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Toward a multiscale model of antigen

presentation in immunity

Summary: A functioning immune system and the process of antigen
presentation in particular encompass events that occur at multiple length
and time scales. Despite a wealth of information in the biological literature
regarding each of these scales, no single representation synthesizing this
information into a model of the overall immune response as it depends on
antigen presentation is available. In this article, we outline an approach for
integrating information over relevant biological and temporal scales to
generate such a representation for major histocompatibility complex class
II-mediated antigen presentation. In addition, we begin to address how
such models can be used to answer questions about mechanisms of
infection and new strategies for treatment and vaccines.

Keywords: antigen presentation, mathematical models, multiscale, immunity, antigen-
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Introduction

Biological systems are often explored in the laboratory at a

reductionist scale. The idea is that if we understand everything

at particular scales (most recently focused at the molecular

scale), we will then understand the system as a whole;

immunology is no exception. Of concern, however, is that

the immune system spans multiple length (gene through body)

and time (subsecond through lifetime) scales and that the

immune response will likely only be completely understood

through knowledge of how processes at these different scales

work together. Such an integrative picture of a system is the

desired outcome of multiscale modeling. In total, approaches

that capture multiscale or system-wide features fall under the

umbrella of systems biology.

Systems biology encourages a non-reductionist approach to

model development, beginning with the simplest possible

model. Coined ‘reconstructionism’ by M. Savageau (1), the idea

is that biological systems are more than the sum of their parts

and that integrative behavior occurs in a non-predictable

fashion. The modeling process itself brings about an under-

standing of the underlying system, as components are captured
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with mathematics and/or statistics. A minimal model is

constructed and then grows in complexity, driven by new

hypotheses that may not have been apparent from the

phenomenological descriptions. With recent advances in

information technology – fast and inexpensive computing

power, global networking infrastructure, and comprehensive

databases – modeling and simulation are becoming increasingly

important biological tools. For the most part, these efforts have

focused at a single scale, e.g. genomic/proteomic, cellular,

tissue, organ, organ system, and whole body. Only now is there

an emphasis to develop tools, techniques, algorithms, and

mathematical theory to integrate seamlessly the continuum

from the micro- to the macroscale. Multiscale modeling deals

with spanning scales as diverse as from molecular to population.

It can affect our understanding of biological processes and also

further our predictive capabilities in biology. Multiscale

algorithms are built and validated against experimentally

derived data and observations.

The need for multiscale approaches in biology is recognized

in the cardiovascular field, where a number of groups are

developing methods to integrate molecular and cellular events

with organ function (2, 3). In addition, multiscale approaches

are now being considered for neural systems (4–6), tumor

growth (7), the vasculature (8), and developmental biology

(9). Multiscale approaches are also being applied in various

engineering problems, for example in polymer science (10)

and tissue engineering (11). We argue that immunology is also

ripe for such a multiscale approach.

We focus in this article on antigen presentation through the

major histocompatibility complex (MHC) class II pathway and its

role in the immune response. We first review the relevant

biological events and discuss the multiscale aspects of the process.

We then present models that have been developed to address

biological events occurring at various scales and give examples of

applications to the study of disease dynamics. Finally, we discuss

ways to begin to integrate models across scales.

The biology of antigen presentation

Antigen presentation is the process by which peptide fragments

from the proteins of pathogens or the host are partially degraded

and then displayed (or ‘presented’) on the surfaces of cells in

complex with MHC molecules. Once bound to MHC, antigens

can be recognized by cognate T cells, which then respond either

by killing the original antigen-presenting cell (APC) or else by

activating it along with other cells. While antigen presentation

may appear to occur only at molecular and cellular scales, events

at other scales also affect the outcome. For instance, antigen

presentation to naive T cells occurs within the larger context of

the lymph node (LN), and other chemical signals (e.g. cytokines

produced by other cells) within the LN or the topology of the LN

itself may affect whether APCs are able to contact and activate

T cells. Similarly, the ability of effector T cells to traffic out of the

LN and throughout the body will affect the time course of an

infection. The success of antigen presentation therefore depends

on events occurring at multiple biological scales (Fig. 1).

Fig. 1. Key events in antigen presentation.
Biological scales are represented here as physical
levels. (A) Multicompartmental system of blood,
lymphatics, and particular organs/sites of inter-
est. (B) LN environment wherein APCs interact
with T cells. (C) Intracellular pathways leading
to pMHC complexes on the surface of an APC.
(D) Molecular level interactions between peptide
and MHC are influenced by genetic differences
among MHC II alleles. Ag, antigen.
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Peptide–MHC binding

A key event in antigen presentation is the binding of peptide to

one of two classes of MHC molecule. All nucleated human cells

perform antigen presentation to some extent by expressing

MHC I molecules that sample peptides from the cytoplasm.

However, some cells are also capable of presenting peptides

derived from exogenous antigens using MHC class II molecules;

these specialized cells are known as professional APCs. In this

review, we focus on macrophages and dendritic cells (DCs),

although B cells can also serve as APCs. [A recently discovered

pathway for presenting lipid antigens, the CD1 pathway, will

not be considered here; reviewed by De Libero and Mori (12)].

For the most part, the two classes of MHC molecule sample

different sources of antigen and take divergent pathways

through the cell. Proteins found in the cytoplasm, including

those produced by viruses, are degraded (or ‘processed’) into

shorter peptides by the main protein turnover machinery of the

cell, the proteasome. A subset of these peptides is transported

into the endoplasmic reticulum (ER) by the transporter

associated with antigen processing (TAP). Binding between

peptides of a particular length (8–10 amino acids) and MHC

class I molecules then occurs within the ER, and the resulting

complexes are trafficked to the cell surface. In contrast, antigens

from pathogens that do not reside in the cytoplasm, including

bacteria and parasites, are generally first taken up by the cell and

then processed in the endosomal pathway. Cathepsin proteases

located within the endosomal pathway become activated by the

increasingly acidified environment and cleave the protein

antigens into peptides of shorter lengths. Binding between

extracellular-derived peptides of varying lengths (often greater

than nine amino acids) and MHC class II molecules then occurs

later in this pathway or in a specialized vacuole that branches off

known as the MHC class II-binding compartment. Peptide–

MHC II (pMHC II) complexes are then trafficked to the cell

surface, as in the case of the class I pathway. In both cases, the

final stage is recognition of the complexes by cognate T-cell

receptors (TCRs), either on the surface of CD8þ cytotoxic T cells

(in the case of MHC I) or on the surface of CD4þ helper T cells

(in the case of MHC II).

One theme that arises from this cursory overview of both

antigen presentation pathways is the importance of high-

affinity binding. Peptides that bind a particular MHC molecule

weakly – or alternatively MHC variants that bind a particular

peptide weakly – are expected to lead to relatively few pMHC

complexes on the APC surface. Binding affinities of pMHC

complexes can be measured in vitro using a number of different

techniques. In the most common assay, a competitive binding

assay, various concentrations of the peptide of interest are used

to displace the binding of a labeled reporter peptide. The

concentration at which 50% of the reporter peptide is displaced

is equal to the IC50, which approximates the equilibrium dis-

sociation constant of a pMHC complex, KD. More precisely, IC50

is related to KD according to the following formula:

KD ¼ IC50

�
1 þ Lr

Kr

��1

where Lr and Kr represent the concentration of the reporter

peptide and the equilibrium dissociation constant of the

reporter pMHC complex, respectively (13). These parameters

frequently vary by protocol, Lr explicitly so and Kr by virtue

of being specific to each combination of peptide and MHC

(14–16). Alternatively, KD values and even association and

dissociation rate constants can be determined by other

techniques including radiolabeling and fluorescence polariza-

tion methods (17). Several online databases including MHCPEP

(18), MHCBN (19), and AntiJen (20) now store pMHC binding

affinities. These databases currently contain measurements on

approximately 13 000, 14 000, and 24 000 peptides, respectively.

In the former two databases, IC50 values are not available directly

but can be inferred from the four-tiered classification used by

both databases: high affinity indicates IC50 of <1 nM; moderate,

IC50 of 1–100 nM; low, IC50 of 100 nM–10 mM; and no binding,

IC50 of >10 mM. An IC50 of 500 nM is also commonly used

as a threshold to differentiate binding from non-binding (21).

In AntiJen, IC50 is reported directly whenever possible.

The greater significance of binding affinity to antigen

presentation can also be discerned from the epidemiological

literature. Various MHC alleles have been correlated with

increased susceptibility to diseases, particularly chronic diseases

of an autoimmune or an infectious nature (22). Examples of

diseases associated with particular MHC alleles include type I

diabetes, rheumatoid arthritis, malaria, and tuberculosis.

Because most polymorphisms in MHC molecules occur within

the peptide-binding region, it is reasonable to assume that

binding to either peptide or TCR is affected. The detailed

mechanisms behind these associations have not yet been

elucidated, although several hypotheses exist (22–24). Fur-

thermore, a correlation between pMHC affinity and magnitude

of the immune response at the cellular level has been shown

(25, 26). We provide a full treatment of this topic elsewhere

(Chang et al., manuscript in preparation).

Cellular processes controlling display of pMHC complexes

pMHC binding is by no means the only step that is regulated in

the antigen presentation pathway. Other steps are controlled

Kirschner et al � A multiscale model of antigen presentation
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dynamically, e.g. by cell-to-cell contact or the constantly

changing cytokine environment surrounding the APC, and

allow antigen presentation to be fine-tuned. We describe these

steps and others relevant to the MHC II-mediated pathway in

more detail below (Fig. 2) (reviewed in 27).

Antigens for the MHC II-mediated pathway are generally

internalized by one of three routes before converging on the

endosomal pathway: phagocytosis, fluid-phase pinocytosis,

and receptor-mediated endocytosis. Internalized antigens then

progress through increasingly acidified endosomes and are

exposed to low pH-activated cathepsins that degrade the

antigens into smaller peptides (28). These peptides then either

bind MHC II molecules or are directed to lysosomes for

degradation.

MHC II expression normally occurs at low levels in resident

APCs but can be upregulated or downregulated by the cytokine

environment. Interferon-g (IFN-g) is one cytokine that affects

MHC II expression. After IFN-g binds to its receptor on the APC

surface, a signal is propagated through the Janus kinase (JAK)

signal transducer and activator of transcription (STAT) pathway

that increases the level of class II transactivator (CIITA) in the

cell. CIITA acts as the master regulator of MHC II transcription,

and increased levels of CIITA lead to parallel increases in MHC II

expression several hours after exposure to IFN-g. Nascent MHC

II molecules enter the ER and are coupled to another protein,

invariant chain (Ii). The luminal domain of Ii binds the peptide-

binding groove of MHC II, protecting it from proteases, while

the cytoplasmic domain of Ii directs the two molecules to the

endosomal pathway. After reaching the endosomal pathway,

MHC II molecules retain a remnant of Ii, the class II invariant

peptides (or CLIP), until released by the enzyme H2-/human

leukocyte antigen (HLA)-DM (29). Here, antigenic peptides

compete for binding to MHC II with self-peptides that are

present at high levels and may bind more than 80% of the

available MHC II in the absence of exogenous peptides (30, 31).

In complex with either self-peptides or exogenous peptides,

MHC II molecules then traffic to the cell surface, where they

may remain stable for days until recognized by CD4þ T cells or

are internalized and degraded.

Macrophages and DCs express not only MHC II molecules but

also costimulatory and adhesion molecules necessary to engage

T cells. Both macrophages and DCs derive from a common

precursor, the monocyte, which differentiates into one of the

two cell types based on environmental cues (32, 33) [B cells,

another APC type and not a focus of this review, are derived

from hematopoietic cells in the bone marrow (27)]. Macro-

phages and DCs are found in overlapping distributions within

the body in areas such as the LNs, and there is even evidence to

suggest these cells can re-differentiate from one class to the

other (34).

Differences between macrophages and DCs occur in the rates

at which they perform processes related to antigen presentation.

DCs express 10–100 times the number of MHC II molecules

expressed by macrophages and also perform antigen uptake

at generally increased rates (35, 36). Consistent with these

findings, fewer DCs are required to activate T cells than

macrophages (35). More importantly, these cells play different

roles in the overall development of the immune response. DCs

take up antigen at the site of infection and migrate to LNs to

present antigen, while macrophages primarily perform their

function as APCs at the infection site (37).

Cellular interactions in the context of the LN

Once on the surface of the APC, pMHC II complexes can elicit

partial or full activation of T cells, depending at least in part on

the number of peptides presented and the number of TCR

engaged (i.e. bound to pMHC). Relatively few measurements

of pMHC–TCR affinity have been made, although some are

available in AntiJen (20). A single pMHC on the APC surface has

been shown to be sufficient to elicit an intracellular release of

calcium within the T cell, while full activation is generally

acknowledged to require hundreds of complexes as gauged by

the release of interleukin (IL)-2, a cytokine that initiates

localized T-cell division (also known as clonal expansion) (38,

39). In addition, there is evidence that a quantitative relation-

ship exists between surface pMHC levels and the magnitude

of T-cell response, assuming pMHC levels exceed a lower

threshold (38, 40–42). The effects of antigen presentation

Fig. 2. Molecular and intracellular events influencing the display of
pMHC II complexes on a single APC. One-step reactions are indicated
by solid arrows, while regulatory processes (which may involve several
reactions) are indicated by dashed arrows.
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therefore may be sensitive to variations in a number of

contributing intracellular processes.

During the course of an infection, antigen presentation

occurs at two major sites. First, within the LN, antigen

presentation events that are responsible for initiating an

adaptive immune response occur and are driven mainly by

DCs. Second, at the site of infection, macrophages participate in

antigen presentation events that sustain immune responses. The

tissue-level context strongly influences the dynamics of antigen

presentation and recognition. For example, the LN environment

restricts cytokines and chemokines to a microenvironment,

allowing efficient signaling to occur.

As the early events of immunity likely determine the success

of the response, understanding events within the LN is a critical

first step. There are approximately 700 LNs, each roughly 1–

5 cm3 in size, distributed throughout the human body, and

those closest to a given site of infection will be engaged in

infection dynamics. Some infections are systemic, involving not

a particular tissue site but instead the blood or multiple

epithelial sites; in these cases, many different LNs will be

involved at some level.

LNs are connected through a series of lymphatics that serve as

the highway between the LNs, entering into each LN through

afferent lymph ducts and leaving through the medullary sinuses

that flow into a single efferent lymph duct (Fig. 3). Blood vessels

also feed into the lymphatic system, both directly into the LNs at

high endothelial venules (HEVs) and at junctures throughout.

Lymphatics then return cells to blood through a common

conduit: the thoracic duct (43). APCs circulate into LNs through

the afferent lymphatics, while T cells enter through the HEVs

(44, 45). Once in the LN, CD4þ T cells sample the surface of

APCs for pMHC complexes within the LN paracortex (T cell

region of LN).

When a CD4þ T cell encounters an APC and its TCR binds its

cognate pMHC on the surface of the APC, a series of events

follows leading to T-cell activation. At the interface between

APC and T cell, pMHC, TCR, and costimulatory and adhesion

molecules aggregate into a structure known as the immuno-

logical synapse (IS) (46). Recently, the IS has been the subject of

intense investigation, and several theories exist as to how this

intricate structure forms and functions (47). If recognition

occurs, T cells become activated and begin secreting IL-2. These

T cells differentiate and become fully activated in response to

further environmental cues and additional cell–cell interactions

with APCs (48, 49). Experimentally, these changes can be

tracked by measuring the amount of radioactive-labeled

nucleotides incorporated by T cells as they divide. The ability

to quantify T-cell activation in turn provides an assay for antigen

presentation (50). In one commonly used in vitro assay, cultured

APCs are pulsed with a particular model antigen (e.g.

ovalbumin) and then exposed to T-cell hybridoma cells specific

for that antigen.

The composition of individual LNs can be determined

by extracting the LNs from animals (pre- and post-infection)

and analyzing them by flow cytometric methods, such as

fluorescence-activated cell sorting (51–54). From these studies,

it is clear that immune cell numbers increase dramatically

during an immune response. However, what cannot be

ascertained from these studies are the spatial dynamics that

occur within an LN and are known to play a role in the success of

antigen presentation events.

With the advent of two-photon intravital microscopy,

a technique that allows visualization of cells within a tissue

environment, it is becoming increasingly clear that T-cell

responses in LNs in vivo are much different form what has been

observed in vitro because of environmental factors as well as the

inherent structure of the LN (55–57) (Fig. 3). Using intravital

techniques, one can observe T cells and DCs interacting as they

travel through the paracortoid region of the LN. T cells display

rapid motion in LNs, moving at an average of 10–12 mm/min

and a peak velocity of 25 mm/min. On the smallest time scale,

the motion varies linearly with time, having a mean free path

�30 mm and changing path direction on average every 3 min

(57). Over longer time scales (up to 20 min), displacement-

squared varies almost linearly versus time, characteristic of

a random walk and quantified by the motility coefficient �65

mm2/min (58). Because T cells must traverse a LN in <48 h, as

observed in classical studies of lymph circulation (59), their

motion must be biased toward migration from entry at the

afferent lymph to exit at the efferent lymph over the time scale

of hours to days. If the motion through the entire LN conformed

to a random walk with a motility coefficient of 65 mm2/min,

T-cell migration through the LN would take 24 h to move

600 mm from the starting point and more than 10 days, on

average, to be displaced 2 mm. Both of these distances would

represent unrealistically slow movement through the entire LN,

particularly because the T-cell motility decreases when bound

to a DC or when the T cell enters the medullary sinuses on the

path to exit from the LN through the efferent lymphatic. (Note

these calculations do not refer to the total path length but rather

the net displacement from the starting point for a completely

random walk.) Alternatively, these observations could be

reconciled by invoking a random walk in the paracortical

region of the lymph node and a biased, non-random walk into

and out of that region. The microanatomy of the LN consists of

a fibroblastic reticular cell network that can aid in directing
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naı̈ve T cell motion from the HEV to the paracortical areas (60).

Furthermore, there is evidence in support of chemokine

mediated attraction to the B follicles within the LN and to

dendritic cells (61, 62). The extent to which random vs.

directed motion contribute to optimal scanning of T cells by

DCs for a rare cognate match has not been completely resolved.

For a full treatment of this topic see (Riggs, T, Walts, A, Perry, P,

Lynch, J, Linderman, J, Miller, M and Kirschner D. in

preparation). Once a T cell binds to a DC with cognate anti-

gen, its movement slows with binding lasting over a period

of 10–15 h; clusters of T cells form around the DC, followed

by swarming behavior of the T cells (63). Following this

prolonged contact, both T cells and DC are activated [a fully

activated DC is known as a licensed DC (LDC)] and T-cell

proliferation begins (63).

To date, the processes captured by intravital microscopy

technique represent very short time scales (minutes to hours)

and occur over very small length scales (100 mm). Intravital

Fig. 3. APCs and T cells interacting in the LN. (A) Schematic of the
LN. Afferent lymphatics empty into an LN, bringing APCs such as DCs
that rarely leave the LN after arrival. T cells enter from the blood
through the HEVs and exit through the efferent lymphatic. Dynamic
interactions between APCs and T cells occur within the LN. (B)
Intravital microscopy image showing the interaction of DCs (green)

with T cells (red) within a section of the LN measuring 75 mm by 100
mm. Image from Miller et al. (63), with courtesy of J Exp Med and Mark
Miller. (C) Lattice representation of an LN. A 7 � 7 grid is shown,
where each unit space is the size of one DC, the largest cell type of
those included in our simulations. T4, CD4þ T cell; T8, CD8þ T cell;
r, resting; a, activated; e, effector; M, mature; L, licensed.
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microscopy therefore captures a relatively small region of an

entire LN, which can be larger than 1 cm3 (and during infection

grows even larger) and over a relatively brief time slice of an

adaptive immune response that occurs over days to weeks.

Further, simultaneous assessment of the processes occurring at

different biological scales and time scales cannot be made by

microscopy studies at this point. Image analysis is also time-

consuming and complicated (55). As a result, many details

regarding human LNs and the role these structures play in

determining the outcome of the immune response remain to be

elucidated (43).

The anatomy of the LN is important in discerning not only

antigen presentation events but also requirements for trafficking

into and out of the node. The structure and composition of

HEVs determine T-cell entry into the LN (43, 64). During

inflammation, cells that would normally exit from the LN might

be blocked (65), leading to a sudden increase in cell numbers

within the LN. While T cells enter through HEVs, DCs enter

through the afferent lymphatics. After entry, DCs position

themselves around HEVs (66, 67), allowing for efficient

scanning by T cells immediately upon entry. Thus, the dynamic

processes of trafficking into and out of the LN can greatly

enhance the opportunity for antigen presentation to occur as

well as determine its success (68).

Circulation of immune cells between blood and other

physiological compartments

Ultimately, the success of the initiated immune response also

depends on the ability of APCs to traffic to LNs and the ability

of activated T cells to return to the site of infection, events

dependent on input from multiple compartments including

both the blood and the lymphatic systems. Of the more than

1011 naive T cells in constant circulation between the blood and

the lymphatics, only a small proportion (10%) of non-naive

T cells travel to the LNs on a regular basis. The other 90%

circulate to the spleen, lung, liver, bone marrow, and other

parts of the lymphatic system (69, 70). The purpose of this

trafficking is to maintain immune surveillance in all parts of the

body, so as to rapidly mobilize cells to sites of antigen challenge

(71). For example, to understand the dynamics of infection

with Mycobacterium tuberculosis (Mtb), one would need to consider

the flow of immune cells between the LN and the lung (72, 73).

The entire process of T-cell trafficking through LNs occurs over

a 24–48 h time frame, with T cells spending the majority of

their time in the lymphatics (74, 75). This circulation is critical

for driving LN dynamics.

Trafficking of DCs from the site of infection where they

encounter and take up antigen to the closest draining LN is the

first step post-infection in the cascade of events leading to

adaptive immunity. DCs must migrate from peripheral sites into

the paracortical regions of the LNs to optimally encounter T cells

(68). During the course of migrating from the site of infection

to the LN, DCs undergo a number of changes collectively

referred to as maturation. These changes include a cessation of

the rapid pinocytic rates DCs display at peripheral sites and an

increase in MHC class II expression. Upon reaching the LN, DCs

carrying antigen are classified as mature (MDC). Although data

support the presence of immature DCs in the LN, it is unclear

how they come to be there. Immature DCs either must migrate

in or are generated from monocyte precursors in the LN. Naive

T cells are constantly circulating through the lymphatic system

to encounter antigen presented on DCs. The adhesion molecule

L-selectin (CD62L), expressed on naive CD4þ T cells, is essential

for entry of cells into the LN (76). The process of T cells

circulating to the LNs in this fashion is referred to as homing

(76). Effector T cells that have been primed in the LN must

circulate back to the site of infection to participate in the

clearance of the pathogen.

Pathogens regularly interfere with antigen presentation

Pathogens regularly interfere with immune processes (77).

Because pathogens meet APCs continually as a first line of

defense, it should not be surprising that viral and bacterial

pathogens have evolved ways to inhibit multiple aspects of

antigen presentation both directly and indirectly. Cytomegalo-

virus is a viral pathogen that has been shown to inhibit antigen

presentation by interrupting the MHC II expression pathway

(78). Recently, both Ebola and Hanta viruses have also been

shown to interfere with antigen presentation (79).

An example of a bacterial pathogen that inhibits antigen

presentation is Mtb. Mtb is the number one cause of death due to

infectious disease in the world today (2 billion people infected).

Upon entering the lungs, Mtb is taken up by resident macro-

phages or DCs, adapts to the intraphagosomal environment,

and either becomes dormant or slowly replicates (80). Mtb is

known to inhibit antigen presentation in chronically infected

macrophages. The mechanisms by which Mtb achieves this in-

hibition have not been completely elucidated, although sev-

eral hypotheses have been proposed (81–83). Mathematical

modeling is a tool that can be used to explore the mechanisms

by which pathogens inhibit antigen presentation.

Approximately 14 million people have died of the acquired

immunodeficiency syndrome (AIDS) pandemic. Over 40

million people are estimated to be human immunodeficiency

virus (HIV) positive, with about 4.9 million newly infected per

year (84). Despite the impressive amount of research on HIV
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pathogenicity and immunology, there is no effective vaccine or

cure. Ultimately, our capacity to fully treat or immunize against

HIV is limited by our incomplete knowledge of the mechanisms

behind the immune response to HIV-1, the more prevalent and

virulent type of the virus. Because HIV-1 uses the CD4 receptor

on the surface of both T cells and macrophages for entry and

infection, these important immune cells are greatly affected.

Specifically, the numbers and functionality of these important

immune cell classes diminish during infection, eventually

leading to AIDS. Although HIV-1 is not known to directly

inhibit MHC II presentation, it disrupts many of the important

events that occur both upstream and downstream of T-cell

recognition of pMHC complexes. A comprehensive model of

antigen presentation encompassing adaptive immunity would

allow for a greater understanding of how the immune response

fails in HIV-1 and highlight targets for therapeutic intervention.

Antigen presentation as a multiscale process

Processes at several length and time scales govern antigen

presentation and the development of an immune response

(Table 1 panel A). The binding affinity of MHC II and peptide

depends not only on the peptide sequence but also on the

particular MHC II allele. pMHC binding is a molecular-scale

event that is embedded in the context of single-cell-scale events,

e.g. antigen uptake, MHC synthesis, antigen processing, and

pMHC trafficking and display, which occur on a time scale of

minutes to hours. In the LN environment, a tissue space of �1

cm3, T cells meet APCs, and over a period of hours to days cells

interact with APCs, divide, migrate through the LN, and exit.

Finally, at the organ/organism scale, exiting cells go to sites of

infection to participate in the adaptive immune response, which

bears a length scale that encompasses the entire organism and

a time scale of days to weeks.

Of primary interest is the entire multiscale system: the

immune response and the outcome of infection in a host. How

this complex system depends on various parameters and even

therapeutic manipulations at the different scales is a key goal.

Yet given its complexity, the entire multiscale system is

presently impossible to study in an experimental setting. Thus,

we turn instead to building a multiscale model of antigen

presentation and its role in the immune response.

Certainly, there has been a wealth of basic science performed

at the various biological scales attempting to elucidate these

processes. Indeed, events at each scale of the antigen pre-

sentation process are likely to affect the overall development of

the immune response. Models built to elaborate the relevant

interactions and dynamics at each of the individual scales are the

first step toward understanding a larger picture. Ultimately, the

integration of such models will provide a multiscale model of

the process.

Such a multiscale approach will allow us to address questions

that bridge biological scales. For example, can particular MHC

alleles (molecular scale) give rise to more pMHCs on the APC

cell surface (cellular scale)? Can higher pMHC affinity

(molecular scale) compensate for poorer APC uptake ability

(cellular scale) or fewer APC or fewer highly specific T cells

(tissue scale)? Could reduced display of pMHC by an APC

(cellular scale) be compensated for by a longer residence time in

the LN (tissue scale)? Will slowed cell circulation through the

LN (tissue scale) slow or diminish the magnitude of the overall

response (organ/organism scale)?

At the scale of an entire organism, a multiscale model can

address issues related to infection sites and other organ

involvement. For example, how large must variations in the

affinities of peptides for MHC (molecular scale) be in order to

significantly impact the response (organism scale), and can

such variation in affinities offer a basis for disease association?

Multiscale models are essential to show features that cannot be

predicted by a focus on a single spatial or time scale. To begin to

address these issues, we now present efforts made using

modeling approaches at each of the scales and discuss how we

might link these individual models to generate a multiscale

model of antigen presentation.

Modeling approaches

Models at individual scales

It would be difficult to imagine a single experiment that could

shed information on all the different spatial and time scales

involved in antigen presentation. Similarly, constructing and

validating a model encompassing all these events present

Table 1. Relevant scales and features associated with the different
antigen presentation events

A. Scale B. Modeling

Biological Time Length Dynamics Model type

Molecular 10�2–102 s 10�9–10�8 m Deterministic,
continuous

Statistical

Cellular 101–103 s 10�5 m Deterministic,
continuous

Mathematical: ODE

Tissue 104–105 s 10�3–10�2 m Stochastic,
discrete

Algorithmic: ABM

Organ/
organism

105–106 s 10�2–1 m Deterministic Hybrid: ODE þ ABM

A, biological events occur at different time and length scales and B,
modeling approaches described here.
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unique challenges. The approach we describe below is to build

models at each of the different scales and then develop methods

to link them together. For each of the biological scales

represented in Fig. 1, different statistical, mathematical, or

algorithmic models have been developed (Table 1 panel B).

At each scale, a decision needs to be made regarding the

appropriate type of model to construct. Statistical models can be

used for uncovering trends when large data sets are available.

Here, an understanding of mechanisms is not necessary; rather,

mechanisms may be inferred from the results of the analysis.

Mathematical models involve equations to describe biological

events, and these may be solved analytically or numerically.

Algorithmic models are implemented on the computer as

a detailed sequence of rules. Hybrid models are also possible.

Several excellent texts are available that describe the use of each

of these models in biology, particularly mathematical models

(85–91). A limited number of texts are also available describing

the biological applications of statistical models (92–94) as well

as algorithmic models (89, 95).

Models may be categorized in one of several ways. First,

models may be continuous or discrete. Continuous models treat

entities not as individuals but as an averaged population or

concentration, e.g. the concentration of a cytokine might vary

continuously from 1 to 5 nM within an LN. Discrete models

treat entities as individuals, e.g. a single cell could be tracked as

it moves through an LN. Second, models may be stochastic or

deterministic. Stochastic models have random events that affect

the outcome, e.g. a cell may move to the right or to the left with

equal probability. Each individual simulation will give a slightly

different result. The results of multiple simulations can be

averaged and standard errors obtained. Deterministic models,

in contrast, yield the same result each time they are solved

or simulated, capturing for example an average behavior of

a molecular or cell population rather than particular outcomes.

Ultimately, the choice of modeling approach depends on

considerations of the biological scale of interest – its spatial and

time scales, the questions to be posed, whether tracking

individual entities is important, etc.—as well as practical

considerations such as available computing resources. In some

cases, new insights may be found by using multiple approaches

to a single problem (96).

Parameter estimation and sensitivity analysis

A critical issue to all models at any spatial or time scale is that

of estimating parameter values (e.g. rate constants, concentra-

tions, probabilities of a particular event, etc.). There are several

approaches possible for estimating parameter values: (i) direct

experimental determination of a parameter; (ii) simultaneous

estimation of several parameters at once by fitting experimental

data to a model (97); and (iii) estimation of a parameter based on

known values for similar systems. In all cases, there is necessarily

some uncertainty in the parameter value (for example, because of

experimental error, differences in animal models, and technical

limitations in kinetic measurements), and this leads to un-

certainty in the output of any model using that parameter.

Because our models include parameters describing a large

number of known biological processes, it is critical to under-

stand the role that each of these parameters plays in determining

output. Sensitivity analysis involves the correlation of variances

in parameter values to variances in model output and is

particularly useful when parameter values are not known with

certainty. If simulations can be performed relatively quickly, all

parameters can be varied simultaneously to ascertain those that

contribute to significant variations in output variables. In

the Latin hypercube sampling (LHS) algorithm, each parameter

is assigned a distribution, typically uniform or normal and

centered on a baseline or estimated value, allowing the effect of

under- and overestimation to be examined. The entire range of

each distribution is then sampled to generate a set of values for

each parameter, and parameter values for each simulation are

chosen to cover the entire parameter space in as few simulations

as possible. Although originally applied for differential equation

models (98, 99), we have recently adapted the algorithm for

use in other types of models (100, 101). The extent to which

each parameter affects the output can be quantified by one of

several metrics including the partial rank correlation coefficient

(PRCC). PRCC, like the more familiar Pearson correlation

coefficient, varies between �1 and 1, indicating strongly

negative and positive associations, respectively. A PRCC of 0

indicates no association. PRCC values can also be calculated at

different time points of the simulation, allowing the relative

importance of a particular parameter in determining model

output to be tracked over time. In addition, a confidence

interval can be determined for each PRCC, and differences

between PRCCs can be tested for statistical significance (102).

This test allows parameters to be ranked in order of effect they

have on output by PRCC magnitude.

The results of sensitivity analysis can be used to identify

which interactions or processes in a system are important to

different observed behaviors, i.e. which of several processes

dominates at a particular time. In addition, the results can be

used to identify potential targets for therapeutic intervention,

e.g. one could target a pathway to which cell behavior is

sensitive as identified by sensitivity analysis. For a complete

review on uncertainty and sensitivity analyses see (Marino S,

Hogue I, Kirschner D, submitted).
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Models

Here, we present four different models developed to capture

antigen presentation processes at the four different biological

scales (Fig. 1, Table 1 panel B).

Algorithms for predicting pMHC binding affinities

Peptide binding to MHC is a prerequisite for antigen pre-

sentation and the event most likely to be affected by poly-

morphisms that exist within the MHC of human populations.

From a clinical perspective, these polymorphisms may

distinguish individuals who succumb to a particular infectious

disease from those who remain healthy, and significant effort

has been expended to assess whether binding occurs between

relevant pMHC combinations. However, the sheer numbers of

possible peptides (209 or approximately 1011 peptides of length

nine) and MHC molecules (more than 2200 known HLA alleles)

make this task all but impossible for anything more than a small

sampling of the pMHC combination space.

To circumvent this difficulty, computational algorithms have

been developed to predict whether binding occurs between

particular combinations of peptide and MHC (Fig. 4A). In

general, these algorithms have the same aim as other algorithms

in bioinformatics: to identify patterns in sequences that are

known to either possess or not possess a particular trait. In this

case, the trait is binding to a particular MHC molecule.

With this aim in mind, computational algorithms have been

built around a number of statistical and machine learning

methods to predict pMHC binding (Fig. 4A). The first and

simplest algorithms were based on the identification of motifs

within peptides binding particular MHC (103). An example of

such a motif is the requirement for a hydrophobic amino acid at

the N-terminus (position 1) of a 9mer binding MHC of the DR1

serotype, a guideline still generally followed today (16). The

advent of competitive binding assays allowed a more nuanced

view of binding to be taken. Motifs that required certain amino

acids to be present in MHC-binding peptides were superseded

by matrices scoring amino acids at each position within

the peptide. Different statistical methods could be used to

generate the elements of the matrix, including non-linear

and linear programming (104, 105), stepwise discriminant

analysis (106–108), and partial least squares (109, 110). One

simplifying assumption made in many of these algorithms is

that binding of each amino acid within the peptide to the MHC

molecule occurs independently of adjacent as well as more distal

amino acids. Although this assumption was largely confirmed

by available crystal structures, algorithms were also developed

that did not rely on this assumption based on machine learning

methods. Several machine learning methods have now been

incorporated into prediction algorithms including artificial

neural networks (111–113), hidden Markov models (114),

and support vector machines (115, 116).

A different approach has been used to predict the structure of

the pMHC complex and attempted to calculate the free energy

change (117–121). Structure-based prediction may someday

supplant statistical or machine learning-based algorithms but

is currently hampered by the limited availability of solved

structures and high computational costs. For a more compre-

hensive review of algorithms, the reader is referred elsewhere

(122, 123).

An obvious question to ask about the preceding list of

algorithms is how well each one performs compared with the

others. To gauge prediction accuracy, an algorithm that has

been trained on a set of data is used to make predictions on a test

Fig. 4. Algorithms to predict pMHC binding. (A) On the left, we
show three steps common to most algorithms: training data selection,
algorithm fitting or training, and testing. On the right, we show two
modifications that we have proposed making to these algorithms to
improve prediction of longer peptides (i.e. those greater than nine amino
acids in length). These modifications are intended to account for PFR–
MHC interactions and register shifting. (B) Performance of one published
algorithm, ISC-PLS (110), before and after modifications proposed in
(A), on training and test sets for two MHC II alleles as measured by Aroc.
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data set for which affinities are known, and the output of the

algorithm is compared with the known affinities (Fig. 4A). A

score is then calculated to determine how closely predicted

affinities approximate known affinities; however, this task is

complicated by differences in the nature of algorithm output. In

some cases, output is a continuous variable (affinity), while in

other cases, it is discrete (binding or non-binding). This reflects

differences in the nature of the available binding data on which

these algorithms are fitted or trained. Some databases provide

only lists of peptides that either bind or do not bind particular

MHC variants (124), while other databases provide a measure

of affinity such as IC50 (20). The appropriate performance

measure therefore differs according to whether input and

output are both continuous (Pearson correlation coefficient),

both discrete (Matthews correlation coefficient), or discrete

and continuous, respectively [area under receiver operating

characteristic curve (AROC)]. The AROC plots represent the

probability of true positives versus false positives, given

a particular threshold or cut-point for a discriminatory test. A

completely random outcome would have an area ¼ 0.5, while

a test that perfectly discriminates (detects all true positives and

no false positives) would have an area ¼ 1.0. As with PRCC,

these correlation coefficients vary between �1 and 1, while

AROC ranges from 0.5 to 1.0. In both cases, higher scores

indicate more accurate predictions. Continuous data can be

converted into discrete data by assuming that a certain threshold

affinity is required for binding, such as an IC50 of 500 nM (21),

allowing some overlap between performance measures.

Examples of scores obtained for several algorithms are provided

in MHCBench (125). For example, using binding data for the

human MHC II allele HLA-DRB1*0401 from which homolo-

gous sequences had been removed, twelve algorithms were

found to produce AROC scores between 0.57 and 0.76.

Our efforts in this area have focused on improving how

prediction algorithms handle features that distinguish MHC II-

binding peptides from MHC I-binding peptides. Because

peptides binding MHC I lack the heterogeneity in peptide

length characterizing MHC II-binding peptides, most pre-

diction algorithms were originally developed in the context of

MHC I. Adapting these algorithms to MHC II therefore requires

an assumption to be made regarding how heterogeneity in

length affects binding. One possibility is that parts of the peptide

extending past the ends of the MHC II peptide-binding groove,

the so-called peptide-flanking regions (PFRs), interact with

more distal areas of the MHC molecule (126). In most

algorithms, it is assumed that PFRs do not interact with the

MHC molecule and have a negligible effect on binding. In

addition, longer peptides are also more likely to have additional

binding registers (9mer subsequences that fit in the binding

groove), allowing shifting among the registers. Some algo-

rithms assume that the highest affinity register predominates

(18, 127). Other algorithms assume that all registers are

presented in equal numbers and predict the measured binding

affinity to be the mean affinity of the different registers (110).

We have proposed instead that registers are presented in

quantities proportional to their equilibrium affinities and that

the measured affinity of a given pMHC complex therefore

represents a weighted average (180), a situation analogous

to competition between receptors of different affinities for

ligand (90).

We hypothesized that the effects of PFR interactions and

register shifting could be discernible in plots of affinity versus

length and could be taken into account either by filtering

the data prior to use in algorithm fitting or training (in the case

of PFR–MHC interactions) or by using an equation for regis-

ter shifting (Fig. 4A). Recently, we have shown that both modi-

fications significantly improve the performance of multiple

algorithms (180). In Fig. 4B, the results of our modifications for

one such algorithm, ISC-PLS (110), applied to two MHC alleles

are shown. These results are consistent with those of past

experimental studies showing that peptide length affects

binding to a number of MHC alleles (128, 129).

The output of these computational algorithms is a prediction

of binding between particular peptides and MHC alleles, one

measure of which is the equilibrium dissociation constant of a

pMHC complex (KD) or the related IC50. (In the remainder of

this review, we use the term affinity to refer to the reciprocal

of KD, so that higher affinity refers to stronger binding). Affinity

is one of several parameters that determine the number of

pMHC displayed on the surface of the APC. To understand the

role that cellular parameters also play in determining pMHC

display, we next turn to models of the APC.

Models for antigen processing and presentation by APCs

pMHC binding is only one step of many that constitute the

antigen presentation pathway, and other steps may confer

additional specificity to or alter the dynamics of which peptides

are ultimately presented (Fig. 2). In both MHC I- and MHC II-

mediated antigen presentation, antigens are acquired (from

either an intracellular or an extracellular source), degraded into

peptides (i.e. processed), and trafficked to the cell surface after

binding MHC. At the same time, MHC molecules are

synthesized, trafficked to and from the surface, and degraded.

Many of these steps are subject to complex regulation by the

cytokine environment and feedback signals. The peptides found

to bind a particular MHC variant may therefore only provide
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a rough, static approximation of peptides that are ultimately

presented in a dynamic fashion.

Models of antigen presentation must therefore account for

more than pMHC binding. In the case of MHC I-mediated

antigen presentation, at least two additional events are known to

confer selectivity: proteasomal cleavage and TAP transport.

Algorithms have been developed to predict which peptides

progress through these stages, and only recently, have they been

daisy-chained together with algorithms of pMHC binding to

represent antigen presentation in toto (130, 131). The result is

a more accurate but still static picture of the peptides

encountered by CD8þ T cells.

In contrast, we were initially interested in the dynamics of

MHC II-mediated antigen presentation but not necessarily in its

specificity. To track the levels of different molecular inter-

mediates in the pathway, we used a mathematical repre-

sentation known as ordinary differential equations (ODEs).

ODEs are commonly used to represent systems that are both

continuous and deterministic. One assumption made in using

ODEs is that the represented entities exist as large, well-mixed

populations (i.e. can be approximated as continuous). For MHC

II-mediated antigen presentation, the available data validated

this assumption. Baseline estimates of the number of MHC II

molecules expressed by APCs were on the order of 105, and

antigen was typically present at high concentrations, at least

in vitro (>1012 peptides per cell) (82, 83). Furthermore, pre-

cedent for using ODEs had been provided by models of

receptor–ligand systems of which pMHC could be considered

one instance (90).

Using a series of models that have incorporated increasing

amounts of biological detail, we have been able to address

different aspects of antigen presentation that have not always

been tractable in the laboratory setting. The first model included

only those intracellular processes believed to be essential for

antigen presentation (antigen uptake and processing, pMHC

binding, and MHC trafficking and recycling) but was sufficient

to generate realistic time courses of pMHC levels on the APC

surface of both macrophages and B cells (132). Parameters that

would have been difficult to manipulate experimentally, e.g.

the rate of antigen uptake, were easily varied in the model. The

relationship between these parameters and the level of antigen

presentation could then be studied without concerns of

inhibitor toxicity. Later versions of this model included self-

peptides and TCR and expanded the range of questions that

could be asked: at what density are exogenous peptides

presented relative to self-peptides (133), and can higher pMHC

affinity offset lower pMHC–TCR affinity to engage the same

number of TCRs (41)?

In the latest version of this model, we have included the

regulatory effects of IFN-g to more closely mirror experimental

protocols used in vitro (134) (Fig. 2). For parameters that were

unique to this model, values were either derived from the recent

literature or constrained by biological requirements (e.g. to

maintain low-level MHC expression in resting APCs, as

observed experimentally). The model was tested by comparing

the dynamics of several output variables to experimental data.

For example, times at which CIITA messenger RNA (mRNA)

and MHC II mRNA reached maximal levels following IFN-g
stimulation were compared in simulation and experiment and

found to be similar (Fig. 5A,B). The final model contained 16

variables, each representing a different molecular species, and

30 rates or rate constants.

This model was developed initially to explore presentation

dynamics in macrophages. However, with appropriate param-

eter values, it can be used also to simulate pMHC display by DCs.

Because DCs have an enhanced capability for antigen uptake and

greater numbers of MHC available (135, 136), they display

more pMHC on their surfaces than macrophages (Fig. 5C).

There were several key findings of our model. First, the

number of cell surface pMHC was calculated and shown to be

a strong function of a molecular-scale parameter, pMHC affinity

(Fig. 5D). This finding is relevant to the linking of individual

models (here, molecular and cellular scales) toward producing

a multiscale representation of antigen presentation. Second,

sensitivity analysis showed that particular cellular parameters

may have increasing or decreasing effects on pMHC levels over

time (Fig. 5E). For example, the effects of varying rates of MHC

transcription are only apparent at longer time scales (here, 10–

100 h), while the effects of varying trafficking of pMHC to the

cell surface play a more prominent role early in the process

(1 h), showing how the importance of a particular intracellular

process to surface pMHC levels can be time dependent.

Models of cell–cell interactions in the LN

Our focus thus far has been on molecular and cellular events

involved in antigen presentation. Here, we examine the

interactions between cells of the immune system and place

these dynamics in the context of the environment that houses

the majority of antigen presentation activities: the LN. This

examination not only allows us to bring another key biological

scale into our model – that of tissue – but also brings us closer to

the goal of developing a full-system model of antigen

presentation and its role in the immune response.

There have been numerous mathematical models studying

the interactions of immune cells (reviewed in 137). Most of

these earlier models of cellular dynamics were built on ODE
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systems that were continuous and deterministic in their

abstraction of cellular events. Typically, the LN is not explicitly

included; however, when it is considered, it is treated as

a coarse-grained (i.e. with little mechanistic detail), well-mixed

compartment and the spatial structure is disregarded.

We are currently exploring the dynamics of antigen pre-

sentation within the LN using an agent-based model (ABM)

approach (S. Bajaria et al., manuscript in preparation, T. Riggs

et al. manuscript in preparation). ABMs are algorithm- or rule-

based models that allow for a discrete and stochastic repre-

sentation of cells and events (89). In an ABM, cells (or any other

entity of interest) are represented as discrete software objects

(or ‘agents’) and placed on a lattice. Rules are assigned to the

agents governing their movement and interactions within the

lattice that represents the LN in our model. A time step is then

specified for the model, based on considerations of durations of

cell movements and interactions (e.g. 1 min to move one cell

length), and the model is run for as many time steps as desired.

ABMs therefore have the following components in common: (i)

agents; (ii) the environment where agents reside; (iii) the rules

that govern the dynamics of the agents; and (iv) the time scales

on which these rules are executed. We describe below each of

these components as they are represented in our model.

The goal of our model was to understand how the

interactions of individual APCs and T cells within the specific

spatial and chemical environment of the LN generate observed

numbers of activated T cells. An ABM is useful here, as it allows

tracking of individual APCs and their interactions with both

T cells and their environment. ABMs can also capture spatial

aspects of the system, for example the particular geometry of the

LN and any groupings of cells that develop. These features are

not readily available in the more commonly used differential

equation formulations. Another advantage of ABM over ODE

model representations is the opportunity to observe how

outcomes are influenced by various stochastic events that are

not wholly deterministic. We do note, however, that

a disadvantage of ABMs as a model framework at this early

stage in their development is a shortage of rigorous analysis

techniques; models tend to be highly specific and parameter

dependent. Furthermore, because stochastic events influence

Fig. 5. Model of a single APC. ODEs were
written based on the events shown in Fig. 2.
(A) Model simulation of CIITA mRNA and
MHC II mRNA levels in macrophages follow-
ing IFN-g treatment representing a positive
control. (B) Experimental data (179) for
comparison with (A). (C) Comparison of the
antigen-presenting abilities of macrophages
and DCs. Macrophage parameter values (i.e.
baseline) were taken from Chang et al. (134).
Two parameters were changed to simulate
DCs: rate constants for uptake and MHC II
expression (135, 136). (D) Number of surface
pMHC complexes as a function of pMHC
affinity (1/KD) in macrophages 3 h following
addition of antigen. (E) PRCCs for three
parameters (ktxn, kout, kpino) at three time
points (1, 10 and 100 h following addition of
antigen). ktxn, MHC II transcription rate
constant; kout, rate constant for trafficking of
pMHC to the cell surface; kpino, pinocytosis rate
constant.
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the outcome, a large number of simulations are required to

characterize the mean behavior of the system. In a recent study

by our group, we compared four different modeling techniques

to explore a different immunological problem – how

a granuloma (a spheroid mass of APCs, T cells, and bacteria)

forms during Mtb infection – and while each of the approaches

made important and consistent predictions, the ABM yielded

the most realistic results (138).

The agents in our model are the cells known to participate in

antigen presentation events. In our initial studies, we have

included CD4þ and CD8þ T cells and DCs. Because this model

captures only a single LN, we used phenomenological source

functions describing the entry of cells to the LN. We count cells

as they exit the LN as well but do not track them further.

The spatial environment of our model consists of a two-

dimensional (2D) lattice with 100 microcompartments, each of

size 20� 20 mm and together large enough to represent a single

human LN (Fig. 3). T cells and DCs interact in the LN paracortex,

a region facilitating communication between the immune

mediators, such as cytokines, and the cells that they influence

(56). Each microcompartment is designed to hold only one DC,

the largest cell in the system. Up to two T cells can share the

same microcompartment, and multiple molecules (e.g. cyto-

kines and antigen) can also be found in each microcom-

partment. A 2D representation is reasonable for ease of

computation. Also, analysis of multiphoton microscopy data

from 2D cross-sections indicates that the majority of dynamic

behavior occurs in the 2D plane and only occasionally do cells

jump to other depths (out of the plane of observation) (57,

M. Miller, personal communication).

Also included as part of the environment are antigens

(whether non-specific or from a particular bacterium or

virus) and cytokines/chemokines such as IL-2. These are all

treated as continuous variables that are real valued in each

microcompartment of the lattice. Treating molecules in

solution as continuous variables is reasonable, as the

concentrations of these molecules are high in comparison

with cell numbers.

Discrete agents in the model are assigned a set of states and

rules. As an example, a CD4þ T cell can have one of three states:

resting (and naive), activated, or effector. They also have

a lifespan. For each state, rules are specified governing the

interactions possible for that state. One such rule is the

following (Fig. 6): if a mature DC encounters and binds a resting

CD4þ T cell in one of eight neighboring microcompartments

for 15 h (139), then the CD4þ T cell becomes activated with

probability p. (Note: Because two T cells can occupy one

microcompartment, this means that a single DC can bind up to

16 T cells at one time.) For each implementation of the rule,

a number is drawn from a uniform distribution with range [0,

1], and when the chosen number is less than the parameter

value, e.g. p ¼ 0.25, then the event occurs. Otherwise, it does

not. (This again illustrates the contrast between a deterministic

versus ABM implementation of a probability rule.) Predictions

using different probabilities of activation can be generated, and

the effect on the system can be examined using sensitivity

analysis. Other rules account for the ability of DC dendrites to

scan neighboring compartments for cognate T cells, allow

a resting T cell to remain bound to a DC for 10–15 h while

becoming activated, and allow a MDC to bind up to 16 T cells, as

observed in microscopy studies (71, 63). The rules for APC–T-

cell interactions in this model are flexible and can accommodate

many different lines of experimental evidence regarding how

these cells interact. The time step used for updating cell position

was 2 min. Other time-dependent phenomena included

lifespan of cells, duration of cell binding, and recruitment of

new T cells through the HEV.

Simulations of a number of different conditions were

performed. The negative control depicts simulations in the

absence of antigen. In this case, immature DCs and resting CD4þ

T cells are present in homeostatic numbers (data not shown).

Fig. 7A shows T cells and DCs in the LN at a single time point

(approximately 42 h) of the simulation after the arrival of six

MDCs from a site of infection. What is evident for the first time

using our model is a spatial organization to the dynamics of

antigen presentation. For example, in Fig. 7A, clusters of DCs

and T cells are seen. Such clusters are necessary for activation of

T cells as well as for licensing of MDCs (63). As in the

Fig. 6. Rule for T-cell activation within the ABM. If an MDC and
a resting (and naive) CD4þ T cell (rT4) are in neighboring
microcompartments, then there is a probability P that the resting cell
will become activated.
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microscopy, we observe that these clusters move and conjoin

(M. Miller, personal communication).

To track the total sizes of the cell populations as they evolve

over time, snapshots such as that shown in Fig. 7A are

enumerated for each cell type. Fig. 7B shows the temporal

dynamics of each of the cell populations over the entire time

frame of the simulation and indicates the following course of

events for T-cell dynamics over the simulated infection. With

the introduction of only six mature, antigen-bearing DCs on

day 0 (into a system that is already in homeostasis), we see an

increase in activated CD4þ T cells (aT4) and then a day or so

later a similar increase in effector CD4þ T cells (eT4). Effector

CD4þ T-cell numbers peak at approximately 6 days (approx-

imately 140 h), 2 days after activated CD4þ T-cell numbers

peak. Both decline slowly after that. This is expected as

immature DCs have a lifespan in the range of 1–9 days, MDCs

have a lifespan of 3 days, and LDCs have a lifespan of 1.5 days.

(In the model, LDCs are MDCs that have engaged a CD4þ T cell

for a long period of time or after having engaged an effector

CD4þ T cell). No additional MDCs were introduced in this

simulation. CD8þ T-cell numbers follow a similar path, and in

addition, memory cells are generated. Note that the levels of

resting CD4þ and CD8þ T cells remain in homeostasis even

during this infection scenario. This result emerges from the

model and represents a natural feedback regulation that

occurs. Thus, while cells are being recruited to the other

subclasses (i.e. through activation), new cells continue to enter

into the LN to replace them, maintaining homeostatic resting

T-cell numbers and supplying new T cells that can be recruited

to an activated state.

Fig. 7. Cell dynamics in the simulated LN.
(A) Snapshot of cells in the LN at �42 h after
introduction of six MDCs onto the ABM lattice
at day 0 of the simulation. Initial conditions
were 250 resting CD4þ T cells, 125 resting
CD8þ T cells, and 5 immature DCs.
A complete list of rules are provided elsewhere
(Bajaria et al., manuscript submitted). (B)
Temporal dynamics of all cell populations in
the simulation. Cell types are as defined in
Fig. 3.
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To illustrate the usefulness of sensitivity analysis in this

setting, we explore the parameter representing the probability

that binding between a CD4þ T cell and its cognate MDC results

in activation of the T cell. As discussed above, T-cell activation

likely depends on many factors including the number of pMHC

on the surface of the DC as well as the binding affinity between

pMHC and TCR. In our ABM, these factors are combined into

the representative parameter p. Fig. 8 shows a dynamic plot of

two model outcomes, the number of activated CD4þ (Fig. 8A)

and activated CD8þ T cells (Fig. 8B) in the LN versus p (the

probability that a CD4þ T cell becomes activated upon en-

counter with an MDC or LDC) at four time points. In both cases,

activated CD4þ and CD8þ T-cell numbers increase as a function

of p. Activation of both cell types is a strong function of p, and

this could be explored further by integrating finer detail in this

term (i.e. by incorporating the smaller length scale models

described previously), a first step at a multiscale approach.

The ABM allowed us to obtain information regarding

individual cell behavior for different cell types. This approach

was in many ways superior to that of continuous models for the

questions we were exploring here. First, we could track the

location and state of all cells at any given time point, allowing

determination of spatial dynamics. Second, individual cell–cell

interactions could be tracked in both space and time. These

features allowed us to make predictions regarding biological

mechanisms that were not feasible using continuous model

approaches. For example, we determined that the lifespan of

LDCs greatly affects the number of effector CD8þ T cells

generated (PRCC ¼ 0.75 with p-value < 10�6). If a therapy

could be identified to prolong LDC lifespan, then the model

predicts that a greater cytotoxic T-cell response would be

generated.

Finally, in the ABM of the LN, we were able to track how

many effector cells leave the LN over time. However, the model

did not capture the trafficking events of these cells from the LN

back to the site of infection, the next important step in the

immune response. In addition, the entry of cells into the LN was

represented simply, using a single parameter, which does not

account for factors such as the amount of antigen initially

produced at the site of infection that ultimately limits the

number of MDCs. In the next section, we discuss ways to

integrate the LN into a more complete model of trafficking of

cells during an immune response.

Multicompartment models of the LN with other organ

systems

To capture the full spectrum of immune system dynamics in

a model, it will be necessary to include physiological compart-

ments in addition to the LN. Immune cells regularly circulate

through the blood, and because of ease of access, data on blood

are the major diagnostic available to the physician. However,

data on blood provide only a snapshot of a system that also

includes the lymphatics (which drain the tissues, typically key

sources of antigen and DCs) and various organs and sites of

infection.

To capture different physiological compartments, a model is

usually developed for each compartment separately and then

linked to the other models by representing the trafficking of

shared elements between the compartments. Most typically, the

dynamics within each particular compartment as well as the

trafficking between compartments are described with ODEs,

although other possibilities exist. Which compartments are

included in any particular model will depend on the types of

infection being simulated and the questions being asked. For

example, in studies on the immune response to Mtb, it will be

critical to include the lung compartment where granuloma

formation occurs. Further, developing models that include

these additional compartments will influence the LN model

Fig. 8. Effect of variation in the probability of activating resting

CD4þ T cells in the ABM. The parameter p represents the probability
of activation of a resting CD4þ T cell upon interaction with a cognate
MDC and is varied from 0.05 to 0.95. (A) The number of activated

CD4þ T cells produced at a given time point increases with p. (B)
Likewise, the number of activated CD8þ T cells produced at a given
time point also increases with p. In this Figure, 16 MDCs were
introduced on day 0.
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described above. In that model, phenomenological source

functions were used to describe the trafficking of cells into the

LN. We also tracked the number of effector cells leaving the LN

but did not allow them to continue to play a role in the immune

response. Thus, the goal now is to capture more mechanistically

the dynamics of those compartments external to LNs. This will

bring us one step closer to developing theories regarding overall

immune activation as it depends on local antigen presentation

events.

Many compartmental models of biological systems and the

immune system have been developed (88, 140). Here, we

review two sets of compartmental models developed by our

group: the first developed to study HIV-1 infection and

the other to study infection with Mtb. We present here the

non-infection states of these models (i.e. the negative controls)

to show that we first describe the dynamics in healthy scenarios

(Fig. 9). In both cases, the LN is represented along with an

additional compartment relevant for disease: the blood in the

case of HIV and the lung in the case of Mtb.

Our blood–lymph circulation models (Fig. 9A) were devel-

oped first for the case of no infection to observe homeostasis

and then in the context of infection, specifically with HIV-1

(141–143). In one study (143), we used ODEs to track CD4þ

and CD8þ T cells and DCs circulating within and between the

blood and the lymph compartments. The model successfully

captures known dynamics of these cell populations in their

respective compartments. Dynamics of cell turnover and

migration are the main features represented in this model. In

the model, CD4þ T-cell counts are about 2 � 1011 in total

lymph tissue and approximately 1 � 103 per ml of blood. This

finding matches what has been observed in humans (144). The

ratio of CD4þ T cells to CD8þ T cells found in the model is 2:1 in

both blood and lymph, also as is observed in previous studies

(144, 145). We also predicted that there are 1011 CD8þ T cells

in the lymph system and 5 � 102 CD8þ T cells per ml of blood,

which agrees with data from Haase (144). The model also

maintains a level of 14–20 DCs per microliter of blood (146).

Our LN–lung compartmental model (Fig. 9B) is an example

of a model that includes both the LN and an additional site of

infection, the lung. Effector T cells generated in the LN by

antigen presentation leave and travel to particular sites. For this

model, which was developed with application to tuberculosis,

the site of interest was the lung. The process by which effector

T cells travel throughout the body is not well characterized

and differs greatly depending on where the site of infection is

located. The LNs that are typically involved are the closest

draining LNs to the site of infection, facilitating ease of

trafficking between compartments.

As in the blood–lymph model, the simplest model here tracks

only homeostasis of T cells and DCs between both com-

partments (72, 73). Specifically, we linked a coarse-grained

model of the LN based on a system of ODEs with an existing

Fig. 9. Two-compartment models of LN
linked to another system. (A) LN–blood
model. CD4þ T cells, CD8þ T cells, and DCs
traffic between these two compartments. (B)
LN–lung model. DCs, macrophages (MF), and
CD4þ T cells traffic between these two
compartments. Cell types are as defined in
Fig. 3. IDC, immature DC.
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fine-grained ODE model (i.e. a model that includes many

mechanistic details) of the immune response in the lung. In

the lung model (147), we tracked resting, infected, and

activated macrophages; T-helper (Th) 0, Th1, and Th2

lymphocytes; the cytokines IFN-g, IL-12, IL-4, and IL-10; and

the level of antigen. Important in this model is the presence of

macrophages playing multiple roles as APCs, cytokine pro-

ducers, and killers of intracellular pathogens. In the coarse-

grained LN, we tracked MDCs, resting T cells, Th0 cells, and the

concentration of the cytokine IL-12 (a promoter of Th1

immunity). To investigate DC trafficking, we modified the lung

compartment by including immature DCs in the lung model. In

the absence of antigenic stimulation, i.e. at homeostasis, the LN

compartment has an average of 104 naive, resting CD4þ and

CD8þ T cells, and all other cell types are absent. In the lung,

there are 5 � 104 immature DCs (approximately 10% of resting

macrophage population), and all other cell types are absent. Our

results are in agreement with lung and LN data from various

animal models on the numbers of cells present in healthy

subjects (148–156).

Applications of the individual models to study infection

Each of the individual scale models described above can be used

to answer questions and suggest new experiments aimed at

uncovering the roles that parameters (representing biological

mechanisms) play in antigen presentation at each particular

scale. Several examples are given below.

We used the model representing a single APC (Figs 2 and 5) to

investigate why multiple mechanisms had been proposed to

explain how Mtb inhibits antigen presentation in macrophages

(134). Some researchers had identified MHC II transcription

as a process that Mtb disrupts in macrophages. Others had

suggested antigen processing or pMHC colocalization as targets.

By varying the rates or rate constants for particular processes

in the model, we were able to predict the effect of the

corresponding mechanisms on surface pMHC levels under

different experimental conditions. We found that mechanisms

could generally be categorized according to the timing of their

effects. Targeting antigen processing or pMHC colocalization,

for instance, resulted in an immediate decrease in the ability of

macrophages to present antigen, while mechanisms targeting

MHC expression required a delay of at least 10 h to become

effective. However, the stimulatory effects of IFN-g may

necessitate the use of long-term mechanisms by a pathogen,

particularly a slow-growing one such as Mtb. These two

categories of mechanisms can therefore be thought of as non-

redundant in function, suggesting that Mtb gains distinct

benefits from inhibiting multiple intracellular processes.

Sensitivity analysis can be used to identify other possible

mechanisms used by Mtb to inhibit antigen presentation.

Because antigen presentation is required to resolve most

infections, the results can often be applied to other pathogens

as well. For example, surface pMHC levels were found to be

sensitive to the rate constant for pMHC trafficking to the

surface at early time points (i.e. <10 h post-infection,

Fig. 5E). This process as well as others that have more

significant effects early relative to cellular scale events may

make attractive targets for inhibition by pathogens with

shorter doubling times. (Targeting transcription of MHC, in

contrast, may require many hours to hinder antigen pre-

sentation.) Thus, one way in which anti-microbial therapies

could be improved is through ensuring that the pathogenic

mechanisms targeted therapeutically are consistent with the

time scale of the pathogen’s lifetime.

Other examples of applying the individual scale models build

on our two-compartmental studies (Fig. 9). Our group and

others have used multiple compartment models to study

infection dynamics. The first models were developed to

understand HIV-1 infection (157–159). Studies by our group

looked in detail at the dynamics of circulation and trafficking of

immune cells in blood and lymphatics during HIV-1 infection

(141, 143). The latter model consists of a system of non-linear

ODEs that captures interactions between T cells and DCs and

builds directly on the LN–blood model discussed above

(Fig. 9A).

When HIV-1 is introduced into the system, additional cell

types must be tracked. HIV-1 infects CD4þ T cells, so there is

an additional class: infected cells. Further, because antigen is

present, effector CD8þ and CD4þ T cells are generated in

response to antigen presentation activities. Simulating this

two-compartmental infection model yields good agreement

with clinical data in both compartments. In the LN, resting

CD4þ and CD8þ T cells both are estimated to be 1010 in

number, while virus is 9 � 1010 and infected cells are 4 � 109,

similar to the results in humans (144). In the blood, activated

CD8þ T cells are estimated to be 8.8% of total CD8þ T cells,

which is in the same range as observed in previous studies

(160, 161). Our model predicts the ratio of activated to total

CD4þ T cells in the blood to be approximately 1:108, while

the only available data suggest that this ratio is roughly 1:103.

Our prediction varies depending on the level of interaction

with DCs (143). When the fine-grained models described

above are linked with this model, we should be able to better

elaborate the mechanisms of CD4þ T-cell decline during

HIV-1 infection and better understand the role that antigen

presentation plays.
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We have also developed two-compartment models describ-

ing Mtb infection. Here, we captured the dynamics of

a specifically infected tissue (i.e. lung) and its closest associated

LN, building on the LN–lung model discussed above (72, 73)

(Fig. 9B). In addition to the variables included in the

homeostasis lung model, we tracked both intracellular and

extracellular load ofMtb. Once bacteria are present in the system,

macrophages can take up bacteria at the site of infection and are

classified as infected. If time passes and they are not activated

sufficiently to clear their intracellular bacteria, then they are

classified as chronically infected. Immature DCs that take up

bacteria in the lung traffic to the LN to present antigen and

generate effector cells that can now migrate back to the lung to

participate in the adaptive immune response.

The model output qualitatively captures the main dynamics

of a non-human primate infection model in both lung and LN

compartments (72, 73). The measured unit of the model is

number of cells (or bacteria) per cm3 of granulomatous tissue.

Total CD4þ T-cell counts during latent tuberculosis range

between 1 � 103 and 1 � 104 (both in the lung and in the LN

compartment) in the mathematical model. DC numbers during

latent tuberculosis range in the lung between 2� 104 and 2.5�
104 in the mathematical model (a range similar to that in non-

human primates). The main result of this work is that delays in

either DC migration to the LN or T-cell trafficking to the site of

infection can alter the outcome of Mtb infection, defining

progression to primary disease or latent infection and reactive

tuberculosis.

How to build a multiscale model

Models developed at individual physiological scales can be

linked to form a multiscale model. Both mathematical/

computational and biological issues bring complexity to this

task; the development of efficient and computationally feas-

ible multiscale methods is an area of current investigation (7,

162, 163).

One of the simplest ways to link models is to have the output

from one model be the input to another. Coveney and Fowler

(164) and Vlachos (162) review an approach in which the

results from a model developed at the smallest scale are passed to

the model at the next scale, and so on, termed a hierarchical,

sequential, or serial approach. For example, the output from

a smaller scale model may be the calculated value of an

important parameter (e.g. affinity) or a set of values (e.g. the

number of cells in a given state as a function of time). Even with

a hierarchical approach, there are decisions to make. Does the

larger scale model contain the entire smaller scale model? If so,

computation may be an issue. Further, with any numerical

solver, issues of error arise. For each of the individual models,

numerical errors may accumulate, and the propagation of these

errors by passing them across scales presents significant

challenges.

Alternatively, if changes at larger scales affect behavior at

smaller scales, for example if there is feedback occurring over

multiple biological scales, a hierarchical approach is no longer

valid (but may still be a useful starting point), and a hybrid or

coupled multiscale approach should be used. It is likely that this

approach will nearly always be the case in biology. For example,

changes in ion channels in the heart affect overall heart function.

At the same time, blocking blood flow in a coronary artery also

affects heart tissue at the cellular scale (165).

To begin to build a multiscale model for our system of

antigen presentation, we will need to interface the four

individual scale models under development and discussed

above (Table 2) in a hierarchical fashion (Fig. 10). We work

under the hypothesis that events at each scale (molecular,

cellular, tissue, and organ/organism) of the immune system

represented in a multiscale model affect the development of

the immune response. First, the output of our molecular-scale

model, pMHC II affinity, is a critical parameter that serves as

an input into our single APC model. This allows us, for

example, to explore the effect that MHC II polymorphism

may have on pMHC presentation (Fig. 10A). Second, the state

of an APC agent, in particular the number of pMHC displayed

on the surface as a function of time, can be calculated from

our single-cell-scale APC model. At this point, we can

determine whether differences in pMHC affinity found at the

Table 2. Description of each of the four individual scale models

Scale Model description Model inputs Model outputs

Molecular pMHC binding model Training data (peptide sequence, binding affinities) pMHC II affinity
Cellular Single APC model Antigen and IFN-g concentrations, cellular parameters Surface pMHC complexes
Tissue Cellular interactions in a single LN Antigen concentration, cell numbers, cellular and

LN parameters
Number of effector cells exiting
the LN

Organ/organism Two-compartment models of
LN þ other sites of interest

Antigen; cell numbers; cell, LN and tissue parameters Pathogen numbers
(i.e. viral or bacterial load)

Kirschner et al � A multiscale model of antigen presentation

Immunological Reviews 216/2007 111



smaller scale give rise to significant differences in pMHC

display (Figs 5D and 10B). Third, the ODE simulations of the

APC model will generate individual, single-cell-scale infor-

mation that will be used to update each agent within the

tissue-scale model, the ABM of a single LN. In this model, the

number of pMHC complexes on the surface of an APC is

currently represented as a probability p that an APC will

activate a T cell with which it has come into contact, an input

parameter for the ABM. We can now again determine

whether differences in pMHC affinity will play a key role,

but this time by examining effector T-cell numbers generated

in the LN (Fig. 10C). Finally, we can use the fairly coarse-

grained ODE models developed for particular, relevant body

compartments (e.g. blood, sites of infection) together with

the fine-grained agent-based LN model to see, for example,

the impact of pMHC affinity at the organism scale (Fig.

10D,E). One might compare the predictions of this multi-

scale model with the data of Geluk et al. (25), who showed

that only a few Mtb-derived peptides elicit a T-cell reaction

in mice and that these peptides also bind MHC with high

Fig. 10. Building a multiscale model of
antigen presentation from four individual

scale models. In the particular example shown,
the relevance of allele-specific differences in
pMHC II affinity to antigen presentation and
the overall immune response is explored.
Predictions from each scale are fed to the next
larger scale model, providing predictions
between adjacent (A–D) and non-adjacent (E)
scales, i.e. a hierarchical approach is used. A
hybrid approach must be used if feedback from
larger scales to smaller scales is present, for
example if overall pathogen load can affect
intracellular events.
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affinity. Similarly, T-cell proliferation and IFN-g production

have been correlated with pMHC affinity (26). Together, the

multiscale model incorporates the molecular, cellular, tissue-

scale, and organ/organism-scale models and allows us to

explore, among other things, the relevance of pMHC affinity

differences to the overall immune response.

In a similar fashion, the impact of combinations of

parameters might be explored. For example, can a higher

pMHC affinity compensate for poorer APC uptake ability? As

shown in Fig. 11A, there is indeed such a relationship between

affinity and uptake rate. Can a higher pMHC affinity compensate

for fewer APCs or fewer highly specific T cells? As shown in

Fig. 11B, there is a trade-off between the affinity and the number

of MDCs required to enter the LN in order to produce

a particular number of effector T cells. In Fig. 11, affinity is

represented as part of the aggregate parameter p, the probability

that a CD4þ T cell becomes activated after contact with a DC;

p increases with the number of pMHC displayed, which in turn

increases with pMHC affinity (Fig. 5D). This finding suggests

that an increase in the number of cells presenting antigen within

the LN can compensate for a reduced affinity between peptide

and MHC or lower numbers of pMHC on the surface of the DC

(both factors captured by the probability p). A similar result

holds for the number of T cells present that can recognize the

antigen being presented (data not shown). Thus, although at

present, we are still in the early stages of integrating our

individual scale models, we can already begin to address some

of the multiscale questions posed earlier, in particular those that

do not require integration of all four scales.

We described above a hierarchical approach to our multiscale

model of antigen presentation. However, at a later stage in

model development, we may need to incorporate feedback from

larger scales to smaller scales, moving us to a hybrid approach.

Information on the local environment in the LN, for example

cytokine concentrations, could be passed back to the APC model

to allow cytokine concentrations to influence the number of

pMHCs on the APC surface. Furthermore, many intracellular

pathogens, including Mtb, inhibit antigen presentation within

macrophages. While the mediators of this effect, including 19-

kDa lipoprotein (166–169), act on molecular-scale events

within macrophages, the total production of such mediators is

likely to depend on the number of pathogens at the site of

infection, a tissue-scale quantity. However, the latter quantity

can only be predicted after accounting for other tissue-scale

factors, such as the activation state of macrophages and Th cells

at the site of infection. In this example, then, tissue-scale events

feed back on molecular-scale events and vice versa.

Once a multiscale model is developed, it can be applied

toward the generation of hypotheses regarding the role of

antigen presentation in immunity. Recall that there is a clear

association between particular MHC alleles and disease

susceptibility/resistance. If our molecular scale model shows

that there is a link between particular MHC alleles and affinities

for particular antigens, then the full multiscale model could

be used to show the expected outcome at the system scale

(S. Chang, J. Linderman, D. Kirschner, submitted).

As another example, the efficacy of a vaccine is in part

determined by activation of CD4þ T cells. A multiscale model

Fig. 11. Trade-offs between processes in the models. (A) The
relationship between uptake rate and pMHC II affinity in producing
pMHC complexes in the APC model (Fig. 2). Each point represents
a pair of compensatory parameter values that results in �200 pMHC
complexes on the APC surface 3 h after antigen is added to
macrophages [other parameters were as published in Chang et al. (131)].
(B) The relationship between the probability of activation of resting

(naive) CD4þ T cells (rT4) versus the number of MDCs that enter the
LN on day 0 in generating activated CD4þ T cells in the ABM. Each
point represents a pair of compensatory parameter values that results in
330 � 30 effector CD4þ T cells generated. This result represents the
42-h time point. In both A and B, a local regression line has been fitted
to the data.
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will enable testing of the roles that various factors play in that

activation. What is the relationship between antigen dose in the

vaccine and the number of MDCs appearing in an LN? What

level of T-cell activation is necessary to generate an appropriate

memory response (one further possible extension of the

multiscale model) that is critical for vaccines to be effective

against later challenge? Further, what aspects of the antigen

presentation process should be targeted to optimize vaccine

efficacy? Can such insights help explain why bacille Calmette–

Guérin, the vaccine against Mtb used for the last 80 years, has

failed to eliminate tuberculosis? Finding the answers to such

questions may rely at least in part on the developments

described in this review.

Looking ahead

The ultimate goal of developing mathematical/computational

models of biological systems is to use these models to better

understand the systems and to suggest mechanisms to

manipulate the systems, i.e. to treat or prevent disease. For

example, one can introduce therapeutic modulation, even

modes unapproachable using current medical techniques, in

a controlled manner to evaluate potential targets for both

treatment and vaccine strategies. Indeed, the US Food and Drug

Administration Critical Path Initiative (170) has recently

identified model-based drug development, including drug

and disease modeling, as an important goal.

There are numerous challenges ahead for the development of

multiscale models in biology and for antigen presentation in

particular. First, there is a need for experimental data to allow

for model validation at every scale. For example, although

model development is an essential part to predicting pMHC

affinities, the quality and amount of data available to develop

models remain an issue (123, 171, 172). The predictive ability

of a model should improve with the size of the training set.

Currently, databases contain 13 000–24 000 peptides, although

the sizes of these databases can be misleading. Laboratories

often generate very closely related peptides to determine

characteristics of binding; these peptides are then listed as

separate entries in the databases. However, using homologous

peptides to fit models of pMHC binding can skew predictions.

Methods to eliminate homologous peptides are available (173,

174) and, when implemented, significantly reduce data set

size.

From a computational perspective, methods for integrating

predictions at individual scales and for allowing behavior at

each scale to influence behavior at other scales are needed and

are currently under development for a number of biological

systems (175). In addition, a number of groups are developing

platforms with the explicit aim of standardizing models; this

development would make it easier to pass models from one

research group to another (176–178).

In sum, nearly all biological processes involve multiple

scales. Thus, the lessons learned here regarding the use of

modeling to integrate molecular, cellular, tissue-scale, and

organ/organism-scale events can inform studies on a broad

range of biological systems and provide tools to analyze

them.

References

1. Savageau MA. Reconstructionist molecular

biology. New Biol 1991;3:190–197.

2. Hunter P, Nielsen P. A strategy for integra-

tive computational physiology. Physiology

(Bethesda) 2005;20:316–325.

3. Bassingthwaighte JB, Chizeck HJ, Atlas LE,

Qian H. Multiscale modeling of cardiac

cellular energetics. Ann N Y Acad Sci

2005;1047:395–424.

4. Choe Y. The role of temporal parameters in

a thalamocortical model of analogy. IEEE

Trans Neural Netw 2004;15:1071–1082.

5. Breakspear M, Stam CJ. Dynamics of a neural

system with a multiscale architecture. Philos

Trans R Soc Lond B Biol Sci 2005;360:

1051–1074.

6. Robinson PA, Rennie CJ, Rowe DL,

O’Connor SC, Gordon E. Multiscale brain

modelling. Philos Trans R Soc Lond B Biol Sci

2005;360:1043–1050.

7. Alarcon T, Byrne HM, Maini PK. Towards

whole-organ modelling of tumour growth.

Prog Biophys Mol Biol 2004;85:451–472.

8. Peirce SM, Skalak TC. Microvascular

remodeling: a complex continuum

spanning angiogenesis to arteriogenesis.

Microcirculation 2003;10:99–111.

9. Reeves GT, Kalifa R, Klein DE, Lemmon MA,

Shvartsman SY. Computational analysis of

EGFR inhibition by Argos. Dev Biol

2005;284:523–535.

10. Glotzer SC, Paul W. Molecular and mesoscale

simulation methods for polymer materials.

Annu Rev Mater Res 2002;32:401–436.

11. Comisar WA, Hsiong SX, Kong HJ, Mooney

DJ, Linderman JJ. Multi-scale modeling to

predict ligand presentation within RGD

nanopatterned hydrogels. Biomaterials

2006;270:2322–2329.

12. De Libero G, Mori L. Recognition of lipid

antigens by T cells. Nat Rev Immunol

2005;5:485–496.

13. Cheng Y, Prusoff WH. Relationship between

the inhibition constant (K1) and the concen-

tration of inhibitor which causes 50 per cent

inhibition (I50) of an enzymatic reaction.

Biochem Pharmacol 1973;22:3099–3108.

14. Sette A, Buus S, Colon S, Miles C, Grey HM.

Structural analysis of peptides capable of

binding to more than one Ia antigen.

J Immunol 1989;142:35–40.

15. Roche PA, Cresswell P. High-affinity binding

of an influenza hemagglutinin-derived

peptide to purified HLA-DR. J Immunol

1990;144:1849–1856.

16. Southwood S, et al. Several common HLA-

DR types share largely overlapping peptide

binding repertoires. J Immunol

1998;160:3363–3373.

17. Dedier S, Reinelt S, Rion S, Folkers G,

Rognan D. Use of fluorescence polarization to

monitor MHC-peptide interactions in solu-

tion. J Immunol Methods 2001;255:57–66.

Kirschner et al � A multiscale model of antigen presentation

114 Immunological Reviews 216/2007



18. Brusic V, Rudy G, Honeyman G, Hammer J,

Harrison L. Prediction of MHC class II-

binding peptides using an evolutionary

algorithm and artificial neural network.

Bioinformatics 1998;14:121–130.

19. Bhasin M, Singh H, Raghava GP. MHCBN:

a comprehensive database of MHC binding

and non-binding peptides. Bioinformatics

2003;19:665–666.

20. Toseland CP, et al. AntiJen: a quantitative

immunology database integrating func-

tional, thermodynamic, kinetic, biophysical,

and cellular data. Immunome Res

2005;1:4.

21. Sette A, et al. The relationship between class I

binding affinity and immunogenicity of

potential cytotoxic T cell epitopes.

J Immunol 1994;153:5586–5592.

22. Vukmanovic S, Neubert TA, Santori FR.

Could TCR antagonism explain associations

between MHC genes and disease? Trends

Mol Med 2003;9:139–146.

23. Rajagopalan S, Long EO. Understanding how

combinations of HLA and KIR genes

influence disease. J Exp Med

2005;201:1025–1029.

24. Thorsby E, Lie BA. HLA associated genetic

predisposition to autoimmune diseases:

genes involved and possible mechanisms.

Transpl Immunol 2005;14:

175–182.

25. Geluk A, et al. Identification of HLA class II-

restricted determinants of Mycobacterium

tuberculosis-derived proteins by using HLA-

transgenic, class II-deficient mice. Proc Natl

Acad Sci USA 1998;95:10797–10802.

26. Hill JA, Wang D, Jevnikar AM, Cairns E, Bell

DA. The relationship between predicted

peptide-MHC class II affinity and T-cell

activation in a HLA-DRbeta1*0401

transgenic mouse model. Arthritis Res

Ther 2003;5:R40–R48.

27. Bryant P, Ploegh H. Class II MHC peptide

loading by the professionals. Curr Opin

Immunol 2004;16:96–102.

28. Honey K, Rudensky AY. Lysosomal cysteine

proteases regulate antigen presentation. Nat

Rev Immunol 2003;3:472–482.

29. Denzin LK, Cresswell P. HLA-DM induces

CLIP dissociation from MHC class II alpha

beta dimers and facilitates peptide loading.

Cell 1995;82:155–165.

30. Adorini L, Muller S, Cardinaux F, Lehmann

PV, Falcioni F, Nagy ZA. In vivo competition

between self peptides and foreign antigens

in T-cell activation. Nature 1988;334:

623–625.

31. Chicz RM, Urban RG, Gorga JC, Vignali DA,

Lane WS, Strominger JL. Specificity and

promiscuity among naturally processed

peptides bound to HLA-DR alleles. J Exp Med

1993;178:27–47.

32. Chomarat P, Banchereau J, Davoust J, Palucka

AK. IL-6 switches the differentiation of

monocytes from dendritic cells to macro-

phages. Nat Immunol 2000;1:510–514.

33. Chomarat P, Dantin C, Bennett L, Banchereau

J, Palucka AK. TNF skews monocyte differ-

entiation from macrophages to dendritic

cells. J Immunol 2003;171:2262–2269.

34. Fogg DK, et al. A clonogenic bone marrow

progenitor specific for macrophages and

dendritic cells. Science 2006;311:83–87.

35. Inaba K, Steinman RM. Protein-specific

helper T-lymphocyte formation initiated by

dendritic cells. Science 1985;229:475–479.

36. Inaba K, Pack M, Inaba M, Sakuta H, Isdell F,

Steinman RM. High levels of a major

histocompatibility complex II-self peptide

complex on dendritic cells from the T cell

areas of lymph nodes. J Exp Med

1997;186:665–672.

37. Reinhardt RL, Khoruts A, Merica R, Zell T,

Jenkins MK. Visualizing the generation of

memory CD4 T cells in the whole body.

Nature 2001;410:101–105.

38. Kimachi K, Croft M, Grey HM. The minimal

number of antigen-major histocompatibility

complex class II complexes required for

activation of naive and primed T cells. Eur J

Immunol 1997;27:3310–3317.

39. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis

MM. Direct observation of ligand recogni-

tion by T cells. Nature 2002;419:845–849.

40. Watts TH. T cell activation by preformed,

long-lived Ia-peptide complexes. Quantita-

tive aspects. J Immunol 1988;141:

3708–3714.

41. Agrawal NG, Linderman JJ. Mathematical

modeling of helper T lymphocyte/antigen-

presenting cell interactions: analysis of

methods for modifying antigen processing

and presentation. J Theor Biol

1996;182:487–504.

42. Lavoie PM, Dumont AR, McGrath H,

Kernaleguen AE, Sekaly RP. Delayed ex-

pansion of a restricted T cell repertoire by

low-density TCR ligands. Int Immunol

2005;17:931–941.

43. von Andrian UH, Mempel TR. Homing and

cellular traffic in lymph nodes. Nat Rev

Immunol 2003;3:867–878.

44. Marchesi VT, Gowans JL. The migration of

lymphocytes through the endothelium of

venules in lymph nodes: an electron micro-

scope study. Proc R Soc Lond B Biol Sci

1964;159:283–290.

45. Girard JP, Springer TA. High endothelial

venules (HEVs): specialized endothelium for

lymphocyte migration. Immunol Today

1995;16:449–457.

46. Davis DM, Dustin ML. What is the impor-

tance of the immunological synapse? Trends

Immunol 2004;25:323–327.

47. Lee KH, et al. The immunological synapse

balances T cell receptor signaling and

degradation. Science 2003;302:

1218–1222.

48. Butcher EC, Picker LJ. Lymphocyte homing

and homeostasis. Science 1996;272:

60–66.

49. von Andrian UH, Mackay CR. T-cell

function and migration. Two sides of the

same coin. N Engl J Med 2000;343:

1020–1034.

50. Chain B, McCafferty I, Wallace G, Askenase

PW. Improvement of the in vitro T cell

proliferation assay by a modified method

that separates the antigen recognition and IL-

2-dependent steps. J Immunol Methods

1987;99:221–228.

51. Traynor TR, Herring AC, Dorf ME, Kuziel

WA, Toews GB, Huffnagle GB. Differential

roles of CC chemokine ligand 2/monocyte

chemotactic protein-1 and CCR2 in the

development of T1 immunity. J Immunol

2002;168:4659–4666.

52. Algood HM, Flynn JL. CCR5-deficient

mice control Mycobacterium tuberculosis

infection despite increased pulmonary

lymphocytic infiltration. J Immunol

2004;173:3287–3296.

53. Lazarevic V, Nolt D, Flynn JL. Long-term

control of Mycobacterium tuberculosis

infection is mediated by dynamic immune

responses. J Immunol 2005;175:

1107–1117.

54. Lindell DM, Moore TA, McDonald RA,

Toews GB, Huffnagle GB. Distinct compart-

mentalization of CD4þ T-cell effector func-

tion versus proliferative capacity during

pulmonary cryptococcosis. Am J Pathol

2006;168:847–855.

55. Sumen C, Mempel TR, Mazo IB, von Andrian

UH. Intravital microscopy: visualizing

immunity in context. Immunity

2004;21:315–329.

56. Catron DM, Itano AA, Pape KA, Mueller DL,

Jenkins MK. Visualizing the first 50 hr

of the primary immune response to

a soluble antigen. Immunity 2004;21:

341–347.

57. Miller MJ, Wei SH, Cahalan MD, Parker I.

Autonomous T cell trafficking examined in

vivo with intravital two-photon microscopy.

Proc Natl Acad Sci USA 2003;100:

2604–2609.

58. Meyer-Hermann ME, Maini PK. Interpreting

two-photon imaging data of lymphocyte

motility. Phys Rev E Stat Nonlin Soft Matter

Phys 2005;71:061912.

59. Sprent J, Tough D. T cell death and memory.

Science 2001;293:245–248.

60. Bajenoff M, et al. Stromal cell networks

regulate lymphocyte entry, migration, and

territoriality in lymph nodes. Immunity

2006;25:989–1001.

Kirschner et al � A multiscale model of antigen presentation

Immunological Reviews 216/2007 115



61. Castellino F, et al. Chemokines enhance

immunity by guiding naive CD8þ T cells to

sites of CD4þ T cell-dendritic cell interac-

tion. Nature 2006;440:890–895.

62. Okada T, et al. Antigen-engaged B cells

undergo chemotaxis toward the T zone and

form motile conjugates with helper T cells.

PLoS Biol 2005;3:el50.

63. Miller MJ, Safrina O, Parker I, Cahalan MD.

Imaging the single cell dynamics of CD4þ
T cell activation by dendritic cells in

lymph nodes. J Exp Med 2004;200:

847–856.

64. Miyasaka M, Tanaka T. Lymphocyte traf-

ficking across high endothelial venules:

dogmas and enigmas. Nat Rev Immunol

2004;4:360–370.

65. Cahill RN, Frost H, Trnka Z. The effects of

antigen on the migration of recirculating

lymphocytes through single lymph nodes.

J Exp Med 1976;143:870–888.

66. Gretz JE, Anderson AO, Shaw S. Cords,

channels, corridors and conduits: critical

architectural elements facilitating cell inter-

actions in the lymph node cortex. Immunol

Rev 1997;156:11–24.

67. Bajenoff M, Granjeaud S, Guerder S. The

strategy of T cell antigen-presenting cell

encounter in antigen-draining lymph nodes

revealed by imaging of initial T cell

activation. J Exp Med 2003;198:

715–724.

68. Randolph GJ, Angeli V, Swartz MA.

Dendritic-cell trafficking to lymph nodes

through lymphatic vessels. Nat Rev Immunol

2005;5:617–628.

69. Westermann J, Bode U, Pabst R. Migration of

naive and memory T cells in vivo. Immunol

Today 1998;19:143–144.

70. Rosenberg YJ, Janossy G. The importance of

lymphocyte trafficking in regulating blood

lymphocyte levels during HIV and SIV

infections. Semin Immunol 1999;11:

139–154.

71. Miller MJ, Hejazi AS, Wei SH, Cahalan

MD, Parker I. T cell repertoire scanning

is promoted by dynamic dendritic cell

behavior and random T cell motility in

the lymph node. Proc Natl Acad Sci USA

2004;101:998–1003.

72. Marino S, Kirschner DE. The human immune

response to Mycobacterium tuberculosis

in lung and lymph node. J Theor Biol

2004;227:463–486.

73. Marino S, Pawar S, Fuller CL, Reinhart TA,

Flynn JL, Kirschner DE. Dendritic cell

trafficking and antigen presentation in the

human immune response to Mycobacterium

tuberculosis. J Immunol 2004;173:

494–506.

74. Sprent J. Circulating T and B lymphocytes of

the mouse. I. Migratory properties. Cell

Immunol 1973;7:10–39.

75. Sprent J, Basten A. Circulating T and B

lymphocytes of the mouse. II. Lifespan. Cell

Immunol 1973;7:40–59.

76. Swain SL, et al. From naive to memory

T cells. Immunol Rev 1996;150:143–167.

77. Mims CA, Nash A, Stephen J. Mims’ Patho-

genesis of Infectious Disease, 5th edn. San

Diego: Academic Press, 2001.

78. Miller DM, et al. Human cytomegalovirus

inhibits major histocompatibility complex

class II expression by disruption of the

Jak/Stat pathway. J Exp Med 1998;187:

675–683.

79. Mahanty S, Hutchinson K, Agarwal S, McRae

M, Rollin PE, Pulendran B. Cutting edge:

impairment of dendritic cells and adaptive

immunity by Ebola and Lassa viruses.

J Immunol 2003;170:2797–2801.

80. Fenton MJ. Macrophages and tuberculosis.

Curr Opin Hematol 1998;5:72–78.

81. Moreno C, Mehlert A, Lamb J. The inhibitory

effects of mycobacterial lipoarabinomannan

and polysaccharides upon polyclonal and

monoclonal human T cell proliferation. Clin

Exp Immunol 1988;74:206–210.

82. Hmama Z, Gabathuler R, Jefferies WA, de

Jong G, Reiner NE. Attenuation of HLA-DR

expression by mononuclear phagocytes

infected with Mycobacterium tuberculosis is

related to intracellular sequestration of

immature class II heterodimers. J Immunol

1998;161:4882–4893.

83. Noss EH, Harding CV, Boom WH. Myco-

bacterium tuberculosis inhibits MHC class II

antigen processing in murine bone marrow

macrophages. Cell Immunol 2000;201:

63–74.

84. unaids.org. UNAIDS/WHO AIDS Epidemic

Update: December 2005. URL http://

www.unaids.org, 2005.

85. Edelstein-Keshet L. Mathematical Models in

Biology. New York: Random House, 1988.

86. Murray JD. Mathematical Biology.

New York: Springer-Verlag, 1989.

87. Keener JP, Sneyd J. Mathematical Physiology.

New York: Springer, 1998.

88. Segel LA, Cohen IR. Design Principles for

the Immune System and other Distributed

Autonomous Systems. Oxford: Oxford

University Press, 2001.

89. Grimm V, Railsback SF. Individual-based

Modeling and Ecology. Princeton: Princeton

University Press, 2005.

90. Lauffenburger DA, Linderman JL Receptors:

Models for Binding, Trafficking and Signal-

ing. New York: Oxford University Press,

1993.

91. Brauer F, Castillo-Châavez C. Mathematical
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