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ABSTRACT. The immune response in humans is complex and multi-fold. Ini-
tially an innate response attempts to clear any invasion by microbes. If it fails
to clear or contain the pathogen, an adaptive response follows that is specific
for the microbe and in most cases is successful at eliminating the pathogen. In
previous work we developed a delay differential equations (DDEs) model of the
innate and adaptive immune response to intracellular bacteria infection. We
addressed the relevance of known delays in each of these responses by exploring
different kernel and delay functions and tested how each affected infection out-
come. Our results indicated how local stability properties for the two infection
outcomes, namely a boundary equilibrium and an interior positive equilibrium,
were completely dependent on the delays for innate immunity and independent
of the delays for adaptive immunity. In the present work we have three goals.
The first is to extend the previous model to account for direct bacterial killing
by adaptive immunity. This reflects, for example, active killing by a class of
cells known as macrophages, and will allow us to determine the relevance of
delays for adaptive immunity. We present analytical results in this setting.
Second, we implement a heuristic argument to investigate the existence of sta-
bility switches for the positive equilibrium in the manifold defined by the two
delays. Third, we apply a novel analysis in the setting of DDEs known as
uncertainty and sensitivity analysis. This allows us to evaluate completely the
role of all parameters in the model. This includes identifying effects of stability
switch parameters on infection outcome.

1. Introduction. Immunity refers to the ability of a host to resist infection by
microbes (bacteria, viruses, etc.) that would otherwise cause infection. Immunity
has many facets, but it is typically divided into two categories: adaptive (aquired
immunity) and innate (natural immunity or innate resistance). Innate immunity
refers to nonspecific defense mechanisms that attempt to clear microbes within
hours of their appearance in the body. These mechanisms include physical barriers
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such as skin, chemicals in the blood, and immune system cells that attack foreign
(nonself) cells in the body [41]. This innate response is activated by properties
of pieces of microbes known as antigens [40]. Adaptive immunity refers to an
antigen-specific response. Antigens first must be processed and recognized, then
immune cells of the adaptive response are generated that are designed to attack
that specific antigen (for a review see [26]). Adaptive immunity also includes a
memory response that allows future responses against a specific antigen to be more
efficient [26]. Many diseases that afflict mankind are now thought to be the result of
dysfunctional of innate or adaptive immune responses, or both [8]. Dysfunction here
can simply refer to a failure of the innate immune system to effectively discriminate
self from nonself or it could be a more complex problem involving failure of a
well tuned regulation of innate-adaptive connections rather than recognition itself.
Timing of the response can also represent a measure of efficiency of host immunity
against microbial infection. Essential to the successful removal of pathogens is the
early recognition of microbes by components of the innate immune system [24].
Recognition of microbial infection and initiation of host defenses are controlled
by a variety of mechanisms. These components include the complement system
[12], specialized receptors expressed on natural killer (NK) cells [50] and the family
of Toll-like receptors (TLRs) that are expressed on myeloid as well as lymphoid
cells and that recognize specific microbial-derived molecular structures. Toll-like
receptors have recently emerged as key components of the innate immune system
that detect microbial infection and trigger antimicrobial host defense responses
[14]. Successful engagement of these pathways can lead to a successful immune
response allowing clearance of pathogens. A well orchestrated innate and adaptive
immune response will lead to pathogen eradication and host immunity. Failure to
efficiently discriminate self from nonself in innate as well as adaptive immunity can
lead to pathogen proliferation and ultimately sepsis and may also be the cause for
development and maintenance of autoimmune and chronic inflammatory diseases
and of allergies.

In this framework, elucidating the complex immunoregulatory system of innate
and adaptive responses is decisive in understanding disease progression and can
help in preventing and treating many infectious diseases by designing more effi-
cient therapies and vaccines. Many examples of the application of delay differential
equation systems to immunology can be found in the literature (see [45] and [5] for
reviews). Recent work has been devoted to delay differential equation models of
specific infectious pathogens, such as HIV [16, 17, 46, 47] and LCMV [10]. Here
we address the more general immunological question of how timing and memory in
innate and adaptive responses can affect host immunity versus intracellular bacte-
ria infection. In previous work [7] we developed a delay differential model of the
innate and adaptive immune response to intracellular bacterial infection (the base-
line model). We specifically addressed timing of immune responses and the role
of delays, as well as how different kernels and delay functions can affect infection
outcome. Our results indicated that local stability properties of both the chronic
and latent infection states did not depend on delays in the adaptive response. In
the present work we extend the baseline model to include a term that directly al-
lows for bacteria killing by adaptive immunity. This would capture, for example,
the role of antibodies in clearing bacteria, activated macrophage killing of bacteria,
or complement-mediated bacterial clearance and define a more comprehensive role
for delays in both innate and adaptive responses. We derive local stability results
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under different delay kernels (uniform for innate response and positive exponential
for adaptive response), considering only the case for the most biologically relevant
delay function, namely where both responses depend solely on the past levels of
bacterial load. We critically analyze our conclusions addressing parameter uncer-
tainty and how it might affect infection outcome. The existence of stability switches
in parameter space is investigated using a comprehensive sampling method known
as Latin hypercube sampling (LHS). The new delay differential model is described
in Section 2, illustrating new terms, delay functions, delay kernels and how we
address uncertainty and sensitivity analyses. Analytical results and local stability
analysis are shown respectively in sections 3 and 4. In section 4 we also describe
the numerical DDE solver implementation (dde23) and how we apply uncertainty
and sensitivity analysis in a DDE setting. Section 5 shows numerical results and
section 6 illustrates numerical and biological remarks and conclusions.

2. Mathematical models and analysis of dynamics. Our baseline model con-
sisted of five variables: uninfected target cells (Xy), infected cells (Xr), bacteria
(B), and phenomenological variables capturing innate (Ir) and adaptive (Ag) im-
munity. The modified model equations are shown below.

(4 Xy(t) = su — aun Xu(t)B(t) — pxy Xu(t)

LX) = oa Xy () B(t) — aa X (t) Ar(t) — px, X1 (t)
! 4B =0x0B®)(1-22) - asB)In(t) — aaBt)AR(E) (1)

LIp(t) =51, + 7, wi(s) fi(a(t + 5))ds — pr, Ir(t)

| LAR(t) = sap + [0, wa(s) fa(@(t + 5))ds — pan Ar(t)
where

2(t) = (Xu(t), X1 (), B#), In(t), An(t)) € B® 2)

The structure of the system (1) is unchanged with respect to the baseline model
presented in [7] except for an additional term to the bacteria equation. We now
include a new term into the equation determining the rate of change of bacteria.
This term accounts for direct killing of bacteria due to adaptive immunity (bold
in B(t) equation). This occurs naturally through, for example, T-cell-mediated
cytotoxicity and activated macrophage engulfment, as well as antibody mediated
killing (see [26] for a review). We capture this via a simple mass action term (i.e.
a4B(t)Ag(t)). The baseline model studied in [7] is a special case of (1) (i.e. aq = 0).

Uninfected target cells (Xy7) have a natural turnover (syy) and half-life (ux,,)
and can become infected (mass-action term a3 Xy (¢)B(t)). Infected cells (X7) can
be cleared by the adaptive response (mass-action term asX1(t)Ag(t)), or they die
(half-life term px, X;(t)). The bacterial population (B) has a net proliferation

term, represented by a logistic function as9B(t) (1 — @) and is also cleared by

innate immunity (mass-action term a3B(t)Ir(t)) and adaptive immunity (mass-
action term ayB(t)Ag(t)). Both innate (Ig) and adaptive (Ag) responses have a
source term and a half-life term. Two delays are included in the model. The delay
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for innate immunity, 71, occurs on the order of minutes to hours, and 75 is the delay
for adaptive immunity on the order of days to weeks.

Innate immunity is the first line of defense against microbial infections, is non-
specific (it targets any particle that is not recognized as belonging to the human
genetic repertoire) and is always present (the source term sy, in the Ir equation is
always positive). Adaptive responses take place only after innate response occurs,
and they are specific and effective. Background levels of Ag are zero unless the
host has already been exposed to the same pathogen (either through vaccination
or clearance of a previous infection). Therefore the source term s4, in the Ag
equation is set to zero in the case of a first infection and positive otherwise.

We have previously considered two cases of delay for each immune type [7].
Here we consider the bacterial load as the most informative marker of infection,
and therefore we assume that both responses depend solely on the bacterial load
B (s) in the previous 7; time units (i = 1,2); that is,

n (;c(t + 3)) = B(t+s),s € [-71,0]
and fo (w(t + s)) = B(t+s),s € [-12,0].

We hypothesize a relationship between the amplitude of the delay and the func-
tional form of the kernels (w;(6)(i = 1,2); to wit, the larger the time delay, the
more relevant the recent history of the infection. This leads us to use two different
delay kernels: a uniform kernel for innate immunity and an exponential growth
kernel for adaptive immunity. In the case of a uniform kernel

w(8) =A>0,0 €[—7,0],

we assume that the innate response is uniformly dependent on the level of the
bacterial load in the previous 7; time units of infection.
In the case of an exponential growth kernel

11)2(0) = Aek670 € [_7270]7A7k € RI-J

we assume that the adaptive response places significant emphasis on the most recent
level of infection.

To complete the development of the mathematical model, we must define values
for the parameters and initial conditions, as well as measure units. In many cases,
previously published data in the literature suggest large ranges in parameter choices.
The values of initial conditions and parameter value ranges are given in tables 1
and 2. Below we consider a wide range of values for parameters and test the effects
of this variability by our uncertainty and sensitivity analysis (see next section). To
properly define the integrals in (1), we need the following initial condition:

B(t) = B(0) for t € [—72,0].

As an example, we will focus our studies on the intracellular human pathogen,
Mycobacterium tuberculosis. This respiratory pathogen is the number-one cause
of death from infectious diseases in the world today with an estimated 1/3 of the
world’s population infected and 10 million deaths per year [1]. This pathogen is
an intracellular pathogen that has existed for thousands of years with records of
Egyptian mummies whose lungs show signs of infection. Data from host-pathogen
interaction studies with this pathogen will serve to guide the parameter choices
and infection outcomes that are typically observed in tuberculosis infection (TB).
A person can have either inactive tuberculosis (more frequently called latent TB)
or active TB. Latent TB is the more frequent outcome of infection (approximately
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90 percent of the infected). In latent TB the bacteria are alive but not active: the
patient has no symptoms and is not infectious, and the bacteria coexist peacefully
within the host. In active TB the bacteria multiply, causing permanent damage
and even death if the patient is not treated. From every 100 people with latent TB,
from 5 to 10 will develop active TB in their lifetimes (reactivation).

We use a volumetric measure unit (i.e., number of cells per cm?® of tissue) to allow
for comparison of our results with available experimental data in the respiratory
tract and lung ([32, 31, 36, 37, 43, 62, 69]). Data in table 2 are mostly used from M.
tuberculosis literature. By applying our uncertainty analysis later, we will address
the effects of parameter variation, allowing us to comment more generally regarding
host-pathogen interactions.

Previously, we studied local stability of the baseline model (case 1 in [7]). Here
we present local stability results for the modified model and simulate different
scenarios to test and validate the analytical results.

TABLE 1. Initial conditions (cells or bacteria per cm? of tissue)

Name Value Range
XU(O) — X(b]aseline 164 [163 _ 165]
X[(O) — X})aseline 0

B(0) = B, 20 [1— 167
IR(O) — I;)zaseline 163 [562 _ 164]
Ag(0) = Algseline ( (first infection) [5el — 2¢?]

2.1. Uncertainty and sensitivity analysis. Variances in the values for most pa-
rameters are due to two key factors: extensive variability in experimental systems
leading to variations in data, and lack of experimental protocols to measure kinetics
that define model rates and rate constants. We have adapted a method known as
Latin hypercube sampling to allow us to stratify parameter space over large ranges
and distributions [38]. Sampling occurs simultaneously, stratified, random, and
evenly distributed for each parameter within a defined range. This technique sys-
tematically evaluates how different combinations of parameter values significantly
affect infection outcome. Since we base our conclusions regarding qualitative prop-
erties of (1) on the choice of parameter values, the most relevant parameters are

TABLE 2. Parameter values for the model 1

Name De finition Value  Range Units Reference
Uxy Half-life of Xy 0.011 0.011 1/day [68]

a1 Rate Xy infection le=® [le™®,1] B(t)"/day Estimated

as Kill rate of X; (AR) le™® [1e7®,1] Agr(t)"'/day [19, 35, 58, 66, 67)
1x, Half-life of X, 0.011 0.011 1/day [68]
@20 Growth rate of B .5 [1e73,1] 1/day [48, 58, 59]

o Max # of bacteria leb  [le?, 1€ B(t) Estimated

as Kill rate of B(Ig) le*  [le™®,1] Ig(t)"'/day [19]

Qy Kill rate of B(Ar) le=*  [le™®,1] Ag(t)~'/day estimated
Iy Half-life of Ig 0.11 0.11 1/day [60]
LA Halflife of Ar 0.33 0.33 1/day [60]

Ti Delay innate immun. 1 [1, 10] day Estimated

T2 Delay adaptive immun. 20 [5, 40] day Estimated
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evaluated in the modified model using this uncertainty analysis. In conjunction
with the uncertainty analysis, we need to employ a measure that allows for anal-
ysis of the variation induced by variability in parameter values on model outcome
values. Thus, we perform a sensitivity analysis on model (1) by investigating what
parameter(s) contribute most to variation of bacterial load (defined as our outcome
value).

To this end, two sensitivity indexes are calculated: partial rank correlation co-
efficient (PRCC) and extended Fourier amplitude sensitivity test (EFAST) [55].
PRCC deals with monotonic nonlinear associations between parameters and out-
come, while EFAST is more accurate for non-monotonic nonlinear relationships.
LHS and PRCC method has been originally applied in the ODE model setting ([9].
Our group has also applied it in the setting of agent based models (ABMs) ([57])
and partial differential equations (PDEs) ([20]).

We sampled eight parameters simultaneously (71,72, a1, a2, as, a4, as, o),
defining uniform probability density functions for their distributions. The remain-
der of the parameters are held constant at their default value (see tables 1 and
2).
LHS is used to sample the parameter space for the PRCC calculation. EFAST
uses its own sampling implementation based on Fourier transformation in the fre-
quency domain (see [52, 53] for details). Tables 1 and 2 are used to initialize the
sampling procedure and to define intervals (Range column).

2.1.1. Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient
(PRCC). Uncertainty analysis is performed by creating an N-dimensional hyper-
cube based on both ranges and distributions for all parameters in the model. The
method is known as Latin hypercube sampling [38] and allows for simultaneous,
stratified, random, evenly distributed sampling of each parameter within a defined
range (basically a stratified sampling without replacement). This sampling is guided
by the specification of a probability density function for each parameter, depending
on a priori information (i.e., normal, uniform, lognormal,...). The larger N is, the
more accurate is the sampling of the parameter space and more reliable conclusions
can be drawn.

A matrix (which we call an LHS matrix) consisting of K columns corresponding
to the number of varied parameters and N rows for the number of simulations is
generated; N solutions are then created that reveal all variability in model outcome
due to uncertainty in the parameters. The widest, biologically relevant range pos-
sible is used for all parameters. When applied correctly, this method identifies all
relevant and distinct stable numerical solutions for the range of parameters given.
Once variations in outcome variable(s) are obtained (for example bacterial load),
a partial rank correlation (PRC) ([30]) is performed to identify which of the K
parameters are most correlated with outcome values. Each PRC value generates
a p-value that determines the significance; thus, even small correlations may be
significant. Correlation coefficients vary between -1 and +1. By combining the
uncertainty analyses with PRC, we can reasonably assess the sensitivity of our
outcome variable to parameter variation. This allows us to identify and quantify
critical parameters (i.e., interactions) that, when varied, dramatically affect the
outcome and stability switches.
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2.1.2. Extended Fourier Amplitude Sensitivity Test - EFAST. EFAST is based on
the Fourier amplitude sensitivity test (FAST) and uses the behavior of the model
variance to evaluate the variance contribution of the input parameters to the model
output. It is a computationally efficient method that implements a small random
sample to investigate the entire distribution of the input parameters. EFAST al-
lows the computation of the main effect and total effect contribution of each input
factor to the output’s variance. The term “total” here means that the factor’s
main effect (single contribution or first-order effect), as well as all the interaction
terms involving that factor, are included. In EFAST, Fourier coefficients are used
to compute the proportional variance contribution (partial variance) of each in-
put parameter. Cukier et al. [15], Schaibly et al. [56], and Collins and Avissar
[13] provided details of method development and equations for sampling and com-
puting Fourier coefficients and partial variance. Partitioning model uncertainty
using EFAST involves three procedures: generating random sample, obtaining the
original model predictions, and computing of Fourier coefficients and partial vari-
ances of the input parameters. The main advantages of the extended FAST are
its robustness, especially at low sample size, and its computational efficiency. The
computational aspects of the extended FAST include the definition of new sets of
parametric equations for the search-curve exploring the input space (composition
of sin functions), the selection of frequencies for the parametric equations, and
the procedure adopted to estimate the total contributions. For details on how the
procedure is implemented see [52, 53, 54, 55]. We follow [53].

3. Analytical results. The equations of the modified model are

%Xu(t) = sy — a1 Xy (t)B(t) — px, Xuv(t)

&X1(t) = a1 Xy (t)B(t) — o X1 (t)Ar(t) — px, X1(t)
! 4B() = anB) (1- Z2) - asBO)In(t) - B Ar(t)  (3)

LIn(t) = s1p + [2, w1 (O)B(t + 0)]d6 — pur, Ir(t)

| ZAR(M) = saq + [°, [w2(0)B(t +6)]d8 — pa, Ar(t)

In the following we define A(r;) as
0
A= [ w@mi=12. @

We now discuss the main mathematical properties of system (3).
Let h = max{r, 2} = 12, X(¢) as in (2) and X¢(f) = X (¢t + 6),6 € [—h,0] for all
t > 0. Then (3) can be rewritten as

a'(t) = F(z) ()
with initial conditions at ¢ = 0 given by

¢ e C([_ha 0]7 Rs)
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where C([—h, 0], R®) is the Banach space of continuous functions mapping the in-
terval [—h, 0] into R® equipped with the (supremum) norm

| @|= sup [2(8)
9 0]

)

where | - | is any norm in R5.
For the biological relevance, according to (2) and Table 1, we define nonnegative
initial conditions

®(60) > 0,0 € [~h,0]
with
®;(0) >0,i=1,3,4,5 and ®5(0) = X;(0)=0

to equations (3).

LEMMA 3.1. Any solution z(t) = z(P,t) of (3) with ®(8) > 0,0 € [—h,0],®(0) >0
(ezcept for ®5(0) = 0) remains positive whenever it exists; i.e., z(t) € R}, where

R = {2 = (z1,22,73,24,75) € R|2; > 0,i=1,2,3,4,5}
Proof. Consider the third equation in (3):

dB B(t)

— =B [ago ( - T) — aslg(t) — asAg()

with B(0) = ®3(0) > 0. Then

t
B(t) = BO) exp [ a1 -

The first equation in (3) gives

B(s)

g

) —aslr(s) —asAgr(s)lds} >0, t>0. (6)

dX
d—tU > —Xy(t) (a1 B(t) + pxy ), Xy (0) = @,(0) > 05
ie.,
t
Xu(t) > Xu(0) exp {—/ [a1B(s) + uXU]ds} >0 t>0. (7
0
Since Xy (t) > 0, B(t) > 0 for ¢t > 0, the second equation in (3) gives
dXx
— > = Xa(t) (a2 AR() +pux,) . Xi2(0) = B2(0) = 0;

ie.,

Xi(t)>0 t>0 (8)
Consider the last two equations in (3). Since B(f) = ®3(8) > 0 in [—h,0] and
B(t) > 0 for t > 0, we have

7 > sip — p1rIR(t), IrR(0) = ®4(0) > 0;
ie.,

In(t) > Ir(0)e#nt + Zﬁa —eHrt) > 0, ¢ > 0. 9)
Ir
Similarly,

> sap — papAr(t), Agr(0) = ®5(0) > 0;
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ie.,
Ap(t) > Ap(0)e Fant + %(1 —eHart) >0, £ > 0. (10)
This completes the proof of positivity. O
Let us consider the boundedness of solutions.
LEMMA 3.2. Any solution x(t) = z(®,t) of (3) is bounded.

Proof. Because of positivity of solutions, the first two equations in (3) give

(X (t) + X1(t)) < sv - p (X () + X1(0))

dt
where
p = min{pxy, px; }-
Hence s
lim sup (Xu(t) + X7 () < 22, (11)
t—o00 12
Positivity of solutions still implies
dB(t) (t)
— < ayB 1——=
dt — a2 B(?) ( o )’
and therefore
lim sup B(t) < o. (12)
t—o0

Accordingly, there exists a T, > 0 such that for all ¢t > T, + h (h = max{7m,72})
and for sufficiently small € > 0, B(t) < o + €. Hence, the last two equations in (3)
give

df;t(t) < 81p + (0 + €)A(11) — prs Ir(t)
dTR;(t) < Sapt+ (04 €)A(r2) — par Ar(t) ,

thus implying (by letting € — 0),
Sip + 0 A(11)

lim sup Ig(t) < (13)
t—oo Hig
A
lim sup Ag(t) < w_ (14)
t—o00 /'I’AR
This proves boundedness. O

DEFINITION 3.1. (Permanence of (3))

System (3) is permanent (or uniformly persistent) if there exist positive constants
m, M,m < M, independent of initial conditions and such that for solutions of (3),
we have:

max{limsup,_, . Xv(¢),limsup,_,  X;(¢),limsup,_, . B(t),limsup,_, . Ir(t),
limsup,_,. Ar(t)} < M

(15)
min{lim inf;_, oo Xy (t), iminf; o X;(t),liminf;, o B(t),liminf; , Iz (1),
liminf;, o Ar(t)} > m.
LEMMA 3.3. Provided that
sy +0A SAp +0A
Qg > Qi3 In 7O (Tl) + a4 An 7O (T2); (16)

HIg HAg
system (3) is permanent.
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Proof. Let us consider the lim sup; i.e., the first of (15).
From the first equation of (3) and lemma 1 (positivity), we have:

Y S SU — ,uXUXU(t)a

which implies that
sy

lim sup Xy(t) <

t—o00 /‘I/XU

= Xyp. (17)

From (12), (17) and the second of equations (3), for sufficiently large ¢ > 0 and
small € > 0, we have

dXy (t) Sy
dt <o Bxy

+e) (0 4+ €) — x, Xr(1),

which gives

(ix)
(651 g
lim sup X7(t) < —EX0/ = %, (18)

t—o0 l"’XI
Hence, from (12)-(14), (17), (18) we have

(lim sup Xy (t),lim sup X;(¢),lim sup B(t),lim sup Ir(t),lim sup AR(t)>
t— o0 t— o0 t—o00 (19)

t— o0 t— o0

< (Xv,Xr,B,Ir, AR)

where
o, In= St + O'A(Tl)’ Ap = SAg + O'A(Tz)‘

II/IR MAR

o]
Il

If we choose
M = maX(XU,X],B,fR,AR),
then there exists M > 0 such that the first inequality in (15) holds true.

Consider now the liminf; i.e., the second in (15).
(i) Consider Ag,Ip. From (9) and (10) we have

SIgp SAgp

lim inf Ig(t) > —= :=Ip, lim inf Ag(t) > = A 20
inf In(t) > 218 = Ty, tim inf An()> 225 =4, (20)
(ii) Consider B. From (19), for sufficiently large ¢ > 0 and small € > 0 we have
dB(t B(t = _
# > o B(t) (1 - #) — (asIr(t) + €)B(t) — (asAp + €)B(t) =
_ _ 21)
I A B (
— asB(t) (1_ azlp+€ oqARr+e (t)) ‘
Q20 Q0 9
Hence, letting € = 0
lim inf B(t) > (0‘20 —aslr = ‘“AR) o:=B (22)
t—oo 20

where B > 0 provided that

A A
a20>a381R+0 (1) +0145,4R+U (TQ)‘
MIR MAR
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(iii) Consider Xy. For large t > 0, small € > 0 we have

dXy(t _
ch( ) > sy — (a1 (B+¢€)+ px,)Xvu,

from which, letting e — 0

.. SU
1 f Xp(t) > —— = X 23
im inf Xo(t) > o= Xy (23)

(iv) Consider X;. For large ¢ > 0, small € > 0 we have

d)iz;(t) > a1(Xy — )(B —€) = (ax(Ar +€) + pxi) Xi (1)

from which, letting e — 0, we obtain

alKUﬁ

- == =X ; 24
awdAr +px, 7 24)

lim inf X;(t) >
t—o0
hence, provided that (16) holds true, (20)-(24) imply that

(liminf;_, o Xy (t),liminf; o X(t),liminf; . B(t),lim; o inf Ig(t),

im t (25)
liminf; o Ar(t)) > (Xy, Xy, B, 1g, Ag),

where the constants on the right side of (25) are positive.

Thus, if we choose
m = min(&UaX}aBalRaAB)a m > 03
considering that liminf 2(¢) < limsup z(t), we have found two positive constants

m, M, m < M such that (15) hold true. O

REMARK 1. As we will see in theorem 3.1, if A(m1) = 0 and A(ry) = 0 the per-
manence condition (16) becomes the existence condition of the positive equilibrium
Ep. Furthermore, if A(T1) =0 and A(r2) =0, then B = B*.

Concerning the equilibria of (3), we can give the following result (we omit the
computations which can be easily checked):
THEOREM 3.1. The system (3) gives two nonnegative equilibria:

1. for all parameter values the boundary equilibrium ezists

S—U,X;F:o,B*:o,I;;:SA,A;:sAR) (26)

Xu HIgp HAR

P = (X =

on the boundary of the positive cone in R?; and
2. for ang — a3 (srp/prm) — 0 (sag/pag) > 0 the positive equilibrium ezists
EP:(X[*JaX;aB*a I;laAE)

with the following values for each component,
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. s e _aB'Xp
B +pux,’ L ey + px,
EP — B* — R R (27)
Q A A ’
o2 | o, A0, A
o 2253 PAR
" SIg +A(T1)B* " SAg +A(7—2)B*
IR = AR = - @

KIg HAR
which is interior to the positive cone in R?.

We observe that the positive equilibrium Ep exists whenever the parameter

S s
Ro =00 — O@i — 04 Ar (28)

2253 BAR
is positive and Ep coincides with the boundary equilibrium Ep as Ry = 0. When

Ry < 0, we have only the boundary equilibrium Epg.

4. Characteristic equation and local stability. System (3) linearized around
either equilibria yields
dx(t)
dt
If we define by z(t) = col (Xu(t), X1(t), B(t),Ir(t), Ar(t)), then by inspection of
equations (3) we get that L € R®*% is the matrix

= Lx(t) + /0 K(0)x(t + 0)do. (29)
—h

—OélB* — UXy 0 —ale"} 0 0
OélB* —O[2AE — MUX; Ole[*] 0 _QQX;
L= 0 0 V  —asB* —auB* (30)
0 0 0 ~irg 0
0 0 0 0 —liAg

where V = (a0 —asl} — 2220 B* — a4 A};) and K (6) : [-h,0] & R®*® is the matrix
function

00 0 00
00 0 00

K=|00 0 00 (31)
0 0 @) 0 0
0 0 wy(f) 0 0

w1(0) in [—Tl,O]

. . The associated characteristic equation
0 mn [_TZ s —Tl]

0
det [ \I-L — / K@) eMdd | = 0 (32)
—h

where I € R%*5 is the identity matrix and X\ are the characteristic roots. If we
define by

0
B () = /w,.(a)ewdo, i=1,2 (33)
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then we get the following explicit structure for the characteristic equation:

A+ Z 0 a1 Xy 0 0

—a1B* A+ (AR +pux;) —aXy 0 as Xy
0 0 A—V  asB* asB* | =0, (34)
0 0 —F1 (A) A+ prg 0
0 0 —F>(\) 0 A+ pag

where Z = (a1 B* + px, ). It is easy to check that (34) can be written as
[)‘ + (alB* + NXU)] [)‘ + (OQA;% + NXI)] :

A— (a20 — 01311*3 — 20;%3* — C!4AE) a3B* a4B*
-det —F () A+ prg 0 =0;
—F ()‘) 0 A+ MAR

i.e., we have two negative characteristic roots

A== (B +pux,) A= —(a2dg +px,) (35)
and the other characteristic roots are solution of

A — ((120 — 01311*% — 20;%3* — a4A}§2) a3B* a4B*
det —F () A+ prg 0 =0. (36)
- (M) 0 A+ f1ag

Thus the study of the characteristic equation (34) is reduced to the study of the
equation (36), the remaining characteristic roots being negative. We remark that
unlike in the baseline model of [7], F; (A\) appears in (36), and also the characteris-
tic roots in (36) are dependent on both the innate delay 7 and the adaptive delay
T9. This implies that both delays determine infection outcome. Regarding local
stability of the boundary equilibrium, we can prove the following;:

THEOREM 4.1. The boundary equilibrium Epg is:
1. asymptotically stable if
0 — 03 (S15/ 1) — 4 (Sap/pag) < 0;
2. linearly neutrally stable if
0 — 03 (S15/ 1) — a (Sap/pag) = 0;

with one real vanishing characteristic root, while others characteristic roots
are negative;
3. unstable (with one positive real root) if

a20 — @3 (815 /p1r) — @4 (84 /pag) > 0.

Proof. Tt follows from (36), since at the boundary equilibrium Eg, B* =0, I[5 =
(s1p/prn) and A% = (sap/par), which gives three characteristic roots: two neg-
ative A\; = —fir,, A2 = —pap, and the other equal to the threshold parameter Ry
for the existence of interior equilibrium Ep:

A= a0 — a3 (815 /p1g) — @4 (545 /1AR) -
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We now study the local stability of the positive equilibrium Ep. Assume Ry > 0.
At Ep, B* satisfies
* A20 1y *
Q0 —Oé3IR— TB —CM4AR =0,
and therefore (36) reduces to
A+ %B* Ot3B* Ot4B*
det —Fi (A A+ pr, 0 =0. (37)
—F (/\) 0 A+ HAR

Therefore the local stability of Ep leads to the equation

N+ 22 (A + prg + %2 B*) +
(38)

+A (1 pap + @3B Fy (A) + a4 B*Fy () + 2022 B* 4 22X B*) 4

+B* (prepar 22 + aspagFi (N) + aupr, Fo (V) = 0.

0
The information of the delays 7, and 7, is carried by Fi (\) := [ wq(0)e*?dd

—71

0
and F» (\) := [ w2(0)e*df and is therefore dependent on the choice of both delay
e

kernels wy (6) and wo(6).
4.1. Delay kernels. Since Fj(A) refers to the delay in the innate response, we
assume that the delay kernel w; is uniform, i.e.

wi(0) =A4, 6¢€[-7,0]. (39)
Then 4

R() =201 -em), (40)

which is defined, since A = 0 is not a root of equation (38). In fact, if A = 0, then
Fi(0) = A(m1), F2(0) = A(72) and equation (38) becomes

* a
B* (1raitan =22 + 0spanA (1) + asprg A (1)) £0, Yrim >0, (41)

where by B*(71,72) we emphasize the dependence on delays 71 and 72, as it is
evident from the equilibrium components (27). F5(A) accounts for the delay in the
adaptive response. We assume that the delay kernel ws is exponential; i.e.,

wa(f) = A, € [-m,0, AkeR,. (42)
then

A
BN =g [l—e_()""k)” . (43)

D)
If 3 =7 =0, then F1()\) = F5()\) = 0 and equation (38) becomes

A + A (MAR + prg + %B*) + , (44)

A (H1gpan + 725 2B + 2R BY) + B (rpap %) =0

which has three negative roots (easy to check from (37)); i.e., Ep is asymptotically
stable at 71 = 73 = 0. We have thus the general problem to find the delay values 7
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and 79, if they exist, at which for increasing 7 and 75 the stability of Ep changes
or, in other words, at which Ep undergoes a stability switch. Substituting (40) and
(43) in (38), the characteristic polynomial (38) takes the form

P\, 71,72) + QA 11, 72)e ™ + Qa(A, 11, 72)e N = 0 (45)
where P is a fifth-order degree polynomial

P = p5 (11, 2)A° +pa(71, 7o) N + p3 (11, 72)X° + P2 (71, 72)A? + p1 (71, o)A + po (11, T2)
(46)
with delay-dependent coefficients

( Ds (7'1,7'2) =0,

P4 (T1,T2) = @0 B* + opr, + opa, +0Ko,

D3 (11, 72) = opar Ko + B*asopa, + B*az Ko+

‘topurgpiag + oprg Ko + B* Qoo firg,

{ P2 (7‘1,7‘2) = U,LLIR/J,ARKQ + AsayB*o + A1as3B*o (47)
+B*azoprppap + Brasopr, K2 + +B*asopa, Ko,

P1 (7'1,7'2) = A1a3B*0'/.LAR + Aja3B*c Ko+

+B*agoprgpar Ko + AsouB*oury,,

po (T1,72) = ArazB*opa, K.

\

()1 is a second order polynomial
QA 71,72) = 1 (71, 72)A% + 1. (11, 72)A + go (11, 72) (48)
with delay dependent coefficients

¢ (11, 72) = —A1a3B*0,
a1 (T1,T2) = —AlagB*UKz - AlagB*O'MAR, (49)
qo (T1,T2) = —A]_agB*U/,l/ARKQ.

Q- is a second order polynomial as well (same as (48)) with delay dependent coef-
ficients
q~2 (Tl,Tz) = 2A20£4B*0‘,
q~1 (Tl,Tz) = 2A20£3B*O'NIR - A1a3B*O'/J/AR, (50)
q~0 (Tl, Tz) =0.

The occurrence of stability switches for characteristic equations with one delay
and with delay dependent coefficients has been studied by Beretta and Kuang [6],
who have proposed a geometric stability switch criterion. However, the extension
of the criterion to the case of two distinct delays is still far from being realized.
Here we only perform a qualitative study of stability switches in Ep by coupling
LHS to a heuristic classification algorithm.

4.2. Numerical simulations. We simulated the system by numerically solving
the differential equations using suitable numerical methods. Considering the general
case for delay equations (3); i.e., of exponential delay kernels for innate and adaptive
immune responses,

wi(G) = AieK“g, 0 € [—Tl,O], 1=1,2
in system (3) we define the new variables
ur®) = [ wi(8)B(t +6)ds (51)
ua(t) = [ wa(0)B(t+06)do
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By the transformation s =t + 6 equations (51) give

ur)) = Ji_, wi(s —1)B(s)ds
ua(t) = j;ft—'r: wa(s — t)B(s)ds ’ 2
which is straightforward checking that they satisfy the equations
d_utI = AiB(t) - Aie N B(t — ) — Kqur(t)
stA = A;B(t) — Ase KBt — 1) — Koua(t)
hence, system (3) is transformed into
dX(Z(t) = sy—aXyt)B(t) — pux, Xu(t)
dX;lIt(t) = o Xy(t)B(t) — o X (t)AR(t) — px, X1 (t)
P = awB (1- 22) - auBOIR(0 - 1B Ar()
}(t) = ora +ur(t) — praIa) o9
d ;(t) = sap +ua(t) — papAgr(t)
duéft) = AB(t) — Aie KM B(t — 1) — Kyu;(t)
dugt(t) = AyB(t) — Aye K22 B(t — 1) — Kouu(t)

with initial conditions given by (2) and table 2.1, and particularly B takes initial
values on the interval [—72,0]; i.e.,

B(S) = @3(3), ENS [—7‘2,0], (54)
thus defining at ¢ = 0 the initial conditions for u; and u4 in (53) by
ur(0) = [°. wi(s)®s(s)ds
_ 0 (55)
ua(0) =[O wa(s)®s(s)ds.

Hence, system (3) is transformed into an equivalent system of delay differential
equations (53) with fixed delay 71,72, where equivalent means that such a new
system has the same characteristic equation and same equilibria (regarding the
original variables (Xy, X7, B, Ir, Ar)) as the original system (3) (we leave this the
reader to check). Note that the case of uniform delay kernel for innate response
Iy, is simply obtained by setting K1 = 0 in (53). Such a new system (53) may be
solved by any delay differential equations solver. We used the Matlab dde23 by
Shampine and Thompson [51].

5. Results. System (1) is comprised of 20 parameters (17 independent parame-
ters), 7 of which are directly involved in existence condition for the boundary and
interior equilibrium solution (see Theorem 3.1). The study of the zeros of (45) and
consequently the stability of Ep are affected by changes in these parameter values.
Here we perform two types of analysis: two different sensitivity analyses and a
qualitative study of stability switches. Sensitivity analysis results are valid only in
the biological ranges we investigated.
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FIGURE 1. Scatter plots of bacterial load (y-axis) vs parameters
(z-axis) varied in LHS. Shown on the y-axis is number of bacteria
per cm?® of tissue.

5.1. Sensitivity analysis. We perform a sensitivity analysis on model (1) by in-
vestigating the parameter(s) that contribute most to variations in bacterial load
(our outcome variable). Two indexes are calculated as described earlier: PRCC
and EFAST. PRCC deals with monotonic nonlinear associations between param-
eters and outcome, while EFAST is more accurate for nonmonotonic nonlinear
relationships.

To compare PRCC with EFAST, we set the dimension of the sample in LHS
to the minimum number of runs defined in the EFAST sampling procedure (see
[53]), namely 520 (65 multiplied by the number of parameters that are varied, 8 in
our case). Some parameter combinations do not satisfy the existence condition for
Ep (i.e., Ry > 0; see equation (28)); thus, we calculate PRCCs both on the entire
LHS dataset and on the subset of samples fulfilling Ry > 0. The same procedure
cannot be applied to EFAST. Because of its peculiar sampling technique, EFAST
must process the whole sampled dataset at once, and we can only compare the
sensitivity indexes calculated on the whole parameter space.

Figure 1 shows scatter plots of the parameters that are varied in LHS versus
bacterial load, our marker of disease progression. There is no clear monotonic
association between parameter variation and outcome; thus, sensitivity analysis
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should be performed using a variance-based method (EFAST) rather than a stan-
dard sample-based method such as PRCC (as our results clearly show). Table 3
shows PRCC values in Panel A and B. Panel A shows only the subset of parameter
combinations satisfying Ry > 0, while Panel B gives values from the analysis of
the entire LHS matrix. EFAST sensitivity indexes are shown in Panel C, D and
E. Each row of the panels corresponds to a specific time point during infection.
Parameters as, ayg, 71 and 7» have a significant negative PRCC with bacterial load,
while ayg is the only parameter that has a significant positive PRCC (see Panel A).
The strength of these associations becomes less important over time.

All the coefficients in Panel B (the whole LHS matrix) are very low and not sig-
nificant. Panels C, D and E values of EFAST analysis should be read as amounts
(C and D) and percentages (E) of variance explained by varying the single param-
eter with (Panel D, total-order sensitivity index) and without (Panel C, first-order
sensitivity index) considering interactions with the rest of the parameters. Panel
E normalizes the indexes by recasting Panel D as ratios between each cell with the
marginal total by time (row). Since first-order and total-order EFAST values are
not equal (Panel C and D), interactions between parameters matter (the model
is not additive) and only Panel D or E should be used to compare our sensitivity
results.

As suggested by Figure 1, because of nonmonotonic nonlinear relationships be-
tween parameters and outcome, PRCC fails to give any significant answer in term
of sensitivity (see Panel B) if the entire parameter space is sampled (regardless
of whether condition Ry > 0 is satisfied). EFAST performs much better, defining
rankings of the relative importance of each parameter on the model outcome. From
Panel E (last four columns) az, a4, azg and o explain together up to 80 % of the
total variability of the bacterial load. If we consider the results of Panel A, PRCCs
and EFAST give similar conclusions except for the carrying capacity parameter o
(i.e., the maximum sustainable bacteria population). EFAST suggests that o ranks
first in percentage of explained variance, while PRCC considers this parameter not
significant.

5.2. Stability switch. We use LHS technique to qualitatively investigate the ex-
istence of a stability switches for Ep. We sample only 71 and 72 from uniform
probability density functions defined in very large intervals, namely 73 in [0.01,10]
and 7» in [1,90] (days). The rest of the parameter values are given in tables 1 and 2.
These reference values fulfill the condition for the existence of Ep (see theorem 3.1
and equation (28)). We run a total of 27,000 simulations to properly classify the
outcomes based on the type of equilibrium achieved (damped or sustained oscilla-
tions). We follow a heuristic argument to classify the type of oscillatory behavior
of Ep, namely either as sustained or damped. This argument comprises three dif-
ferent filtering steps. The first step calculates the maximum difference between the
mean and the current value of a specific outcome in the first and last 50% of the
simulation, then it takes the ratio. If the ratio is approximately one, the oscillation
must be sustained. This first screening classifies as sustained any simulation with
a ratio smaller than 1.2. The second step calculates the variance of the last 50%
of the simulation and if it is larger than led, Ep is classified as sustained. We got
similar results for a variance-threshold of 1e3. The third step processes the last 25%
of the simulation, and check for significant deviations from its mean value. This
last filtering step classifies as sustained all the solutions that deviate more than 20%
(plus and minus) from the mean. The above steps are evaluated simultaneously on
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TABLE 3. Panel A: PRC coeflicients and their respective signifi-
cance calculated at different time points from the subset of the LHS
matrix satisfying Ry > 0 (* indicates not significant, p > 0.05),
Panel B: PRC coefficients and their respective significance cal-
culated at different time points from the entire LHS matrix (all
the values are not significant; i.e., p > 0.05), Panel C: First-order
EFAST sensitivity indexes at different time points, Panel D: Total-
order EFAST sensitivity indexes at different time points; Panel E:
Total-order EFAST sensitivity indexes (percentages) at different
time points

time 1 T e %1 e a3 o4 20 o
10 —-0.335 —0.224 0.018* 0.033* —0.932 —0.836 0.627 0.102"
30 —0.464 —0.497 0.055" 0.048™ —0.744 —-0.521 0.320 0.099*
50 -0.217 -0.327 —-0.011"* 0.046™ —0.746 —0.465 0.533 0.142
100 —0.211 -0.181 0.025* 0.061* —0.546 —0.299 0.295 0.064*
200 —0.189 —0.148 0.057* 0.003* —0.342 —-0.259 0.173 0.048*

PANEL A

time 1 T2 a1 D) [ 2} Q4 20 o
10 0.019 —0.050 0.004 —0.025 0.038 0.0656 —0.011 -0.016
30 0.012 —0.076 —0.004 —0.026 0.014 0.050 0.001 —0.014
50 0.009 —0.061 —0.009 —0.033 0.023 0.066 —0.009 —-0.023
100 0.001 —0.075 —0.002 —0.045 0.018 0.073 —0.001 -0.019
200 0.020 —0.078 0.016 —0.051 0.012 0.055 0.010 0.004

PANEL B

time Tt Ty e %1 e a3 o4 20 o
10 0.049 0.055 0.012 0.027 0.319 0.095 0.109 0.043
30 0.004 0.127 0.024 0.024 0.510 0.158 0.185 0.007
50 0.024 0.141 0.014 0.024 0.363 0.086 0.108  0.0601
100 0.034 0.151 0.009 0.007 0.473 0.090 0.107 0.099
200 0.027 0.019 0.010 0.009 0.494 0.063 0.128 0.160

PANEL C

time 1 T2 ay (o) as [e71 Q20 a
10 0.384 0.391 0.162 0.249 0.872 0.552 0.720 0.368
30 0.105 0.848 0.266 0.122 0.925 0.659 0.730  0.1464
50 0.339 0.666 0.201 0.136 0.870 0.594 0.763 0.603
100 0.415 0.536 0.163 0.154 0.903 0.595 0.824 0.753
200 0.259 0.216 0.107 0.093 0.855 0.280 0.869 0.892

PANEL D

time Tt Ty e %1 e a3 [P 20 o
10 0.103 0.105 0.043 0.067 0.235 0.149 0.194 0.099
30 0.027 0.223 0.070 0.032 0.243 0.173 0.192 0.038
50 0.081 0.159 0.048 0.032 0.208 0.142 0.182 0.144
100 0.095 0.123 0.037 0.035 0.207 0.137 0.189 0.173
200 0.072 0.060 0.030 0.026 0.239 0.078 0.243 0.249

PANEL E
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FI1GURE 2. Phase diagram in 7, , 5. 27,000 runs of the system 1
are classified either as damped or sustained oscillations. Keeping
the rest of the parameters constant, 7, is varied in the interval
[0.01,10] and 7» is varied in the interval [1,90], .

the matrix of 27,000 solutions (only for B(t)). The first set of runs (8,000) explored
the whole range for both parameters. Then we run 10,000 simulations restricting
71 in the interval [3 , 10]. The last two sets zoomed into the boundaries of the
emerging stability switch manifold: we run 7,000 simulations in the interval [4.5 |
6.5] for 71 (72 isin [1 , 90]) and 2,000 simulations in the range [6.5 , 10] for 71 and
[1,10] for 7». Figure 3 shows our simulations results. There is a clear separation
between the two classes and that depends on both parameters. Ep always results
in damped oscillations with a delay of innate immunity response lower than 4.65
days, regardless adaptive immunity response. For 73 > 4.65, adaptive immunity
can play a major role in defining the type of Ep oscillatory behavior. For example,
at 71 =6.24, we get sustained oscillations for 75 equal to 20, 60 or 91 days (see Figure
4, Panel A) and damped oscillations for 72 equal to 7, 40 and 80 days (see Figure 4,
Panel B). We run the model for 3000 days to see graphically if the oscillations are
sustained. Adaptive immunity can compensate for an inefficient innate immunity
(longer than a week) by a very fast response (within a week or less) that is inversely
proportional to 7.

6. Discussion. We extended an existing delay differential equation model by Beretta
et al. [7] by including a term representing direct bacterial killing by adaptive immu-
nity. The baseline model described in [7] accounts for different killing capabilities
of the immune system and incorporates two delays representing the two types of
immune responses, namely innate and adaptive immunity. The basic structure of
the model is maintained with a new term added to reflect active killing of a class
of very important cells of the immune system, such as macrophages and cytotoxic
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lymphocytes. We simplified the form of the delay functions by considering only bac-
terial load as the relevant information scanned by the immune system to determine
the strength of the response (both innate and adaptive). We also retain the struc-
ture of delay kernels, namely uniform for innate response and positive exponential
for adaptive response. As in [7], the new model admits a boundary equilibrium
Ep or uninfected steady state, and only when the threshold parameter Rg in (28)
becomes positive, one positive equilibrium Ep bifurcates from Ep (transcritical bi-
furcation), corresponding to the infected steady state. The local stability of Ep is
independent of the delays in the innate (71) and adaptive (72) immune responses.
Ep is asymptotically stable whenever the positive equilibrium Ep is not feasible
and unstable if Ep exists. The positive equilibrium Ep has components dependent
on 71 and 72, and its local stability is dependent on both (see (37)). The study
of the characteristic equation leads to equation (38), where the term Fj()\) takes
information of the delay kernel w; (), 6 € [—71,0] in the innate immune response
and F5()) takes information of the delay kernel wy(6), 6 € [—72,0] in the adap-
tive immune response. Solving for the delay kernel structures, equation (38) takes
the form of the polynomial exponential transcendental equation (45), with delay
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dependent coefficients given by (46)-(50). The positive equilibrium Ep is asymp-
totically stable at 71 = 0, whereas it undergoes a Hopf bifurcation toward sustained
oscillations by increasing the values of 74 and 7». The structure of this dependence
is studied qualitatively by a heuristic algorithm and, although not proven analyti-
cally, for values of 71 > 4.5, the delay 7 plays a major role in defining the type of
oscillatory behavior of Ep.

6.1. Biological discussion. We focus our studies on the intracellular bacterium
Mycobacterium tuberculosis, a slow-growing pathogen that preferentially infects the
lung. Most infected people progress to latent TB, an asymptomatic state where
the pathogen and the host coexist without infecting other hosts. During their
lifetimes, latently infected hosts can experience reactivation. Reactivation can be
described as a switch in the host-pathogen coexistence, where bacteria can no longer
be controlled by the host response anymore, causing outgrowth of the pathogen,
dissemination and uncontrolled spread of infection. So, the study of factors and
mechanisms involved in controlling and mantaining a latent state within the host
represent a critical goal in developing TB treatments and cures.

The baseline model studied in [7] suggested a key role for innate immunity in es-
tablishing a protective response against intracellular bacterial infections. The new
model presented here allowed us to determine the relevance of delays for adaptive
response in addition to those present for the innate response. Taken together, our
analyses suggest that a strong and rapid innate response (high innate immunity
cell turnover that is a function of baseline levels and their half-life, and high bac-
terial killing by innate response) is always the best strategy either for clearing or
for controlling bacterial growth and its damage to the host. The parameters of
the bacteria equation are the most important in determining infection outcome, at
least within the large biological ranges we investigated.

The role of adaptive immunity seems to be two-fold: filling the gap by eliciting a
fast cell-mediated or humoral immunity (within few days) when innate response
fails (or is very delayed, more than a week) or to contain undesirable bacterial
outgrowth by adjusting its response to potential reactivation scenarios. The first
goal is probably achievable only through targeted immunization, given that the
physiological and biological constraints on the timing of adaptive response usually
result in delays within the order of one to three weeks (without vaccination). As for
the second goal, the stability switch study suggests that a fine-tuning of adaptive
response is desirable when innate immunity is not as rapid as it should be (between
4 and 7 days). Depending on the natural memory of our adaptive response (likely
variable between different hosts), either delaying or expediting adaptive responses
could be advantageous.

It is not clear why and how the optimal strategy emerges. A potent and rapid
adaptive immune response can be very effective in killing pathogens but will likely
cause a lot of inflammation and tissue damage, sometimes unnecessarily. On the
other hand, bacteria, if not controlled in their growth, can spread and disseminate
causing necrosis, cavity formation and also widespread inflammation and tissue
damage. It is a dynamic balance between effector and target cells, where the bacte-
rial load is likely the driving force. In this framework, we retain the phenomenolog-
ical classification drawn in [7] regarding the biological difference between damped
and sustained oscillation of Ep. We still observe damped oscillations as the latent
infection scenario in which a clinically asymptomatic coexistence between the host
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and the microbe is established and maintained. Sustained oscillations might repre-
sent chronic infection scenarios in which bacteria undergo temporary uncontrolled
growth and coexistence is achieved only by recurrent cyclic outbreaks with evident
symptoms experienced by the host. These scenarios could be easily driven out of
control (reactivation) either by host or pathogen factors, as well as environmental
pressure. An alternative example is given by herpes symplex virus (HSV), which is
associated with recurrent pathology, usually less severe than the primary pathology
as a consequence of the immune response.
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