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8.1 Introduction

The immune system is a complex network of cells and signals that has evolved
to respond to the presence of pathogens (bacteria, virus, fungi). By pathogen
we mean a microbial non-self recognized as a potential threat by the host.
Some pathogens preferentially survive and proliferate better inside cells (in-
tracellular pathogens) and others are extracellular (Medzhitov et al. 2002).

The two basic types of immunity are innate and adaptive. The innate
response is the first line of defense; this response targets any type of microbial
non-self and is non-specific because the strategy is the same irrespective of
the pathogen. Innate immunity can suffice to clear the pathogen in most
cases, but sometimes it is insufficient. In fact, pathogens may possess Ways to
overcome the innate response and successfully colonize and infect the host.

When innate immunity fails, a completely different cascade of events en-
sues leading to adaptive immunity. Unlike the innate response, the adaptive
response is tailored to the type of pathogen. Tmmune responses that clear
intracellular pathogens typically involve effector cells (such as cytotoxic T
cells, or CTLs) while extracellular pathogens are cleared mostly by effector
molecules {e.g. antibodies) involving a different cascade of cells (such as B
cells) (Janeway 2001).

There is a natural temporal kinetic that arises as part of these immune
responses. The innate immune response develops first occurring on the order
of minutes and hours. Adaptive immunity follows innate and occurs on the
order of days or weeks. Each has an inherent delay in their development (see
next section), and this timing may be crucial in determining success or failure
in clearing the pathogen.

8.2 Timing of innate and adaptive immunity

Cells of innate immunity recognize highly conserved structures produced by
microbial pathogens. These structures are usually shared by entire classes
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of pathogens (Gram-negative bacteria, for example) (Janeway et al. 2002).
Once recognition occurs {Akira et al. 2001; Medzhitov et al. 2002; Takeda
et al. 2003), the innate immune system is activated and ensues with very
rapid kinetics (on the orders of minutes to hours).

The signals induced upon recognition by the innate immune system, in
turn, stimulate and orient the adaptive immune response by controlling ex-
pression of necessary costimulatory molecules (Janeway 2002). In contrast,
adaptive immunity has a tremendous capacity to recognize almost any anti-
genic structure (i.e., different from our gene repertoire) and because antigen
receptors are generated at random (Medzhitov et al. 2000), they bind to
antigens regardless of their origin (bacterial, environmental or self). Thus,
the adaptive immune system responds to pathogens only after they have
been recognized by the innate system (Fearon et al. 1996; Janeway 1989;
Medzhitov et al. 1997). It takes at least 3 to 5 days for sufficient numbers of |
adaptive immune cells to be produced (expansion) (Medzhitov et al. 2000).

Another delay beyond the recognition and expansion phase occurs due to o
activation and differentiation phases. To complete these phases cells have to j
circulate and traffick from the lymphatic system through blood to the site of
infection (Guermonprez et al. 2002; Zinkernagel 2003). This process takes at
least few days (Jenkins et al. 2001). _

It is clear timing is a key step in defining immune responses. The time »
frame for adaptive immunity to efficiently clear a pathogen at a site of infec- 1
tion is generally from 1-3 weeks (Janeway 2001; Jenkins et al. 2001; Lurie ok
1964). Depending on different factors, such as the type of pathogen, its pro- '
liferation rate (virus, bacteria) and tropism (intracellular or extracellular),
either faster or slower responses are elicited (Antia et al. 2003; Guermonprez
et al. 2002; Harty et al. 2000; Wong et al. 2003). It could be more rapid if
memory cells exist (Murali-Krishna et al. 1999; Sprent et al. 2002; Surh et al.
2002; Swain et al. 1999). _

The ability to mount an adaptive immune response also allows hosts to
recall pathogens they have already encountered, termed a memory response.
This facilitates a stronger and more efficient adaptive response whenever
a second infection occurs (Sprent et al. 2002). The process of vaccination
exploits this idea. _

Although several examples exist in the literature of DDE modeling in bio-
sciences and in immunology (see Murray 2002), little research in the experié
mental setting addresses the specific timing and functional form (kernels) of
these kinetics. To begin to study these questions, we first developed a genelr_'a,_l
model of the two-fold immune response, specifically to intracellular bacterial
pathogens, incorporating mathematical delays for both innate and adaptive
immune response. _

Our baseline model tracks five variables: uninfected target cells (Xy),
infected cells (X7), bacteria. (B), and phenomenological variables captur-
ing innate (Ig) and adaptive (Ag) immunity. Uninfected target cells' (1)
have a natural turnover (syy) and half-life (ux, Xv) and can become infected
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‘mass-action term o1 Xy B).

d Xy
dt
Trifected cells (2) can be cleared by the adaptive response (mass-action term

03 X1 Ag) or they die (half-life term ux, Xr). Here the adaptive response is
epresented to target intracellular bacteria.

daX
_&E{ =y XyB — o X1Ap — pux, X1 2)

;' ‘The bacterial population (3) has a net proliferation term, represented by
. a logistic function (OdgoB (1- %)) and is also cleared by innate immunity
- (mass-action term a3 BIg).

a8
dt

= 8y — O£1XUB — )U'XUXU . - (1)

B
= ang (1 — -O—_> - ongIR . (3)

Both innate and adaptive responses ((4) and (5), respectively) have
a source term and a half-life term.

0
%It—RﬂSIR—F fw1(s)f1(B(t+s),IR(t—l—s)) ds —przIr . (4)
dA ;
—f:%ﬁf’fUz(S)fz(B(HS),AR(Hs)) ds— panAr  (5)

—Ta

For the innate response, the source term (s1,) includes a wide range
of cells involved in the first wave of defense of the host (such as natural
killer cells, polymorphonuclear cells, macrophages and dendritic cells). For
the adaptive response, the source term (s4,) represents memory cells that
are present, derived from a previous infection (or vaccination). A zero source
implies that this is the first infection with this pathogen (i. e. no memory cells
exist). Both responses are enhanced and sustained by signals that we have
captured by bacterial load. The amount and type of bacteria present and
the duration of infection likely determine the strength and type of immune
response.

Two delays are included in the model. The delay for innate immunity, 71,
occurs on the order of minutes to hours and o is the delay for adaptive
immunity on the order of days to weeks. We assume that both responses are
dependent solely on the bacterial load in the previous 7; time units (i = 1, 2)
where the kernel functions wi(s), (i = 1,2) weight the past values of the
bacterial load B (s), i.e.:

Case 1
fi (B(t‘}‘S),IR(t"I—S))ﬁB(t-l—S), s € [—m,0}
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and
fo(B(t+8),Agr(t+3))=B(t+s), se€|-mn,0.

In a second case, we could consider a different form of the delay. For innate
immunity equation we consider the interaction (mass action product) of the
bacterial load and the innate response and for adaptive immunity equation
the interaction of the adaptive response with infected cells (in the previous
7; time units, ¢ = 1,2). Therefore :

Case 2 |
fi(Bt+s),Igt+s) =k, B{t+s)Ir(t+s)
and |
fo (X1(t + 5), An(t + 8)) = kan X1(t + 8)An(t + 5) )

where kr, and k4, are scaling factors. We also consider two different types
of functions for the kernels w;(s)(¢ = 1,2), namely exponential or uniform.

As no experimental studies explore delays in any quantitative way, little
evidence is available to inform us about the shapes of the delay kernels.
However, we explore two biologically plausible cases. In the case of a uniform
kernel we assume that the imumune response (both innate and adaptive) is
uniformly dependent on the previous 7; time units. This implies that the
bacterial load over the entire infection equally influences the response (in
the 2nd delay case it implies that the interaction between the response and
bacteria equally influences the response).

In the case of an exponential growth kernel, we assume that both immune
responses place significant emphasis on the most recent bacterial load and
that the influence of bacterial load prior to the most recent history is less
significant (in the 2nd delay case it implies that only the most recent history -
of the interaction between the response and bacteria influences the respective
response).

We hypothesis that the shorter the time delay is, the less 1nformat1ve
(uniform) is the past history of the infection. Moreover, more recent levels
of infection (for example, the number of bacteria in the host in the last few
of days) will likely elicit a stronger adaptive immunity response (exponential -
growth). This leads to our use of a uniform kernel for innate immunity and.
an exponential growth kernel for adaptive immunity.

To complete the development of the mathematical model, we must estz— ._
mate values for the parameters and initial conditions, as well as define umts -
In many cases, previously published data in the literature suggest large ranges
in parameter choices: we chose an average value for our model. The values of -
initial conditions and parameter values are given in Table 8.1 and Table 8.2,
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Table 8.1. Initial conditions (cells or bacteria per cm?® of tissue)

Name Value Range
XU (0) — X[bjaseline 134 1@4 _ 165
XI(O) — Xl!ga.seline 0

B(0) = Bo 20

Ir(0) = Jhaseline 13 1e® —1e?

Ag(0) = Alpseline 1e? OR 0 (for first infections) 1e? - 16°

respectively. Given baseline levels and half-life terms, values of source ferms
sy, 1, and s, are determined by the following conditions:

—_ baseline a baseline —
SU = JU'XUXU y SIp & /J‘IRIR » SAr = HAr

Al}a{aseline .

Thus, for example, changing haseline wil] affect only si and not py,. To
properly define the integrals of equations (4)~(5) (both in delay case 1 and
case 2), we need the following initial conditions:

Xr(t)=0 for te€[—7,0]
B(t) = B(0) for te€|-m,0] 6
Ig(t) = IPeseline for t¢€ [—71,0] (6)
Ag(t) = Abesolme  for ¢ € [—73,0]

Although our model is developed to model human infection regardless of its
3

location, we use a volumetric measure unit (i.e., number of cells per cm

of tissue) to possibly compare our results with available experimental data,
especially in the respiratory tract and the lung (Holt 2000; Holt et al. 2000;
Marino and Kirschner 2004; Marino et al. 2004; Mercer et al. 1994; Stone

et al. 1992; Wigginton et al. 2001).
In this work we have analytically analyzed only case 1 of the model leaving

the analysis of case 2 for a future paper.

The model yields a boundary equilibrium, corresponding to the healthy
or uninfected state, and an interior equilibrium, corresponding to an infec-
tion scenario. In Sect. 8.3 we have analyzed the main mathematical proper-
ties (positivity, boundedness and permanence of solutions) of the model, but
a special emphasis is devoted to the local stability analysis (see Sect. 8.4) of
the equilibria and particularly of the interior equilibrium. This special atten-
tion is due to the fact that the model equations involve distributed delays
over finite intervals, and not simply fixed delays or delays over infinite in-
tervals (for which last case the characteristic equation contains the Laplace
transform of the delay kernels). Therefore the characteristic equation is de-
pendent on the choice of the delay kernels used in the model, which in the

present model, are either uniform or exponential.
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Table 8.2. Parameter values

Name Definition Range Units Reference

pxy  Halflife of Xy (like  0.011 1/day (Van Furth et al. 1973)
macrophages)

o Rate of infection le=® B(t)™'/day FEstimated

o) Rate of killing of X; 1le™® Ag(t)”!/day (Flesch and Kaufmann
due to Ag 1990; Lewinsohn et al.

1998; Silver ef al. 1998a;
Tan et al. 1997; Tsukaguchi

et al 1995)
HUx; Half-life of Xy 0.011 1/day (Van Furth et al. 1973)
Q20 Growth rate of B 5 1/day (North and Izzo 1993;

Silver et al. 1998a; Silver
et al. 1998b)

o Max # of bacteria leb B(t) Estimated
(threshold)

o3 Rate of killing of B le™* Ig(t)™'/day (Flesch and Kaufmann
due to Iz 1990)

o Rate of killing of B le=* Ag(t)™'/day Estimated
due to Ap

WIg Half-life of innate 11 1/day (Sprent et al. 1973)

immunity cells

pan  Half-life of adaptive 0.3333 1/day (Sprent et al. 1973)
immunity cells

1 Delay of innate [.1, 10] day
immunity

T2 Delay of adaptive [5, 40] day
immunity

Furthermore, since the interior equilibrium has components dependent
on the range of the delay intervals 7;, ¢ = 1,2, the characteristic equation
will result in a polynomial transcendental equation of exponential type with
polynomial coefficients that are dependent on the delay (range) 7;. In the
following of this paper the range of the delay intervals 7, ¢ = 1,2, will
simply be called the delays ™ and 7» respectively for innate and adaptive
immunity response. '

For the polynomial transcendental characteristic equation mentioned
above, a geometric stability switch criterion has been derived that enables
study of possible stability switches as functions of delays (see Beretta and
Kuang 2002). In Sect. 8.5, using the parameter values of Table 8.2 and initial
conditions in (6) and Table 8.1, we describe the numerical simulations of the
solutions of our model for delay values close to the stability switch values.

A discussion of the mathematical results and of their biological implica-
tions for the model is presented in Sects. 8.6 and 8.7.
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8.3 Analytical results

The equations of the model are:

_-——-—dXdL;(t) = sy — o1 Xu(t)B(t) — pxy Xv(t)
d)ilIt(t) = a1 Xy () B(¢) — 02 X1(t) Ar(t) — px, X1(t)
380 — asonte) (1- Z2) — asBO1a(0 ™

0

0
dA(ft(t) = 84y T / we(0)B(t + 0)df — papAr(t)

In the following we denote by
0
A1) = / wi(0)dd, i=1,2. (8)

We now discuss the main mathematical properties of system (7).
Let h = max{7y, 72} = T2 and define

z(t) == (Xy(8), X1(t), B(t), Ir(t), Ar(?)) € R®

and X3(6) = X(¢t+6), 6€[—h,0]forallt>0. Then (7) can be rewritten

2'(t) = F(=1) (9)

with initial conditions at ¢ = 0 given by
P c C([-—h,O],R5)

where C([—h,0],R5) is the Banach space of continuous functions mapping
the interval [—h, 0] into R® equipped with the (supremum) norm

| @ll= sup |2(6)]
€= h,0]

e

1

2

5
55

where | - | is any norm in R®.
For the biological relevance, according to (6) and Table 8.1, we define
non-negative initial conditions

&(6) >0, 0¢€][—h,0]

S s e

with
®;(0) >0, i=1,3,45 and $y(0) = X7(0) =0
to (7).
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Lemma 1. Any solution z(t) = =(®,t) of (7) with #(8) > 0,6 € [—A,0],
P(0) > 0 (except for $3(0) = 0) remains positive whenever it exists, i. e.
z(t) € RS where

]R:r’*, ={x = (21.22, %3, %4, T5) € Rslmi >0,1=1,2,3,4,5}

Proof. Consider the third equation in (7):

82 — 50 |an (1- 20 - el

with B(0) = @3(0) > 0. Then

B(#) = B(0) exp {fot ‘[ago (1 - B§S)> - ang(s)] ds} >0, t>0 (10)

The first equation in (7) gives:

dXy

— > ~Xv®)(@B{) +pxy), Xu(0)=21(0) >0,

t
Xu(t) > Xu(0)exp {—/ (a1 B(s) —i—,uXU]ds} >0, t>0 (11)
0
Since Xy (t) > 0, B(t) > 0 for t > 0, the second equation in (7) gives

dX
—=5 > —Xi(t) (o2 dr(t) +px,) . X2(0) =22(0) =0,
Le.

Xr(t)>0 t>0 (12)
Consider the last two equations in (7). Since B(¢) = ®3(f) > 0 in [—h, 0] and
B(t) > 0 for t > 0, we have

dIg(t
—gj(—) > s — xR (),  IR(0) = P4(0) > 0,
i.e. s
Ig(t) > Ix(0)e¥irt 4 fi—(l — e MRty >0, t>0. (13)
- ]
Similarly,
dAg(t
(ﬁ( ) > san, — karAr(), Agr(0)=5(0) >0,
i.e. s o
Ap(t) > Ag(0)e#4rt + 222 (1 g #art) >0, ¢t>0.  (14)

HAg

This completes the proof of positivity. ik
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Let us consider the boundedness of solutions.
Lemma 2. Any solution x(t) = x(P,t) of (7) is bounded.

Proof. Because of positivity of solutions, the first two equations in (7) give

%(Xu(t) +X1(t)) < su — p(Xu(t) + Xi(8)

where
= min{ru'XUa.qu} .
Hence 5
lim sup (Xo(t) + X1(t) < —;{ . (15)
t—o0

Positivity of solutions still implies

diit) < agoB(t) (1 - _B%tl)

and therefore
lim sup B(f) <o (16)

tam 00 .
Accordingly, there exists a T. > 0 such that for all ¢ > T. + h (h =
max{71,72}) and for sufficiently small ¢ > 0, B(t) < o + €. Hence, the last
two equations in (7) give

dIgt(t) < SIgp + (J + E)A(Tl) - MIRIR(t)
dAcﬁ(t) < sap+ (0 +€)A(T2) — agr Ar(?)

thus implying (by letting € — 0),
515 + 0 A(T1)

lim sup Ig(t) < (17)
Y HIr
A
lim sup Ap(t) < 427 (72) (18)
t—o00 HAr
This proves boundedness. ]

Definition 1 (Permanence of (7)). System (7) is permanent (or uniformly
persistent) if there exist positive constants m, M,m < M, independent of
initial conditions and such that for solutions of (7), we have:
max { lim sup Xy (t),lim sup X;(¢),lim sup B(¢),lim sup Ir(t),
t—o0 t—o0 t—co tr 00
lim sup AR(t)} <M
t—co (19)
min{lim inf Xy(t),lim inf X7(t),lim inf B(£),lim inf Ir(t),
t—o00 t—00 E—00 t—o0

limtinf AR(t)} Zm
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Lemma 3. Provided that

A
am > 0g 87T (20)
Higp
system (7) is permanent.
Proof. Let us consider the “limsup” i.e. the first of (19).
From the first equation of (7) and Lemma. 1 (positivity), we have:
dX
d v S Sy — ,u'XUXU(t) 3
t
which implies that
lim sup Xg(t) < —2 = Xy . (21)
t—00 Xy

From (16), (21) and the second of equations (7), for sufficiently large ¢ > 0

and small € > 0, we have

dX;(t) ( sy
1

—_— <o
dt HXy

+e) (0 +¢) = pxs Xr(t)

which gives

()

23] (e}

: M.XU N

lim sup Xj(t) < = Xr. (22)
t—o00 HXy

Hence, from (16)—(18), (21), (22) we have

(lim sup Xy (t),lim sup X;(t),lim sup B(¢),lim sup Ir(t),lim sup AR(t))
t—co t—r 00 t—ro0 t—o00 t—00
< (XUy XI: B: IR: AR)
(23)

where

Beo. In= srp + 0 A(T1)  Ap= SAp + 0A(T2) .

HIg HAg

If we choose
M = max(Xv, X1, B, I, Ar),

then there exists M > 0 such that the first inequality in (19) holds true.
Consider now the “liminf”, i. e. the second in (19).

(i) Consider Ag, Ig.
From (13) and (14) we have
lim inf Tg(f) > SI& .= I, lim inf Ag(t) > 22 = Ap
t—oo In t—oo Ap




(iii)

(iv)
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Consider B.
From (23), for sufficiently large ¢ > 0 and small € > 0 we have
dB(t B(t -
®) > a0 B(t) (1 - -—(—)“) — (o3dp + €)B(t)
dt o
I B(t
— anoB(t) (1— aslpte _ Bl )) .
a2 e}
Hence, letting e — 0
— asl
lim inf B{(t) > (M> og=B
t—00 a0

where B > 0 provided that

1 + 04T (— g Fr).

Ir

Qo > (3

Consider Xy.
For large t > 0, small € > 0 we have
d Xy (¢)
dt
from which, letting € — 0

> sy — (01(B + €) + pxy ) Xv

lim inf Xu(t) = = Xy
t—co

oo + ,'J'XU

Consider X;.
For large t > 0, small € > 0 we have

dXr(t -
10 5 a4y ~ (B - ) = (ealdn +) + ) X0
from which, letting € — 0, we obtain
. Odl_)éuﬁ
1 £ X () > ——— = X
e 1) 2 wAr +px;

hence, provided that (20) hods true, (24)-(27) imply that
(lim tl—l}go Xy(t),lim tglgo Xi(t),lim tg}go B(t), tlilglo inf Ig(t) ,
11111 tingo AR(t)) Z (.X_U:.-X_Ia_B—a _LRs:A_R) )

where the constants on the right side of (28) are positive.

Thus, if we choose

considering that liminf z(f) < limsup z(

m = min(uX_U:.)_(.Ia_Bip I_R; .A.R) 3 m > 0

stants m, M, m < M such that (19) hold true.

187

(25)

(26)

(27)

(28)

t}, we have found two positive con-

a
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Remark 1. As we will see in Theorem 1, if A(71) = 0 the permanence con-
dition (20) becomes the existence condition of the positive equilibrium Ep.
Furthermore, if A(my) = 0, then B = B*.

Concerning the equilibria of (7), we can give the following result (we omit
the computations which can be easily checked):

Theorem 1. The system (7) gives two non-negative equilibria:

1. for all parameter values the boundary equilibrium exists

EB:(XEZ 7 aX}k:U:B*M_HO?IE:f—Ii’AE:SAR> (29)
HXy Kig HAg

on the boundary of the positive cone in RS and
2. for ago — a3 (s /1urn) > 0 the positive equilibrium exists

Ep = (X, X7,B*, I}, A%) .

with the following values for each component

Qo — Qi3 &2"
Xt =—— U * M&m * 25
Boe| 0 B tuxy’ 7T AR tpx, a2 | o, Am)
d o HIg
« _ S1p T A(m)B* | Sa, + A(m)B*
IR = ’AR =
Hig HAg

(30)
which is interior to the positive cone in R°.

We observe that the positive equilibrium Ep exists whenever the parameter

s
Ry = qgp — a3 & (31)
Hig

is positive and Ep coincides with the boundary equilibrium Eg as Ry = 0.
When Ry < 0 we have only the boundary equilibrium Fp. :

8.4 Characteristic equation and local stability

System (7) linearized around any of the equilibria gives

dz(t)
dt

= La(t) + [H Oh K(0)z(t +6)d6 . (32)
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If we define by z(t) = col (Xu(t), X1(t), B(t), Ir(t), Ar(?)), then by inspec-
tion of (7) we get that L € R°*® is the matrix

—a1B* — uxy 0 —a1 X7y 0 0
a1 B* — AR — X, a1 Xir 0 —oeXy
L= 0 0 (0120 —aslg — 2%‘,29_3*) —azB* 0
0 0 0 —Ig 0
0 - 0 0 0 —UAg
(33)
and K (8) : [~h, 0] — R5*5is the matrix function
00 0 00
00 0 00
K=]100 0 00 (34)
00w (0) 00
00ws(0)00

w1(9) in [——T1 , 0]

. . The associated characteristic equation
0 in{~72, —7

where w1 (0) = {
is

0
det { AT — L — /K(G) e*dg | =0 (35)
—h

where I € R%*5 is the identity matrix and X are the characteristic roots. If

we define by
0

B () = f wi(0)edo, i=1,2 (36)

then we get the following explicit structure for the characteristic equation:

At (OdlB* + IJ'XU) 0 Q.'1ij- 0 0
-"-0513* A (GQAE + #X;) -—CE1X;} 0 O:zX}k
0 0 A— (azo - 0431-1*2 - 2%2-0-3*) a3 B 0
0 0 —F1 (A) Atprg O
0 0 —Fy () 0 A+ pan
~0 (37)

It is easy to check that (37) can be written as:

[/\ + (Ole* + tXy )] [)‘ + (a2A*R + lU’XI)]
A— (C]izg - CL'3I}'% — 2—?}“—3*) O.’3B* 0
- det —Fl (}\) A+ HIg 0 =0 s
—F5 (A) 0 At pag
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i.e. we have three negative characteristic roots
M =—(aB"+pux,) de=—(Ar+ux;) A= —fan (38)

and the other characteristic roots are solution of:

A= (Cldzo - 053_[* — g_ﬂ_l_g,Q_B*) O£3B* |
det R c =0. 39
© ( ~F) (’\) A+ Hip ( )

Thus the study of the characteristic equation (37) is reduced to the study
of (39), the remaining characteristic roots being negative.

We remark that F; (A) does not appear in (39), then the characteristic
roots in (39) are independent of the second delay 7 of the model, i.e. the

0
term [ w(0) B(t+60)df does not play any role in the local stability of

—T
the equflibria. This implies that the first delay, that of innate immunity,
is determinant in disease outcome. This likely follows because the adaptive
response, Ag, does not feedback into (3). Recall this was one formulation of
a delay, and in other works we consider others.
Regarding local stability of the boundary equilibrium, we can prove:

Theorem 2. The boundary equilibrium Epg is:
1. asymptotically stable if
Qigg — Qi3 (SIR/“IR) <0;

2. linearly neutrally stable if

Qgp — Qi3 (SIR/JU’IR) =0;

with one real vanishing characteristic root, while others characteristic
roots are negative;
3. unstable (with one positive real root) if

Qigp — O3 (SIR/,U.IR) >0.

Proof. Tt follows immediately from (39) (since at the boundary equilibrium
Ep,B* = 0 and I} = (s15/p15) which gives two characteristic roots: one
negative A = —ur. and the other equal to the threshold parameter Ry for
the existence of interior equilibrium Ep:

A= oo — as (S1x/p1g) -
]

We now study the local stability of the positive equilibrium Ep. Assume
Ry > 0.
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At Ep, B* satisfies

G20
oo — aslp — _E‘—B* =0

and therefore (39) reduces to

A4 220 B* oz B*
det g =0. 40
© ( —F1 (N) )\-l-#IR) (40)

Therefore the local stability of Ep leads to the equation

M+ A (MIR + %Q-B*) + B* (MIR-Q-;—O + ask (}\)) =0 (41)

0
where the information of the delay 71 is carried by Fi (\) := [ w1(8)e** dd

o
and is therefore dependent on the choice of the delay kernel wy (6).

8.4.1 Uniform delay kernel

Since Fy(\) regards the delay in immune response it is reasonable, as stated
in the introduction, to assume that the delay kernel w; is uniform, i.e.

wi(@) =A, 0¢el-n,0. (42)

Then A
R =~1- e ) (43)

which is defined since A = 0 is not a root of (41). In fact, if A = O then
F;(0) = A(ry) and (41) becomes

B*(m) (MR-O% + O!3A(T1)) £0, Yn>0, (44)

where by B*(r1) we emphasize the dependence on delay 7y, as it is evident
from the equilibrium components (30).
Now remark that if 71 = 0, then Fj(A) = 0 and (41) becomes

o o .
N 4+ X (p1n + 2B (0)) + w12 B*(0) =0, (45)

which has two negative roots, i.e. Ep is asymptotically stable at 7, = 0.
We have thus the general problem to find the delay values 71, if they exist,
at which for increasing 71 the stability of Ep changes or, in other words, at
which Ep undergoes a stability switch.
Since A = 0 cannot be a root of (41) for any 71 > 0 a stability switch for
Ep can only occur at delay values 7 at which a pair of pure imaginary roots
X = tiw(ry),w(r1) > 0, crosses the imaginary axis.
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Substituting (43) in (41) it is easy to check that (41) takes the form

P\, 1)+ QA rm)e M =0 (46)

where P is a third order degree polynomial

P(A, 1) = p3(11)A2 + pa(11) A2 + p1(r0) A + po(T1) (47)

with delay dependent coefficients

(p3 (1) =
p2 (1) = g y 2B )
< MIRO@OB () (48)
p1(n) =
| po(m1) = OésAB* (71)
and @ is a zeroth order polynomial
QA1) =q(n) = —aszA B*(n1). (49)

The occurrence of stability switches for equations with delay dependent co-
efficients of the type (46) has been recently studied by Beretta and Kuang
(2002) who have proposed a geometric stability switch criterion. We summa-
rize it below.

We consider the class of characteristic equations of the form

POT)+Q(\T)e™™™ =0, TeR4 (50)

where P, @ are two polynomials in A
P(A7) =Y pe(mA*; QA7) = qu(’r , n,meNy, n>m (51)

with coefficients pg(-),qx(-): Ryo — R which are continuous and differen-
tiable functions of 7.
We assume that

(H1) P(0,7)+Q(0,7) = po{T) +qo(7) #0,V7 € Rip i.e. A =0is not a root
of (50);

(H2) at 7 =0 all roots of (50) have negative real parts;

(H3) if A =iw,w € R, then

Pliw, ) + Qiw,7) #0, Vr€R,yyg.

We now turn to the problem of finding the roots A = +iw,w € R4 of (50).
A necessary condition is that

F(w,7)=0 (52)
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where

F (w,7) = |P (iw, )" = |Q (iw, T)[* . (53)
Let w = w(r),7 € I C Ryg be a solution of (52). We assume that w = w(7)
is a continuous and differentiable function of » € I.

For each solution w = w(7), T € I, of (50) we find the angle § = 8(7),7 € [
satisfying

~Pg (iw, 7) Q1 (iw,7) + Pr (iw,7) QR (iw, T)

sinf{7) =
" o8 g w9
cos () =  £2(,7) Qr (i, 7) + Pr (i, 7) Qr (iw, 7)
1Q (iw,'r)|2

where, thanks to (H3) we can prove that 6(r) € (0,2x), 7 € I and 6(r) is
a continuous and differentiable function of = € I.

By the functions w = w(7),# = 6(r),7 € I, we define the functions
Sn: I — R according to

_6(r) +n2r
w(ry
which are continuous and differentiable for 7 € 1.

Finally, by any mathematical software such as Maple or Matlab, we draw
the curves S, versus 7 € I looking for their zeros

el Sy(r")=0. (56)

Sp(1)i=17 € Np, (55)

In fact, we can prove the following:

Theorem 3. All the roots A = tiw(7r),w(r) > 0 of (50) occur at the delay
values T if and only if T* is a zero of one of the functions in the sequence
Sn, n € Ng.
At each 7 € I a pair of roots of (50) A = Liw(r™) is crossing the imagi-
nary axis according to the sign of
7':’1'*}

sign { dRel } = sign {F;, (w(T*),T*)} sign{ 45 (7)
(57)

dr dr
A stability switch occurs at T = 7% € I if the total multiplicity on the right
side of the imaginary axis changes from 0 to 2 or from 2 to 0 when 7 increases
through 7*.

A=diw(T*)

Theorem 4. If 7* is the lowest positive zero of the function So(7) and the
transversality condition
. { dReA
sign

dr

A=diw{T*)

holds, (50) has
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(a) all roots with negative real parts if r € [0,7*);

(b) a pair of conjugate pure imaginary roots +iw(T*),w(7) > 0, crossing the
imaginary azis, and all the other roots with negative real part if T = 7*;

(c) two roots with strictly positive real part if 7 > 7%; )

(d) because of (b), all the roots A (# Liw(r*)) satisfy the condition \ #
imw(T*), where m is any integer, if T =77.

Hence, at T = 7 a Hopf bifurcation occurs (see Hale and Verduyn Lunel,
chap. 11, (Hale and Verduyn Lunel 1993))

Using the parameter values of Table 8.2 in the Introduction we can prove the
following;:

1
Theorem 5. If the uniform delay kernel wy in (46)-(49) is such that A = —,

T
then in the biological range [0.1,10] there is one stability switch at the delay
value

71" = 5.6491
toward instability, which is also a Hopf bifurcation value.

Proof. We describe the algorithm presented in the previous pages applied
to the characteristic equation {46) whose structure is defined in (47), (48)
and (49).

1st Step. From (47)-(49) we have

P (iw, ) = (po (r1) — W ps (7'1)) -4 (wpl (r) — w?’) (58)
with

Prliw,11) = po(m1) —w?pa(ms), Prliw,n) =wpi(n) —w®  (59)

Qiw, 1) = go(T1) (60)
with
Qr(iw, 1) = go(r1), Qr(iw,m)=0. (61)
Then
Flw,7):=|P (iw,T1)|2 — @ (z'w,'rl)|2
yields
F(w,n) = w?w? + aa(m1)w® + a1(n)] = 0 (62)
where
¢ * 2
az (1) = pf, + %0—?2)- > 0
$ ay (1) = pf (1) — 2po (ﬁ)gz (11) (63)
= [“IROQOJB* (7'1)] —2a3 AB* (1) (JU‘IR + m___azoBg (Tl)>
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Tt is easy to check that a1(71) <0 in [0,7]) where

aggB*

203 (urﬁ +

(Ju'IRa20)2 B*
o

) — 1.6950 x 10°

T =

where B* = 4.376 x 10% (we further note that a1(7{) = 0 and a1(71) > 0 in
(7F,400), i.e. F{w,71) > 0 in (7, 400) and no stability switch can occur in
such a delay range). Since in the biological range [0.1,10] it is a1(71) <0, the
only positive root of (62) in the biological range is

w (m) = E (—az (11) + /a3 (1) — 4 (Tl))] 2

(64)
ne0,7) =1
(such that w(7$) = 0). Furthermore, it’s easy to check that
F! (wy(m),m1) > 0. (65)

9nd Step. According to (59), (61) we can define the angle 6., (71) as solution
of
wip (11) — w3

g0 ()] . (66)

_bo (11) — wip2 (1
cosb () = =1 o)l

3rd Step. We define the functions S : I — R, where I = [0.1, 10], by

Sil'l9+ (’.T']_) = —

64+ (m) +n2w

Si (m)i=m - wy (71)

, T1€I=(O,Tf), n € Ny . (67)

According to Theorem 2 if Tf; is a zero of S;F (1) for some n € Ng, then at
T = 'rf; there is a pair of pure imaginary roots A = iw ('rf;), Wy (’T;;) > 0,

crossing the imaginary axis according to
} :sign{Fw (w+(7-f;),7'f;)}sign{——a—7_-i— +}
TII'TH

. { dReA
sign
+
= sign { “____“dSn (r1) } )
T1 ='rf;
(68)

dr 1
dr 1
In Fig. 8.1 are depicted the graphs of functions S;f (1) versus 71 in the bio-
logical range [0.1,10]. Only Sg has a zero at *ri'; = 5.6491 which, according
to Theorem 2, is a stability switch delay value toward instability. Further-
more, thanks to Theorem 4 we can say that at 'rfg = 5.6491 we have a Hopf
bifurcation delay value. O

dS,f{ (T1)

a\=iiw('rl':)
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1:;“ =5.6491

-80 L
0 5 10

Fig. 8.1. Graphs of functions S; (1) versus 71 in the biological range [0.1, 10].

Only S has one zero at T:[; = 5.6491 which is a stability switch delay value toward

instability and a Hopf bifurcation delay value

It may be mathematically interesting to consider the functions S;F (1) versus
11 even outside of the biological range. As shown in Fig. 8.2 in the range
[0.1,350] for 74 the functions Sg, S, S5 present zeros respectively at the
delay values ;" = 5.6491, {7 = 91.2267 and i} = 260.4919. However,

by (68) we can see that only frl“*; is a stability switch delay value since between

th , 'rl"; the total multiplicity of characteristic roots with positive real part, say

350 T

0
7} =5.6491 T) =91.2267 T} =260.4919
\__ 1 2
-100 L
] 150 350

Fig. 8.2. In the range [0.1, 350] are depicted the graphs of the functions 57 versus
71. Besides S even S and SJ have zeros respectively at Tﬂ = 91.2267 and
71, = 260.4919 but the stability switch occurs at the zero of S3: 71 = 5.6491
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p, is p = 2 and becomes p = 4 between ’Tf; and 7'14; and finally becomes p = 6
beyond 'r{:. Thus, Ep becomes unstable after Til(_) and it remains unstable on
the whole range.

However, we may further observe that, since 73 — 77 from left implies
wy (7)) — 0, by (66) we see that 8, (1) — 27 and by (67) we have S; (1) —
—oo0 as 1) — 15 for each n € Ng.

Since S are continuous and continuously differentiable functions of 1,
for each ST which has a zero with positive slope, there exists another one
with negative slope. In conclusion, there are only two stability switches which
are two external zeros of SJ and which are the external zeros of all the zeros
in the sequence SF. The first stability switch from asymptotic stability to
instability is at 7i_ and the second stability switch is at the last zero of S,
say at ’rz*; from instability to asymptotic stability.

In the interval (Tf‘") , 'r;; ) the positive equilibrium is unstable. For 7 > ng
the positive equilibrium regains its asymptotic stability which is kept for all
71 € (755, +00).

8.4.2 Exponential delay kernel

If in (41) we assume an exponential delay kernel

wi(@)=Ae?, e[-n,0], AkeR, (69)
then 4 _
— _ —()\—I-k)‘?‘l
RO =377 [1 e ] . (70)
If A = —k is not a solution of (41) (if A = —k is a solution the Ep is

asymptotically stable) substitution of (70) in (41) leads to (46) where the
delay-dependent coefficients (48) are now given by

(p3(11) =1

oo B™ (T
pZ(Tl) :k-.ial_bIR_]L..._.zmq_o.__(__Q

Y p1(n) =k (#IR + azoBU (TI)) = ”IRaz(;B (ry) (71)
kpr, o

\ po () = +B*(n) (Jﬂ%ﬂ -+ och)

and (49) by
go (m1) = —azB* (1) Ae™F™ . (72)

Even in this case if A = 0 we have F1(0) = A(r1) and (44) shows that
\ = 0 is not a characteristic root for any 71 > 0. Furthermore, at 71 = 0 (45)
shows that Ep is asymptotically stable. Hence, again we can ask if increasing
71 in the biological range [0.1,10] there is a delay value at which a stability

aceritnlh Frvarard inetahilityr Aarenira
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We can follow the same procedure shown for the case of uniform delay
kernel, taking into account that the coefficients of (46) are now given by (71)
and (72) We omit the detailed computations of steps 1-3. According to
Theorems 2 and 3 we can then prove:

log 2
Theorem 6. In the exponential delay kernel (69) we choose A =k = —cﬁ—

then in the biological range [0.1,10] there is one stability switch at the delay
value

i = 6.69310

toward instability, which is also a Hopf bifurcation delay value.

8.5 Numerical simulations

We simulated the system by numerically solving the differential equations
using suitable numerical methods. Our aim was to confirm that the Hopf
bifurcations in Theorems 4 and 5 give rise, for increasing delay 71, to solutions
which show sustained oscillations. We used two different procedures to study
the solutions of system (7) with initial conditions (6) and Table 8.1.

Considering the general case for delay equations (7) i.e. of exponential
delay kernels for innate and adaptive immune responses,

'LU:,,(@) = A,;eKiB , Be€ [—Tl,O] , t=12
A,;,ng € R+

in system (7) we define the new variables

0
ur(t) := f w1 (0)B(t + 6)dd
o (73)

ua(t) := /0 wo(6)B(t + 6)dé

—Ta

By the transformation s =t + 8 (73) give

ur(t) == / wy(s —t)B(s)ds
b (74)

walt) = /t i wa(s — £)B(s)ds

which is straightforward checking that they satisfy the equations

du;
it

d'LLA
dt

= A B(t) — Ale‘KlﬁB(t - 71) — Kiur(t)

= Ay B(t) — Ae"KﬂzB( T3) — Koua(t)

e i e g mom
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hence, system (7) is transformed into

dX;;(t) = sy — a1 Xu(t)B() — pxy Xv(t)

i‘%ﬁl = a1 Xy (t)B(t) — ce Xr () Ar(t) — px, X1 (t)

3B _ oeB(t) (1 - %ﬂ) — asB(OIr(®)

dfgt(t) = s1p, +ur(t) = prIn(t) (75)
dA(i(t) = 54p +ualt) — LanAr(t)

9%151&) = A1B(t) — Are K B(t — 1) — Kiu(t)

duéat(t) = Ay B(t) — Ape K™ B(t — 1) — Kaua(t)

with initial conditions given by (6) and Table 8.1, and particularly B takes
i.c. on the interval [—72,0], i.e.

B(s) =®3(s), s€[-m,0], (76)

thus defining at ¢t = 0 the initial conditions for ur and u 4 in (75) by

0
uz(0) =/ wi (8)P3(s)ds

o (77)
uA(0) :/ wa(s)P3(s)ds .

—Tg

Hence, system (7) is transformed into an equivalent system of delay differen-
tial equations (75) with fixed delay 71, 72, where “equivalent” means that such
a new system has the same characteristic equation and same equilibria (re-
garding the original variables (Xy, X1, B, Ir, Agr)) as the original system (7)
(we leave to the reader to check it). Note that the case of uniform delay kernel
for innate response I is simply obtained by setting K3 = 0 in (75).

Such a new system (75) may be solved by any delay differential equations
solver. We used the Matlab dde23 by Shampine and Thompson. The second
way is by directly approximating the solution of the distributed delay system
through the trapezoidal rule for the equations and the (composite) trape-
zoidal quadrature formula for the integrals. The overall order of accuracy of
the method is 2 (Baker and Ford 1988).

We have performed simulations for both cases of uniform (see Figs. 8.3,
8.4) and exponential (see Figs. 8.5, 8.6) delay kernels for the innate response
and for 7, values below the Hopf threshold frl't and for m > ’I']—_:, showing in
this last case that sustained oscillations occurred.
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T,=5 (uniform kernel)
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Fig. 8.3. Simulations of solutions of system (7) in case of uniform delay kernel for
the innate response with A; = 1. The delay 71 is chosen below the threshold Tl
of Theorem 4. The top left figure shows the behaviour of all the variables together
The straight lines represent the equilibrium components. The delay kernel for the
adaptive response is uniform with As = 1 and 73 is kept fixed at the value 20

T,=6 (uniform kernel)
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Fig. 8.4. Simulations of solutions of system (7) in case of uniform delay kernel for
the innate response with A; = 1. The delay 71 is chosen above the threshold ""1 of
Theorem 4. The delay kernel for the adaptive response is uniform with Az =1 and
7o i8 kept fixed at the value 20




8 Stability analysis for the immune response 201

T, = 6 (exponential kernel)
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Fig. 8.5. Simulations of solutions of system (7) in case of exponential delay kernel

for the innate response with 4; = K1

= log 2/71. The delay 71 is chosen below the

threshold ng of Theorem 5. The delay kernel for the adaptive response is uniform
with A2 =1 and 72 is kept fixed at the value 20

T, =7 {exponential kernel)
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Fig. 8.6. Simulations of solutions of system (7) in case of exponential delay kernel
for the innate response with A; = K1 = log2/71. The delay 71 is chosen above the
threshold 7-1“; of Theorem 5. The delay kernel for the adaptive response is uniform
with A2 = 1 and 72 is kept fixed at the value 20
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8.6 Discussion

We develop a mathematical model to address timing of the immune sys-
tem when challenged by intracellular bacterial infection. A baseline model
accounts for different killing capabilities of the immune system and incor-
porates two delays representing the two types of immune responses, namely
innate and adaptive immunity for which two different cases of delay interac-
tions are proposed. We have discussed only case 1, remarking however that
case 2 can be studied similarly.

The baseline model, case 1, admits a boundary equilibrium Ep or unin-
fected steady state and only when the threshold parameter Ro in (31) becomes
positive one positive equilibrium Ep bifurcates from Ep (transcritical bifur-
cation) corresponding to the infected steady state. The local stability of Ep
is independent of the delays in the innate (71) and adaptive (72) immune re-
sponses. Ep is asymptotically stable whenever the positive equilibrium Ep is
not feasible and unstable if Ep exists. The positive equilibrium Ep has com-
ponents dependent on either the delay 71 or on the delay 73 although its local
stability is independent of 7o, as it is evident by (40). The study of the charac-
teristic equation leads to (41) where the term Fy()) takes information of the
delay kernel w1 (6), 6 € [—71, 0] in the innate immune response. This is a cru-
cial point in modelling the immune system since there is little information
regarding these delays. Assuming a uniform or exponential delay kernel, (41)
takes the form of the polynomial exponential transcendental equation (46)
with delay dependent coefficients given by (47)—(49) for uniform delay kernel
or by (71)-(72) for an exponential delay kernel. Of course, the change of the
numerical value of any parameter in the delay kernel may lead to different
outcomes of the stability analysis. We note that at 71 = 0 the positive equi-
librium Ep is asymptotically stable whereas, increasing 71, Ep has a Hopf
bifurcation toward sustained oscillations (see Sect. 8.5) at 'rf; = 5.6491 in the
case of uniform delay kernel (with A = =) or at 1. = 6.69310 in the case of

exponential delay kernel (with A = K = 1%3;—3)

We could attempt to derive global stability results for Ep by Lyapunov
functional method, but the presence of a Hopf bifurcation with respect to 7
should lead to severe bounds on 7. We do not show such computations here
but the global stability result for Ep requires values of 71,72 close fo zero,
i.e. useless in understanding the behaviour of the model for large delays.
Though we do not discuss the baseline model case 2, it is interesting to note
that this model presents many of the properties of the model case 1. In both
cases there are two non-negative equilibria Ep and Ep, the second arising
when the same threshold parameter Ro in (31) is positive and again, for the

stability of Ep, Theorem 2 holds true. The main difference is in the stability

analysis for Ep which is now dependent on both delays 7 and 7.
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8.7 Biological discussion

Our baseline model suggests a key role for innate immunity in establishing
a protective response and describes how different delay times and shapes af-
fect the pattern of bacterial growth and its impact on the host. Our study
indicates how a delayed innate response (71 larger than 5 days) results in
oscillatory behavior, suggesting how trade offs for initial conditions of both
the host (for example the baseline level of innate immunity cells, TBasetine,
or the host capability of containing the early stages of infection) and the
pathogen (its proliferation rate, ap0) determine the final infection outcome.
Eg or uninfected steady state represents a successful immune response of
the host: bacteria are cleared and the system returns to equilibrium. The
model suggests how this scenario is stable, is readily achieved and it is in-
dependent from delays either in innate or adaptive responses. Clearance in
this case seems more a structural property of the host (initial number of cells
and their efficacy in killing) and the pathogenicity of the bacteria (virulence
factors). Ep or the infected steady state represents successful colonization
of the host by bacteria. Here the innate immunity “memory” plays an im-
portant role: the shorter 71, the easier infection can be stabilized (7, smaller
than the stability switch ”'f; }. In fact, a small value for 71 (on the order of
hours) is more biologically consistent and plausible than 74 on the order of
days. Damped oscillation still lead to an infection scenario: some level of in-
tracellular bacteria always persists (Figs. 8.1 and 8.3). Considering larger
than the stability switch (see Figs. 8.2 and 8.4), the average of the oscilla-
tions is equivalent to the level of bacteria in the oscillations. Although, on
average, the two outcomes are similar, a biological difference can be drawn in
terms of latent versus chronic infection scenarios. Latent infection represents
a damped oscillation where a “peaceful” coexistence between the host and the
intracellular bacteria is established. On the other hand, a chronic infection
scenario is suggested by a sustained oscillation, where an “unstable” and po-
tentially dangerous coexistence between the host and the pathogen could be
driven out of control more easily by either host factor or environmental pres-
sure. As an example consider tuberculosis infection in humans. The adaptive
immune response to Mycobacterium tuberculosis infection is the formation
of a multicellular immune structure called a granuloma. Recent hypotheses
suggest how granuloma are a dynamic entities (Capuano et al. 2003) that
contain the spread of the infection to other parts of the body. A continuous
trade-off between host immune cells and bacteria numbers exists within the
granuloma: waves of infection and bursting of chronically infected cells (re-
leasing intracellular bacteria) are contained by waves of effector cells taking
up bacteria and stabilizing infection. The exponential kernel induces larger
oscillations in bacterial levels, suggesting how a uniform kernel is more ben-
eficial for the innate response, and also more biologically plausible.
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