment scenario at 25 days) shows
activated macrophages (in blue) densely concentrated in
the center of the granuloma. Fig. 11B (Dissemination
scenario at 25 days) also shows activated macrophages
but many more infected and chronically infected
macrophages.

Fig. 10C (Containment scenario at 50 days) shows
infected macrophages surrounded by resting macro-
phages, a few extracellular bacteria in the center of the
granuloma, and a ring of T cells surrounding macro-
phages as observed in typical granulomas. On the other
hand, Fig. 11C (Dissemination scenario at 50 days)
shows a larger granuloma with more infected and
activated macrophages at the edges of the granuloma;
clearly bacteria are not being contained and the
granuloma continues to grow.

Fig. 10D (Containment scenario at 100 days) shows
infected macrophages at the center of the granuloma,
with activated macrophages in a ring, containing the
spread of the infection. Conversely, Fig. 11D (Dissemi-
nation scenario at 100 days) shows many activated
macrophages in a diffuse granuloma structure; bacteria
are not being contained.

Fig. 10E (Containment scenario at 200 days) shows
infected macrophages walled off by macrophages. On

http://malthus.micro.med.umich.edu/lab/abm/movies/
http://malthus.micro.med.umich.edu/lab/abm/movies/
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the other hand, Fig. 11E (Dissemination scenario at 200
days) shows many infected macrophages at the periph-
ery, inducing spread of bacteria outside the granuloma.
Necrotic tissue appears due to the high frequency
of macrophages bursting and killing in the area, an
indication of a strong inflammatory response. Many
activated macrophages are found over the site.

A specific set of parameters, identified through
uncertainty and sensitivity analyses, controls the distinct
outcomes observed. We analyse each of these para-
meters in the next section.
4.5. Results of uncertainty and sensitivity analysis

To explore the role of parameter values on the
dynamics observed, we perform detailed uncertainty and
sensitivity analyses as outlined above. To this end, we
identified a group of parameters we consider important
to control bacterial load. Granuloma size, obtained as
the sum of infected, chronically infected, activated
macrophages and necrosis, is highly correlated with
extracellular bacteria (correlation value of 0.966,
po0:001 at 500 days). Table 3 shows a list of these
parameters and also gives temporally dependent PRCC
values for each parameters related to the outcome
variable, BE : Below we discuss the influence of each
parameter on infection outcome in more detail.

Because TB is a long-term disease (even if contain-
ment leads to latency), we explore our sensitivity
analysis beyond the typical time-frame it takes for a
granuloma to form (14–100 days) to up to 500 days.
This yields insight into which mechanisms are important
to long-term granuloma maintenance rather than
granuloma formation. Table 3 presents PRCC values
for key parameters out to the 500 day time point for
comparison. Some parameters gain (or lose) significance
at that later time point and this lends insight into which
Table 3

PRCC values of parameters that are significantly positively or negatively cor

analyses

Symbol Parameter description Da

12

l Chemokine diffusion coefficient ns

d Chemokine decay coefficient ns

aBI Intracellular growth rate 0.9

Trecr Prob. of T cell recruitment ns

Tmove Prob. of T cell movement, see Section 3.3.3 ns

Tactm Prob. of T cell activates a macrophage ns

Minit Initial No. of macrophages ns

Mrecr Prob. of macrophage recruitment ns

Masp Activated macrophage speed ns

Note that correlations change over time. All values indicated have signific

Tables 1 and 2.
processes are involved in maintenance of long-term
latent infection.
4.5.1. Chemokine diffusion coefficient, l; and Chemokine

decay coefficient, d
The chemokine diffusion coefficient l is positively

correlated with extracellular bacteria ðBEÞ; meaning
higher chemokine diffusion rates enhance total extra-
cellular bacterial load (or granuloma size) (see Table 3).
On the other hand, the chemokine decay rate d is
negatively correlated with BE : An interesting result is
that d has its highest negative correlation around 30
days after infection. This result suggests that granuloma
growth could be reduced if the half-life of key
chemokines are reduced, or their function is blocked,
with the strongest effect expected at 30 days after
infection. This effect aligns with the observed crowding
effects of macrophages as discussed further below.
4.5.2. Intracellular bacterial growth rate, aBI

One interesting feature of Mycobacterium is their slow
growth rate. Their doubling time is order of magnitudes
slower than most other pathogenic bacteria. This
interesting feature surfaces as a determinant of infection
outcome. In fact, the intracellular bacteria growth rate is
strongly correlated with extracellular bacterial load and
shifts from positive to negative over time. During the
first days of infection, large aBI allows the granuloma to
grow fast, in particular, between days 5 and 15 post-
infection, with a correlation peak of +0.98 at day 12
(Table 3). However, we observe a sign shift in the PRCC
value around the 25th day of infection, becoming
significant negatively correlated at around the 30th
day of infection. At day 60, the PRCC value between
aBE and bacteria ðBEÞ is �0:48: Then, there is another
sign shift around day 150 post-infection, with PRCC
value 0.45 at 180 days and 0.31 at 500 days (see Table 3).
related with total extracellular bacteria ðBE Þ; according to LHS/PRCC

ys

30 60 180 500

0.18 0.13 ns 0.13

�0.29 �0.15 ns �0.19

8 �0.14 �0.48 0.45 0.31

�0.36 �0.27 �0.16 �0.31

�0.65 �0.54 �0.61 �0.57

�0.24 �0.16 ns �0.15

0.40 0.21 ns ns

0.56 0.61 0.67 0.75

0.31 0.32 ns ns

ance po0:001; n.s. is non-significant. Parameter sets used were from
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These results indicate that between the first and second
month post infection, M. tuberculosis generates larger
granulomas when it grows more slowly (within the
biological ranges explored in Table 2).

4.5.3. Rate of macrophage recruitment, Mrecr and initial

number of macrophages Minit

The rate of macrophage recruitment, Mrecr; is
represented in the model as a probability. At each
time-step and at each source compartment, a new
macrophage is introduced onto the lattice with prob-
ability Mrecr: We observe strong positive correlations
between Mrecr and the two outcome variables, total
extracellular bacteria and granuloma size (see Fig. 12).
Increased recruitment of macrophages tends to be
detrimental to infection outcome in this model. Increas-
ing this parameter leads to a greater number of resting
macrophages crowding around the granuloma center,
being susceptible to infection; as a result the ‘‘lymphoc-
tye cuff’’ of T cells is pushed further out, allowing
infection to incubate and spread within granuloma
structure. This can be interpreted as resting macro-
phages crowding out T cells. In other words, macro-
phages create a barrier that prevents T cells from
migrating towards the center of the granuloma and
activating macrophages. Recall that activated macro-
phages have the ability to kill large amounts of
extracellular bacteria. For similar reasons the initial
number of macrophages Minit is also positively corre-
lated with extracellular bacteria BE (see Table 3) and
granuloma size (data not shown) as too many initial
macrophages can induce the same phenomenon.

From our observations it is expected that a balance in
the number of macrophages present in the granuloma
exists: an optimal number of macrophages large enough
to wall off spread of bacteria, but not too large that it
blocks access of T cells towards the center of the
granuloma.

4.5.4. Rate of T-cell recruitment ðTrecrÞ and probability

of T-cell movement ðTmoveÞ

Macrophage activation is important to controlling
granuloma size. In the model, macrophage activation is
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Fig. 12. The relationship between probability of recruiting macro-

phages (Mrecr) and extracellular bacteria ðBEÞ; at 62 and 500 days,

from 1000 simulations. Both have significance with po0:001: (A) at 62

days with PRCC=0.61, and (B) at 500 days with PRCC=0.75.
dependent on T cell abundance near infected macro-
phages. Thus, we expected both the rate of T cell
recruitment ðTrecrÞ and the probability of T-cell move-
ment ðTmoveÞ to be important parameters. In particular,
we expected them to demonstrate strong negative
correlations with the outcome variables. However, our
results show that Tmove is more strongly correlated with
both granuloma size or total extracellular bacteria than
is Trecr:

Our results indicate (as shown in Table 3) that the
number of T cells (as determined by the value of
the parameter Trecr) is not as significant for halting the
spread of infection. Rather, what is more important is
how well T cells are able to navigate towards the center
of the granuloma. T cell movement ðTmoveÞ is negatively
correlated with extracellular bacteria ðBEÞ (see Fig. 13).
If T cells have an increased ability to move toward the
center of the granuloma (reflected in our model by the
parameter Tmove), then they have increased opportu-
nities to activate macrophages and hence limit infection
spread.

These findings likely have important implications.
There must exist a balance between the number of
macrophages and T cells present in the granuloma.
Macrophages crowd around the initial site of infection,
and in the absence of T cells, become infected. This
triggers a positive feedback loop of infection and
bursting, leading to infection spread, as measured by
either outcome variable (large granuloma size or
numbers of extracellular bacteria). This occurs when
there are so many resting macrophages clustered around
the local site of infection that they prevent T cells from
moving close enough to the infection site to activate
macrophages.

4.5.5. Other significant parameters

Our uncertainty and sensitivity analyses revealed that
several other parameters are significantly correlated with
the total extracellular bacteria ðBEÞ (Table 3), indicating
that they have a strong influence on spread of infection.
For example, the rate of activated macrophage move-
ment is negatively correlated with total extracellular
bacteria. This likely follows since increasing the rate at
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Fig. 13. The relationship between probability of T cell movement

ðTmoveÞ and total extracellular bacteria ðBE Þ; at 62 and 500 days, from

1000 simulations. (A) at 62 days, PRCC=�0.56, and (B) at 500 days,

PRCC=�0.57. Both have significance with po0:001:
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which activated macrophages change location implies
they reach more micro-compartments containing extra-
cellular bacteria. However, since they are not able to
clear all bacteria in one micro-compartment before they
move to another location, they leave behind extracel-
lular bacteria that could then infect new resting
macrophages. On the other hand, the initial number of
resting macrophages is positively correlated with total
extracellular bacteria. Increasing the initial number of
resting macrophages has a similar effect as increasing
Mrecr; as described above.

4.6. Adaptive immunity delay, Tdelay

In the absence of prior infection or vaccination, the
adaptive immune response takes anywhere from 5–10
days to develop activated immune cells specific for
responding to the pathogen in question (Lurie, 1964;
Janeway, 2001; Jenkins et al., 2001; Medzhitov and
Janeway, 2000). In our simulations, we do not capture
this delay through a mechanistic priming and trafficking
between lymph nodes and the site of infection (we
explore this in other work—Marino and Kirschner,
2004). Instead, we capture this effect by imposing
a constant time delay before T cells begin arriving at
the infection site. To study the impact of variations
in this delay we vary the time for initial arrival of
effector T cells to the site between 0 and 25 days ðTdelayÞ

(see Fig. 14).
There are two scenarios to consider. First, we consider

the parameter set that leads to containment and vary the
T cell arrival time (Fig. 14, Panel A). Fig. 14 shows that
the outcome variable ðBEÞ is significatively affected
when T cells arrive in the first few days of infection (i.e.
no delay). In this situation we observe complete
clearance of bacteria. As most individuals experience
latent infection (95%) then we can likely assume their
granulomas are containing or clearing infection. This
implies that an important role could be played by
successful vaccination of most individuals, ensuring an
early T cell response upon infection. However, when
using the parameter set that leads to dissemination,
lower numbers of bacteria are noted rather than
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Fig. 14. The effect of varying T cell arrival delay ðTdelayÞ on

extracellular bacteria ðBEÞ; using parameters set leading to contain-

ment (A) and dissemination (B) from Table 1. Data observed at 200

days of simulation N ¼ 10:
clearance (Fig. 12, Panel B). This suggest that for a
given parameter set, T cell immunity is crucial at the
beginning of the infection. T cells arriving at later times
(5, 10, or 20 days) do not have the same effect as when
they arrive earlier (o5 days). At the later time, other
mechanisms are more important in controlling infection
such as macrophage density and T cell parameters
(discussed above), and they must work in concert to
control infection, with T cells playing a key part in this
dynamic. When other parts of the system are prone to
containment, T cells can exhibit their greatest effect
early in infection (Fig. 14).
5. Discussion

In this paper, we have presented an agent-based
model of the adaptive immune response to M. tubercu-

losis infection. In particular, we focused on the unique
spatial structure that develops during this response, and
simulate the formation of a granuloma. We applied
uncertainty and sensitivity analyses (LHS/PRCC) with
respect to the parameter space for the first time in this
setting. The parameters discussed are grouped into those
that govern chemokine and cytokine dynamics, those
that govern host cell dynamics, namely T cells and
macrophages, and those that govern bacterial growth
rates.

5.1. Chemokines and cytokines

Chemokines are important molecules governing
granuloma formation (Flynn and Chan, 2001). Chemo-
kines are small proteins (8–10 kDa) and are a subset of a
general group of effector molecules known as cytokines.
These chemoattractants serve to draw macrophages and
T cells to the infection site. Human macrophages
infected with M. tuberculosis produce several chemo-
kines such as: CCL, CCL3, CCL4, and CCL5, among
others (Scott et al., 2003). These molecules create a
concentration gradient for macrophages and T cells.
However, recruiting appropriate immune cells to the site
of infection is necessary but insufficient to control
infection outcome.

Our results show that an increase in chemokine
diffusion increases granuloma size. An opposite effect
is observed for chemokine degradation, where rapid
degradation decreases granuloma size. This result
implies that a balance must exist between chemokines
attracting macrophages and T cells to kill bacteria, while
attempting to maintain smaller granuloma size (i.e. less
tissue damage). Conversely, an increase in the concen-
tration and lifespan of chemokines increases granuloma
size. Taken together these results imply that if it were
possible to control chemokines in this way it could
prevent macrophage overcrowding. We have included a
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very generalized chemokine in this model and our goal is
to consider the effects of more specific chemokines in
future work.

Cytokines serve as modulators of immune cell
behavior. These include IFN-g; TNF, IL-2, IL-12,
among others (Flynn and Chan, 2001). There is an
established complex regulation by TNF such that in
the absence of this cytokine a chemokine gradient is
not formed, cell migration fails, and granulomas do
not form properly (Mohan et al., 2001). In this model
we have used the T cells that produce cytokines as
surrogates for the effector molecules they secrete. The
relevance of TNF and other specific effectors are the
subject of our future work.

5.2. Mycobacterium tuberculosis

M. tuberculosis is one of the oldest pathogens known
to humans. It has evolved to be the most successful
pathogen in that one third of the world is infected. It has
a stable genome (Victor et al., 1997) and a curiously
slow growth. Because of the stability of this organism,
we place the major emphasis on the host in determining
infection outcomes. However, one of the most interest-
ing results obtained with our analyses was the shift in
the sign (positive to negative) of the correlation
coefficient over time regarding the influence of the
intracellular bacterial growth rate on granuloma size
(or bacterial load). Early in infection, high growth rates
are favorable for granuloma growth, but between the 1st
and 3rd month of infection (Section 4.5.2), granuloma
grow larger when Mycobacterium growth rates are
slowest. This counterintuitive result is obtained from
the complex dynamics between T cells, macrophages
and bacteria that occur. This confirms the importance of
the slow mycobacterial growth rate as part of its
virulence, and this is the first time this result has been
observed through analyses of this type.

5.3. Macrophages

Macrophages play dual roles in Mtb infection. In
their resting state, they take up extracellular bacteria
and provide an ideal growth environment, yet in their
activated state are able to take up and destroy bacteria.
Thus, there exists a balance regarding macrophage
numbers. Too many resting macrophages provide
unlimited shelter to bacteria and crowd the granuloma
preventing cell–cell interactions that could lead to
activation and bacterial containment. Too many acti-
vated macrophages can lead to severe tissue damage
through release of cytotoxic factors (such as reactive
oxygen and nitrogen intermediates).

Even the speed of infected macrophages can be
important in controlling granuloma growth. Slow
movement of infected macrophage allows them to
remain in a location longer allowing them to either
become activated and kill their internalized bacteria, or
to be killed by cytotoxic T lymphocytes (CTL) action. If
they move too fast, they may evade these actions leading
to disseminated infection.

5.4. T cells

From uncertainty and sensitivity analyses we observe
that the parameter governing T cell movement is more
significant to granuloma growth (or extracellular
bacterial numbers) than the number of T cells recruited.
This indicates that the spatial distribution of T cells in a
developing granuloma is more important than merely
their raw numbers. Studies in mice without TNF show
that, while cell numbers are the same as normal mice,
their spatial distribution within the granuloma is diffuse,
forming disorganized granulomas (Flynn and Chan,
2001), supporting our findings. Curiously, our results
indicate that the timing of T cell recruitment does not
independently determine infection outcome, but works
in concert with other parameters in the system. If the
system is biased toward a containment scenario, then
the rate and timing of T cell recruitment can influence
the timing of bacterial control. Thus, these results could
be applied to vaccine or treatment settings. However, if
the system is biased toward a weaker response, then the
system will behave almost independent of early T cell
dynamics.

The rules of macrophage activation by T cells are a
first approximation to a more complex phenomena. In
actuality the direct role of T cells in activating
macrophages is facilitated by both IFN-g secretion as
well as cell–cell interactions. It may be the case that once
IFN-g is included into the model in a more direct and
mechanistic fashion, the importance of macrophage
activation mediated by IFN-g balanced with T cell
interactions will be observed. This is the focus of our
future work.

5.5. Final comments

In summary, the development of a simple model to
explore granuloma formation to determine function has
yielded key results that require further testing through
both theoretical and experimental approaches. A more
detailed model including specific cytokines and chemo-
kines and their mechanisms will likely uncover deeper
layers of this complex system. Our results here imply
that indeed an agent-based approach is an appropriate
tool for exploring this complex spatio–temporal system.
However, it is important to determine differences
between different mathematical approaches exploring
the same system to determine to what extent informa-
tion is revealed at different scales. In other work we
draw this comparison (Gammack et al., 2004).
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Appendix A

This appendix includes a sample of the algorithms we
implemented for the rules described for resting, infected
and chronically infected macrophages in Section 3.
These algorithms were coded in C/C++ and imple-
mented on a LINUX workstation.

A.1. Resting macrophages rules
RESTING MACROPHAGES RULES ()

if BEi; jðtÞpNRK then
BEi; jðtþ 1Þ ¼ ðBEi; jðtÞ �NRK ÞX0

return MR; Resting macrophage
endif
if BEi; jðtÞ4NRK then
r RandomUniform½0; 100�

if rppk then
BEi; jðtþ 1Þ ¼ ðBEi; jðtÞ �NRK Þ
MR succeeds in killing the bacteria and remains in
resting state

return MR; Resting macrophage
else
BEi; jðtþ 1Þ ¼ ðBEi; jðtÞ �NRK Þ
BI i; jðtþ 1Þ ¼ NRK
MR does not succeed in killing bacteria

The macrophage is infected.

return MI ; Infected macrophage
endif
endif

A.2. Infected macrophages rules
INFECTED MACROPHAGES RULES ()

Chemokines release by macrophages:

Ci;jðtþ 1Þ ¼ Ci;jðtÞ þ cI
Intracellular bacterial replication:

BI ðtþ 1Þ ¼ BI ðtÞ þ aBI

� BI ðtÞ
Chronic infection:

if BI ðtÞpNc then
return MC ; Chronically infected macrophage

endif
Macrophage activation:

if BI ðtÞpNc then
NT ¼ Number of T cells in the neighborhood

if NT4Ntact then
NT ¼ Ntact
endif
If the macrophage is activated, then it eliminates its
intracellular bacterial load:

r RandomUniform½0; 100�

if roðNT � TactmÞp100 then
BI i; j ¼ 0

return MA; Activated Macrophage
else
return MI ; Infected Macrophage

endif
endif

A.3. Chronically infected macrophages rules
CHRONICALLY INFECTED MACROPHAGES RULES ()

C
hemokines release:

C
i;jðtþ 1Þ ¼ Ci;jðtÞ þ cI
I
ntracellular bacterial growth:

B
I ðtþ 1Þ ¼ BI ðtÞ þ aBI

� BI ðtÞ=ð1þ ðBI ðtÞ=ðKBI
þ 30ÞÞÞ
B
ursting:

i
f BI ðtÞ4KBI then
B
Ei�1;jðtþ 1Þ ¼ BEi�1;jðtÞ þ BI ðtÞ=9

B
Eiþ1;jðtþ 1Þ ¼ BEiþ1;jðtÞ þ BI ðtÞ=9

B
Ei�1;jþ1ðtþ 1Þ ¼ BEi�1;jþ1ðtÞ þ BI ðtÞ=9

�
etc:

M
acrophage is eliminated

r
eturn Death
e
ndif
T
 cell killing:

i
f ðBI ðtÞpKBI Þ and 9 T-cell at ði; jÞ then
r
 RandomUniform[0,100]

i
f roðpTkÞ then
B
I i; jðtÞ ¼ ðPkill=100Þ � BI i; j

B
Ei�1;jðtþ 1Þ ¼ BEi�1;jðtÞ þ BI ðtÞ=9

B
Eiþ1;jðtþ 1Þ ¼ BEiþ1;jðtÞ þ BI ðtÞ=9

B
Ei�1;jþ1ðtþ 1Þ ¼ BEi�1;jþ1ðtÞ þ BI ðtÞ=9

�
etc:

M
acrophage is eliminated

r
eturn Death
e
lse
r
eturn MC ; Chronic Macrophage

e
ndif
e
ndif
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