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Abstract

Pathogen killing is one of the primary roles of macrophages, utilizing potent effectors such as nitric oxide (NO) and involving other

cellular machinery including iron regulatory apparatus. Macrophages become strongly activated upon receipt of appropriate signaling

with cytokines and pathogen-derived endotoxins. However, they must resist activation in the absence of decisive signaling due to the

energetic demands of activation coupled with the toxic nature of effector molecules to surrounding tissues. We have developed a

mathematical model of the modular biochemical network of macrophages involved with activation, pathogen killing and iron regulation.

This model requires synergistic interaction of multiple activation signals to overcome the quiescent state. To achieve a trade-off between

macrophage quiescence and activation, strong activation signals are modulated via negative regulation by NO. In this way a single

activation signal is insufficient for complete activation. In addition, our results suggest that iron regulation is usually controlled by

activation signals. However, under conditions of partial macrophage activation, exogenous iron levels play a key role in regulating NO

production. This model will be useful for evaluating macrophage control of intracellular pathogens in addition to the biochemical

mechanisms examined here.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the primary roles of macrophages in the immune
response is killing of internalized pathogens. Macrophages
attain strong activation states for killing based on
external signals received but must balance capability of
activation with the need to stay quiescent in the absence of
decisive stimuli. A resulting question is how the macro-
phage biochemical network balances alternate demands of
different activation states. Our focus is the macrophage
killing mechanism where exogenous cytokine and patho-
gen-derived endotoxin signals induce a genetic program
resulting in the production of nitric oxide (NO) and NO-
derived reactive nitrogen intermediates (Xie et al., 1992;
Nathan and Shiloh, 2000) (based primarily on the
well-studied mouse macrophage model). These NO-related
e front matter r 2005 Elsevier Ltd. All rights reserved.
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species have the ability to directly kill internalized
pathogens (Chakravortty and Hensel, 2003) while also
acting as intracellular signals (Hess et al., 2005) in feedback
that regulates activation pathways (Llovera et al., 2001;
Marshall et al., 2000; Marshall and Stamler, 2001) and iron
homeostasis (Kim and Ponka, 2003). The link between NO
and iron homeostasis can alter NO production (Weiss
et al., 1994) and the availability of iron as a nutrient for
pathogens (e.g. Schaible and Kaufmann, 2004). The
resulting picture is of an interconnected network with
systemic consequences of macrophage activation depend-
ing on the presence of activating signals and exogenous
iron (Fig. 1).
Due to the energetic demands of macrophage activation

coupled with the toxic and perturbative nature of nitric
oxide to surrounding tissues, macrophages must remain
quiescent in the absence of a decisive need for activation.
When and only when the macrophage biochemical network
receives a definite signal for activation, it must supply
a sufficiently strong response: an integrated change in
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Fig. 1. Schematic of the macrophage biochemical network involved in host-pathogen interactions. Each X i represents one model variable. Arrows

pointing to or from variables represent synthetic, degradatory or cycling processes while those pointing to other arrows represent regulatory interactions.

Parameters are labeled with their putative regulatory phenotype, stimulatory ðþÞ or inhibitory ð�Þ. Three functional modules (Activation, Killing, Iron

regulation) are marked. Bold parameters are subject to local detailed analysis (Methods). NA ðX 13Þ, pool of nucleic acid precursors to mRNA; AA ðX 14Þ,

pool of amino acid precursors to protein. Note that the parameter h77 represents the weighted average of the kinetic orders from both depicted labile iron

pool consumption processes.

J.C.J. Ray, D.E. Kirschner / Journal of Theoretical Biology 241 (2006) 276–294 277
cellular state that induces conditions leading to growth
inhibition and killing of internalized pathogens. This
system has a modular organizational scheme; the inte-
grated behavior of macrophages during activation is
determined by factors within and between these modules.
One possibility for controlling the trade-off between
quiescense and activation is based on how the functional
modules interact. To address the trade-off between
quiescent and activated states we have developed a
mathematical model of the biochemical network operating
in macrophages that reflects this organizational scheme.

Analysis of this model allows us to assess the influence of
every interaction under both quiescent and activated
macrophage conditions. We apply two levels of analysis
here. A global statistical analysis allows us to determine the
relative importance of each model parameter on macro-
phage activation outcomes. Local analyses of specific
interactions yield network motifs that best meet evolu-
tionary criteria for effective macrophage function. To-
gether these analyses have revealed what network motifs
allow the conflicting demands of macrophage quiescence
and activation to be met. We define three functional
modules of the macrophage biochemical network assessed
with this approach: activation, killing and iron regulation

(Fig. 1).
The activation module (AM) represents receipt of

external stimuli that signal parallel second messengers:
LPS-inducible NF-kB and IFN-g-inducible Stat1. These
signals transcriptionally upregulate production of inducible
nitric oxide synthase (iNOS) (Alderton et al., 2001) in a
synergistic manner (Lorsbach et al., 1993). The killing

module (KM) represents the iNOS transcriptional program,
a cascade resulting in production of NO, which serves as a
signaling molecule whose products in turn regulate NF-kB
(Marshall and Stamler, 2001; Connelly et al., 2001) and
Stat1 (Llovera et al., 2001) in the AM. For simplicity we
emphasize NO and its effects over other killing mechanisms
such as superoxide ðO�2 Þ.
NO levels regulate amounts of iron in the labile iron pool

(LIP) (Kim and Ponka, 2003), an intracellular quantity of
elemental iron that is either free or loosely bound to
miscellaneous weak chelators (Petrat et al., 2002) and
available for metabolic use by many processes (Kakhlon
and Cabantchik, 2002). LIP regulation is the primary goal
of the iron regulation module (IRM), comprising cellular
mechanisms of iron internalization and sequestration. LIP
levels are increased by intake from extracellular transferrin-
bound sources, and decreased by sequestration into a
complex with ferritin. The IRM is coregulated with the
KM via NO regulation of iron response proteins (IRPs) 1
and 2 (Hentze and Kuhn, 1996; Kim and Ponka, 2002;
Wang et al., 2005) with indirect transcriptional regulation
of iNOS by the LIP (Weiss et al., 1994). Thus levels of KM
and IRM components are interdependent.
Our global and local analyses of the macrophage model

suggest that anti-inflammatory (negative) feedback by NO
from the KM to the AM allows maintenance of a system
that is robust to perturbations and generally more
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functionally effective than the equivalent system with no or
positive feedback. This negative feedback scheme allows
macrophages to stay quiescent or relatively minimally
activated in the absence of decisive immune activation or
under a single activation signal. However, it also allows
for strong activation, but only in the presence of both
endotoxin and cytokine activation signals. Only under
sufficiently strong, multiple-signal activation conditions is
the interaction between iNOS transcriptional regulators
synergistic, a requirement for strong activation in this
model. This effect partially results from NO-induced
crosstalk between activation signals that supresses one
signal when the other is active. We also demonstrate that
the co-regulation of NO and iron in the presence of normal
iron loads is asymmetric: elevated iron levels slightly
suppress NO synthesis but cytokine and endotoxin signal-
ing more dramatically upregulates the intake and seques-
tration of iron. Under partial activation conditions and
high iron loads the influence of these two modules on each
other reaches parity; the asymmetric relationship is mostly
restored under complete activation.

2. Methods

We have developed a mathematical model describing
macrophage biochemical processes based on three func-
tional modules: activation, killing and iron regulation. The
model is built on published experimental data primarily
from mouse macrophage and human cell systems. We first
describe the model and then discuss the methods for how
the model is analyzed. The model equations and a
discussion of parameter estimation are presented in the
Appendix.

2.1. Mathematical model representation

We require a representation of the macrophage bio-
chemical network that is dynamic, accurate over a wide
range of molecular concentrations and that allows analy-
tical study. The local S-system representation of the power-
law formalism (Savageau, 1996) usually meets these
requirements, sometimes requiring a piecewise representa-
tion for large deviations in concentrations (Savageau,
2002). We choose this formalism over other model types
due to the straightforward canonical representation of
network motifs and previously developed analytical
methods allowing conclusions to be drawn about the
evolution of intermodule interactions.

In an S-system setting, each molecular component in the
macrophage is represented by one variable described by an
ordinary differential equation. An n-variable S-system is of
the form dX i=dt ¼ Vþi � V�i where each Vþi ¼ ai

Qn
j¼1 X

gij

j

and V�i ¼ bi

Qn
j¼1 X

hij

j is an aggregate power law flux

describing the production and consumption of molecule
X i. Parameters ai and bi are rate constants for production
and consumption reactions, respectively. Parameters gij
and hij are generalized kinetic orders that describe the
influence of the variable X j on the rate of X i production or
consumption (Savageau, 2001). If a variable does not
influence a given flux, the kinetic order is zero. If the
influence is stimulatory, the kinetic order is positive; if it is
inhibitory, the kinetic order is negative. The logarithmic
gain Lðx; zÞ ¼ ðq ln x=q ln zÞ0 and sensitivity Sðx; pÞ ¼
ðq ln x=q ln pÞ0 ¼ ðp=x0Þðqx=qpÞ0 are useful steady state
measures of the model’s response where x is any dependent
variable or flux, z is an independent variable, p is a kinetic
order or rate constant parameter and the subscript 0
indicates values determined at steady state. Despite the
formally identical definitions of gains and sensitivities,
we distinguish between them because logarithmic gains
represent the system’s response to external signals and
precursors while sensitivity refers to the consequence of
small perturbations in parameters.
Our macrophage model consists of a 9-variable S-system

whose mathematical specification is derived from a
schematic representation of the system topology (Fig. 1).
The complete set of equations is presented in the Appendix.
We now highlight the representation of some key interac-
tions; for other interactions that are relatively straightfor-
ward, we leave the details to the Appendix.
2.1.1. Activation module

We include only those variables necessary to reflect
activation signaling in the context of the full model. We
represent these pathways as concentrations of activated
nuclear NF-kB and Stat1. Due to the relative speed of their
activation upon signaling (on the order of minutes (Nelson
et al., 2002; Haspel et al., 1996) in a model that operates on
the order of hours), we assume an instantaneous effect of
cytokines and LPS on NF-kB and Stat1 nuclear transloca-
tion. This is an idealized model with mechanisms of feed-
forward and feedback within the AM omitted. For NF-kB,
we define the terms representing activation and feedback as
Vþ1 ¼ a1X

g111
11 X

g16
6 and for Stat1, Vþ2 ¼ a2X

g212
12 X

g26
6 where

a1 and a2 are rate constants, X 11 and X 12 are independent
variables representing respective level of pathway activa-
tion from exogenous LPS and IFN-g, and X 6 is the
dependent variable [NO]. The kinetic orders g111 and g212

(both positive) scale the level of activation from respective
LPS or IFN-g signal while g16 and g26 scale NO feedback
respectively (see Table 1 for specific definitions of para-
meters in the model). Both feedback interactions are
predominantly considered negative (Llovera et al., 2001;
Marshall et al., 2000; Marshall and Stamler, 2001), but not
in every case for the feedback to NF-kB, where low [NO]
may have a stimulatory effect (Connelly et al., 2001). Loss
of NF-kB (Nelson et al., 2002) and Stat1 (Haspel and
Darnell, 1999) activity from the nucleus due to inactivation
and export are constitutive processes dependent on
[NF-kB] and [Stat1], respectively. The NF-kB and Stat1
pathways represent parallel signals with a symmetric
relationship in the model structure (Fig. 1, Activation).
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Table 1

Definition and estimates of important parameters in the macrophage model

Parametera Definition Estimated value Sampling intervalb

a1 NF-kB turnover rate (nondim) 1:73h�1 [0.885, 41.6]

a2 Stat1 turnover rate (nondim) 8:32h�1 [4.62, 41.6]

a3 iNOS mRNA turnover rate (nondim) 0:173h�1 [0.116, 0.347]

a4 iNOS turnover rate (nondim) 0:0693h�1 [0.0365, 0.693]

a5 NHA turnover rate (nondim) 5:55mmol=h [0.0277, 166]

a6 NO turnover rate (nondim) 2:77h�1 [0.0277, 166]

a7 LIP turnover rate (nondim) 32:20mmol=h [2.58, 61.8]

a8 apoFt turnover rate (nondim) 40mmol=h [3.72, 89.2]

a9 IRP turnover rate (nondim) 36:7mmol�1 h�1 [29.2, 44.1]

g111 LPS-induced activation of NF-kB 1 [0.1, 2]

g212 IFN-g-induced activation of Stat1 1 [0.1, 2]

g31 NF-kB transcriptional regulation of iNOS 1.19 [0.1, 2]

g16 NO feedback to NF-kB �0.5 [�2, �0.1]

g32 Stat1 transcriptional regulation of iNOS 0.48 [0.1, 2]

g26 NO feedback to Stat1 �0.5 [�2, �0.1]

g37 iron transcriptional regulation of iNOS �0.177 [�2, �0.1]

h96 NO-induced alteration of IRP �0.5 [�2, �0.1]

g79 indirect IRP-induced gain of iron influx 0.5 [0.1, 2]

g89 IRP-induced translational control of ferritin �0.645 [�1.7, �0.1]

h97 iron-induced loss of IRP 0.5 [0.3, 2]

aBoldface parameters are examined further in the local detailed analysis.
bReduced interval sizes in g89 and h97 prevent parameter combinations that result in pathological results from the numerical solver due to stiffness in the

system (see text).
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This symmetry is quantitatively divided by parameter
values specific to the signaling cascade.

A partial activation state is defined by receiving only one
of the two activation signals. Under the partial activation
state induced by treatment with LPS alone, the resultant
slightly elevated [NO] may have a negative feedback effect
that suppresses Stat1 activation ðVþ2 Þ below the quiescent
steady state as long as g26o0. Whether or not this is
plausible, or if the quiescent level of Stat1 activity cannot
be further suppressed, is unknown. Similarly, under
activation by IFN-g alone elevated [NO] may have a
feedback effect suppressing NF-kB activation ðVþ2 Þ below
the quiescent steady state if g16o0 in the model. We use a
piecewise power law representation (Savageau, 2002) to
prevent this suppression in a few instances to determine the
effect of these assumptions (outlined in the Appendix).

2.1.2. Killing module

We represent iNOS transcriptional regulation with an
mRNA production rate law: Vþ3 ¼ a3X

g313
13 X

g31
1 X

g32
2 X

g37
7 :

NF-kB and Stat1 regulate transcriptional initiation
(Ganster et al., 2001; Gao et al., 1997) according to the
kinetic orders g31 and g32, respectively. We assume the
mechanism of synergism between the activation signals
here to be at the transcriptional level (Kwon et al., 2001)
but it may exist earlier in the signaling cascade; see e.g.
Huang et al. (2004). The LIP ðX 7Þ regulates transcription
indirectly via C/EBP-b (NF-IL6), a transcription factor
required for initiation (Hentze and Kuhn, 1996; Dlaska
and Weiss, 1999; Guo et al., 2003). Substituting LIP
concentration into the flux term eliminates the need for
representing C/EBP-b in the model. Parameter g37 scales
the quantitative influence of the LIP on the rate of iNOS
transcription initiation. We omit post-translational mod-
ification of iNOS and assume that concentrations of L-
Arginine, NADPHþHþ, and O2 precursors to NO in
iNOS catalysis are not rate-limiting (Muijsers et al., 2001).
At the scale of interest here, iNOS catalyzes NOþ
Citrullene production via the intermediate No-hydroxyar-
ginine (NHA) (Groves and Wang, 2000). The resulting
simplified pathway tracks production of NHA and NO
catalyzed by iNOS (Fig. 1, Killing).

2.1.3. Iron regulation module

The IRM tracks iron response protein (IRP) regulation
with a resultant influence on LIP and apoferritin levels
(Fig. 1, Iron Regulation). The link between the KM and
the IRM occurs through IRP regulation by NO with a
resulting feedback on iNOS transcription (above). We base
the network topology on the interaction between IRP2 and
the cationic nitrosonium ion NOþ (a product that forms as
a result of nitric oxide production), which presents an
interaction with sufficient data for estimation of some
parameters ðb9 and g89 from Kim and Ponka, 2002). This
gives the NO control point of the IRM as the rate of IRP
degradation: V�9 ¼ b9X

h96
6 X

h97
7 X

h99
9 . The majority of IRP

in the cell is IRP1, which has qualitatively identical iron
regulatory properties as IRP2 but possibly an opposite
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response to NO (Wang et al., 2005 and references therein).
To implement the assumption that either IRP1 or IRP2 is
the predominant mechanism we set h96o0 (IRP1 or
possibly IRP2) or h9640 (IRP2). We assume IRP-
regulated transcript stabilization of the transferrin receptor
and resultant increase in iron influx (reviewed in Thomson
et al., 1999) is directly controlled by IRPs. This is included
in the iron influx term Vþ7 . Lastly, IRPs translationally
control apoferritin production (Thomson et al., 1999).
Apoferritin subunits form a shell structure that holds the
sequestered iron atoms within. The ratio of iron atoms to
ferritin protein complexes is about 4000:1 in the iron-rich
ferritin complex (see Theil, 2003 for a short review). Iron
accumulates in the ferritin complex relatively slowly,
continuing for up to 24 hours after initial iron loading
(Herynek et al., 2000). Based on the rate of this process, we
assume that the variable X 8 represents the molarity of
binding capacity held by ferritin rather than the raw
number of molecules. The iron-rich ferritin complex is
stored by macrophages for use by other cells, maturing
into hemosiderin under conditions of iron overload
(Harrison and Arosio, 1996). The primary source of LIP
is presumably transferrin-bound extracellular iron. Low
extracellular iron results in degradation of the ferritin
complex to replenish the LIP in red blood cells (Konijn et
al., 1999). Since we do not simulate low iron conditions,
and since the iron-rich ferritin complex is stored for long
periods by macrophages, the fate of this complex is beyond
the scope of the model.

2.2. Parameter estimates

Our goal is to derive order-of-magnitude estimates for
model parameters resulting in behavior that reflects the
known data for the physical macrophage system. Uncer-
tainty and sensitivity analyses can then be used to explore
the parameter space and determine variations in system
outcome. The macrophage model contains 44 parameters
whose values require estimation before numerical model
simulations can be performed. Complete details of this
process are given in the Appendix and summarized in
Table 1. Here we outline some key steps.

First, we reduce the number of estimates needed using
non-dimensionalization. The non-dimensionalized model is
used for numerical simulations, but we use the dimensio-
nalized model for calculation of stability and robustness,
which do not require numerical simulations (see local
analysis, below). Non-dimensionalization of the model
gives a normalized form with concentrations relative to the
quiescent steady state; the effect of kinetic orders across the
two model forms is the same.

Substituting levels of each variable X i relative to
quiescent steady state X̂ i gives the non-dimensional value
xi ¼ X i=X̂ i (we use the ŷ notation to distinguish the
particular quiescent steady state of y from the generic
steady state denoted by y0Þ. In this type of model, a unique
steady state always exists as long as the determinant of the
matrix A of kinetic order differences is non-zero (i.e.
det A ¼ det½gij � hij�a0; see Voit, 2000, pp. 200–201). At
the steady state, ai

Qnþm
j¼1 X

gij�dij

j 0 ¼ bi

Qnþm
j¼1 X

hij�dij

j 0 ¼ ai

where dij ¼ f
1; i¼j
0; iaj

and m is the number of independent
variables (six here). Then x̂i ¼ 1 for i ¼ 1; . . . ; 9 represents
the quiescent steady state in the non-dimensionalized
model. Table 1 gives estimated values for turnover rates
and kinetic orders for most of the parameters. Several
kinetic order parameters are omitted from Table 1 as they
are set to the value 1 (see Appendix for details).

2.3. Software and simulations

We used two platforms to perform simulations to ensure
that convergence to the same solutions occurs in different
settings. Mathematica (Wolfram Research) was used for
most calculations. The results were confirmed with a
second program written by our group in C++ incorporat-
ing standard ODE solvers. An algorithm for uncertainty
and sensitivity analysis was implemented in both and the
results compared for accuracy. Steady state analysis,
including dose-response and calculation of logarithmic
gains and sensitivities were done using Mathematica’s
algebraic Solve function.

2.4. Global statistical analysis

Estimating parameters for any mathematical model is
complicated by lack of or variability in experimental data.
This leads to uncertainty in the quantities used for
parameters. We have implemented statistical uncertainty
and sensitivity analyses (Helton and Davis, 2000) that
allow simultaneous exploration of the entire biologically
plausible parameter space.
We used a type of stratified Monte Carlo sampling

known as Latin Hypercube Sampling (LHS) to partition
wide parameter ranges into a number, N, of equiprobable
subintervals for high efficiency sampling (McKay et al.,
1979; Blower and Dowlatabadi, 1994). This method
prescribes sampling once per subinterval. Therefore, the
greater the partition number N, the more accurate the
estimates of sensitivity will be. We chose a partition
number of N ¼ 1000 and randomly combined the
sampled numerical values, one value per parameter. In
the absence of further data on their actual distribu-
tions, each parameter interval was sampled assuming a
uniform distribution for the ranges specified in Table 1.
The intervals chosen for the kinetic order parameters
represent a sampling of the parameter within a region
corresponding to one type of regulation; i.e. always
positive or negative. Distinguishing between the qualitative
differences in regulatory motifs (positive, negative or no
regulation) is left to the local analysis discussed below.
Note that the intervals for two parameters ðg89 and h97Þ

were slightly reduced to avoid numerical stiffness resulting
from x8 ([apoferritin]/[apoferritin]0) becoming too small
during simulation.
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We perform simulations of the system for a 100-hour
time frame after a constant stimulus of LPS, IFN-g, and/or
exogenous iron starting from quiescent steady state
conditions. This analysis uses the non-dimensionalized
model for numerical simulations. Due to the non-dimen-
sionalization, the quiescent steady state concentration of
each molecule in the model is 1. Statistical measures
describe the output with a lognormal distribution when the
system is near steady state. Here, the output is the
distribution of values for the dependent variable x6

representing [NO]/[NO]0. Our goal in choosing the treat-
ment levels (which are arbitrary) is to induce distinct
activation states above this steady state given by particular
levels of exogenous LPS, IFN-g and iron ðx11, x12 and x17,
respectively).

Stimulation of the AM from LPS or IFN-g is set to 100-
fold induction of NF-kB or Stat1, respectively. This
quantity is chosen to represent a level of activation that
is definite and distinguishable from an insignificant
stimulus but well below high activation levels that cause
signal saturation. Therefore, x11 ¼ 100 and x12 ¼ 100
under conditions of complete activation. Under partial
activation conditions, either NF-kB or Stat1 is subject to
100-fold activation, but not both. The quiescent level of
activation is given by x11 ¼ 1; x12 ¼ 1.

Under iron-rich conditions, the intake of exogenous iron
into the LIP is increased 10-fold (over low iron conditions
of x17 ¼ 1Þ; that is, x17 ¼ 10. This simulates conditions of
high iron levels and their effects on overall macrophage
activation. There is a constant background level of the LIP
that is measurable under homeostatic conditions (see for
example Petrat et al., 2002). Therefore, in contrast to the
second messengers in the model, a relatively small fold-
change in iron intake will simulate iron-rich conditions.

When performing the LHS analysis described above, we
are able to measure uncertainty in the outcome variable
ðx6: [NO]/[NO]0) due to changes in the parameter values.
What remains to do is to correlate the observed variations
to specific parameters. This can be accomplished using a
partial rank correlation (PRC) (see Blower and Dowlata-
badi, 1994) as a statistical sensitivity. The resulting
correlation coefficients, giy, have a magnitude between 0
and 1, and a sign ðþ=�Þ describing the relationship of the
ith input parameter to the yth variable. The PRC may be
calculated at any time point during the simulation; many of
the correlations are dynamic. A significance test has been
determined for giy (versus giy ¼ 0) that approximates a
Student’s T (Blower and Dowlatabadi, 1994). The PRC is
valid when considering solutions with a monotonic
relationship with respect to the input parameter (Helton
and Davis, 2000) as is the case here. We have also
implemented a Z test for comparisons of PRC coefficients
against one another to determine the relative statistical
sensitivity of variables to different parameters in a
particular activation state (Howell, 1987, pp. 240–241).
We refer to the magnitude of the PRC without regard to
sign as the absolute PRC.
2.5. Local detailed analysis

To evaluate the role of specific parameters within
the macrophage biochemical model, we apply a local
detailed analysis. We view the macrophage as a modular
system where signals from a given module co-regulate
other modules resulting in a new cellular state. Thus,
parameters governing the interaction of the three func-
tional modules are of particular interest toward under-
standing the trade-off between macrophage quiescence
and activation.
In this setting we apply mathematically controlled

comparisons (MCCs) that allow evaluation of the inter-
module parameters and their influence on model outcomes
according to a set of Criteria for Functional Effectiveness

(CFE) (Irvine, 1991). This method is analogous to a
gene knockout experiment where part or all of a specific
pathway is deleted from a system. In our case, a component
of the pathway (e.g. gene product) is not deleted but one
effect of the component on another member of the pathway
is neutralized, increased, decreased or reversed. We refer to
the interaction under study this way as a ‘‘knockout’’
parameter. The knockout system is compared to the wild-
type (control using the default parameter values in Table 1,
column 3) based on their conformity to the CFE. The CFE
used to assess changes in functional effectiveness as a
parameter varies are three well-defined criteria that have
been applied to study other inducible systems (Hlavacek
and Savageau, 1995). The first, stability, is the ability of the
system to return to steady state after a transient perturba-
tion as evaluated by the last Routh–Hurwitz criterion
(outlined in Voit, 2000, pp. 208–213; for this model given in
Table 3). Second, robustness, is insensitivity of dependent
variables and fluxes to perturbation by independent
variables and parameters; this is measured by steady state
logarithmic gains and sensitivities. Lastly, responsiveness is
the minimal time for ½NO�=½NO�0 ðx6Þ to reach a new
steady state from the quiescent steady state after a
stimulus. Induction of NO under a decisive signal is also
a requirement for a functionally effective system, but this
will be indirectly required for all parameter values tested to
meet an equivalence requirement as part of the MCC
(below) and thus need not be an explicit criterion. Each of
the six knockout parameters that we explored in local
analysis are listed in Table 2 columns 1–2.
Mathematically, stability and robustness can be deter-

mined from the system at steady state making no specific
choices for parameter values (using the dimensionalized
model). This lends generality to the results. For the
stability and robustness criteria, we were able to perform
the analysis in the most general setting, making no
assumptions on the numerical values for the parameters.
The results are often shown with default parameter values
(Table 1) substituted for simplicity of presentation. Unlike
stability and robustness, the responsiveness criterion
requires numerical simulations with specific values for
each parameter using the non-dimensional model.
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Table 2

Parameters examined in the local detailed analysis

Parametera Function Corrected parameters Constrained parameter space

g31 NF-kB transcription g32; g37; g313; a3 g31 � g37
g32 Stat1 transcription g31; g37; g313; a3 g32 � g37
g16 NO feedback to NF-kB g111; a1 g16 � g111
g26 NO feedback to Stat1 g212; a2 g26 � g212
g37 Iron control of transcription g31; g32; g313; a3 g37 � g31
h96 NO control of iron regulation h97; h99;b9 h96 � h97

aShown for each parameter is its definition, a set of other parameters in the same flux term corrected to ensure external equivalence requirements in each

case, and a constrained parameter space used for its line of equivalent gain that ensures a controlled comparison (see Methods).

Table 3

Lines of equivalent gain and the stability criterion used for local detailed analysis

Parameter(s) Line of equivalent gain

g31; g32 g37 ¼
ðp1þp2þLsðp3þp4�p5ÞÞðp7h97�p8Þ

g43g54h11h22h96Lsp7

g37 g31 ¼
�p2ðp7h97�p8ÞþLsðp6p7þð�p4þp5Þðp7h97�p8ÞÞ

g43h22ðg111h66þg16g54LsÞðp7h97�p8Þ

g16 g111 ¼
�p2ðp7h97�p8ÞþLsðp6p7�ðp3þp4�p5Þðp7h97�p8ÞÞ

g31g43h22h66ðp7h97�p8Þ

g26 g212 ¼
�p1ðp7h97�p8ÞþLsðp6p7�ðp3þp4�p5Þðp7h97�p8ÞÞ

g32g43h11h66ðp7h97�p8Þ

h96 h97 ¼
p1p8þp2p8þLsðp6p7þðp3þp4�p5Þp8Þ

ðp1þp2þLsðp3þp4�p5ÞÞp7

Stability criterion

p6p7 � ðp3 þ p4 � p5Þðh97p7 � p8Þ40

Abbreviation Value Abbreviation Value

p1 g111 g31 g43 h22 h66 p5 h11 h22 h33 h44 h66
p2 g212 g32 g43 h11 h66 p6 g37 g43 g54 h11 h22 h96
p3 g16 g31 g43 g54 h22 p7 g89 h78 � g79 h88
p4 g26 g32 g43 g54 h11 p8 ð�h78h87 þ h77h88Þh99
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As part of the MCC, we force the value of a knockout
parameter to change. To control for changes as this
parameter is varied, we require the model to maintain
equivalence with the wild-type (default parameter value)
case over the parameter range in two ways: internally and
externally (Savageau, 2001). Internal equivalence requires
that the parameters not associated with the flux containing
the knockout parameter under study remain the same.
External equivalence requires the external behavior of the
model to remain the same as the parameter under study is
varied; this then requires correction of other parameter
values in the same flux as the knockout parameter. In each
case we use iNOS induction to measure external behavior.
iNOS levels are a direct readout of gene expression,
reflecting equivalence in the macrophage gene expression
program across values of the knockout parameter.
(We could as easily use NO as the external measure of
behavior, with the process almost identical and the
conclusions unchanged.) At wild-type iNOS levels for a
given activation stimulus, we must adjust the other
parameters in the flux containing the knockout parameter
under study. Two requirements for iNOS levels must be
met: as the knockout parameter is varied, the model must
have an identical quiescent steady state ðX̂ 4Þ and identical
total logarithmic gain ðLs ¼ LðX 4;X 11Þ þ LðX 4;X 12Þ þ

LðX 4;X 17ÞÞ with respect to exogenous signals that influence
the macrophage activation state (LPS, IFN-g, and extra-
cellular iron levels). Table 2, column 3, shows which
parameters require adjustment to meet the external
equivalence requirement. The number of parameters
requiring correction in the flux determine the degrees of
freedom for the interaction of interest. The corrected
parameters are both kinetic orders and rate constants. In
the non-dimensionalized system (used for numerical
simulations) finding the equivalence for rate constants is
unnecessary because the normalized quiescent steady state
is the same for any chosen value of the parameter of
interest. Thus we only correct the kinetic orders in this
case, and find a line of equivalent gain (LEG) over the range
of the parameter under study that gives the parameter
corrections for external equivalence. Note that the compu-
tation of stability is also independent of rate constants
(Table 3, Stability criterion) leaving only the robustness
criterion requiring correction of rate constants during the
comparison.
In the examination of the robustness criterion for

various g31; g32 and g37, we also require correction of
g313 by holding LðX 4;X 13Þ constant, allowing the unbiased



ARTICLE IN PRESS
J.C.J. Ray, D.E. Kirschner / Journal of Theoretical Biology 241 (2006) 276–294 283
determination of systemic sensitivities. This correction is
not required for the other criteria: stability is independent
of g313 and the non-dimensional model is identical for
changes in this parameter because levels of precursors are
assumed not to be perturbed during the calculation of
responsiveness.

As an example of the MCC method, we outline the
procedure for g16, which represents the feedback of
nitric oxide ðX 6Þ in the KM to the activating second
messenger NF-kB ðX 1Þ in the AM (Fig. 1). We require
Ls ¼ LðX 4;X 11Þ þ LðX 4;X 12Þ þ LðX 4;X 17Þ for every g16

quantity investigated. From this relationship we find the
correction factor for parameters in the same flux term as
the knockout parameter examined, in this case g111. This
corrects g111 so that:

g111 ¼
�p2ðp7h97 � p8Þ þ Lsðp6p7 � ðp3 þ p4 � p5Þðp7h97 � p8ÞÞ

g31g43h22h66ðp7h97 � p8Þ

(Table 3). This is the LEG for the NO feedback parameter
g16, ensuring external equivalence in the model for the
MCC.

Clearly, alteration of Ls can change the slope of
the LEG, and possibly change results for very large
changes in Ls. Here we restrict Ls to approximate what is
experimentally found in mouse macrophage cell culture
(see Parameter estimation above). In principle, representa-
tion of this network in other cell types or species with much
lower or higher Ls may require adjustment of the slope of
the LEG.

We visualize three possible regions in a parameter space
with the knockout parameter of interest on the x-axis and
the parameter corrected to ensure external equivalence on
the y-axis (for example, Fig. 6B for g16Þ. Each point on the
LEG represents one set of parameters for model evaluation
according to the CFE. Note that g16 has one degree of
freedom, giving a two-dimensional parameter space. The
distance d on the LEG represents the distance between a
stable parameter value choice and the line generated from
the stability criterion, allowing the determination of
stability by d. Robustness and responsiveness of the system
represented by a given point on the LEG are determined
with the calculations or simulations specified by the
definition of the CFE above.

We have found the LEG for parameter g16 as an example
of applying MCC to one of the six interactions between the
functional modules. Certain considerations are necessary
to generalize the process to the other five knockout
parameters (Table 2). Applying MCC for the KM feedback
to Stat1 ðg26Þ follows directly from the above process.
However, an additional degree of freedom is found for the
other MCCs due to the higher number of components
regulating the processes. For instance, parameters g31; g32

and g37 each require correction of either of the other two
parameters for equivalence (Table 2), leading to a plane of
equivalent iNOS logarithmic gain in three-dimensional
parameter space. For simplicity we choose to reduce the
degrees of freedom in these cases by holding one parameter
constant and meeting the equivalent gain requirement by
correcting the other (2). The parameter held constant is
given the default wild-type value in Table 1. In this way all
of the MCCs are performed in the constrained parameter
space given in Table 2.
For each of the six parameters we evaluated using the

CFE (Table 2), we assign a score for each criterion of +
(stimulation of a process), – (inhibition of a process)
or 0 (no regulation of a given process). Then the overall
score is calculated based on the individual score for
each criterion. The overall score represents the type of
regulation that is assigned as optimally functionally effective

for a given interaction. Recall each knockout parameter
represents the regulation of a rate of production or
consumption of a molecular component of the model.
Thus the overall CFE score for a parameter predicts the
type of regulation that optimizes the overall macrophage
performance.

3. Results

Macrophages require maintenance of a quiescent state
to conserve energy and minimize host damage while
oppositely needing to be sufficiently activated under
appropriate conditions to best control or kill pathogens.
Our aim is to understand and predict necessary require-
ments for the trade-off between these macrophage states.
To this end, we have developed a mathematical model
representing the biochemical network operating within
macrophages that is based on a framework of functional
modules. Here we present results from our analyses of
the model in three parts: validation simulations, global
uncertainty and statistical sensitivity analysis, and a local
analysis of functional effectiveness based on three specified
criteria.

3.1. Conditional synergistic activation by two signals

To validate the model system, we compared the
model’s predicted steady state dose-response [NO] with
simulated LPS and IFN-g doses to data from macrophage
cell culture (Fig. 2). With only quiescent levels of
LPS-induced NF-kB stimulation even a significant increase
in IFN-g-induced Stat1 levels leads to very low NO
induction above ½NO�0. Results with increasing amounts
of LPS and IFN-g stimulation show a capacity for
synergistic induction of iNOS and resultant NO produc-
tion (Fig. 2A). This has been previously observed
in experiments using sub-saturation levels of LPS and
IFN-g measuring nitrite output of J774.1 macrophage
cell cultures (Fig. 2B). In the model, the mechanism
behind this phenomenon arises from the flux term Vþ3
(iNOS transcriptional regulation) from the interactions of
NF-kB and Stat1.
The model predicts a dual role for transcriptional

activation parameters, exhibiting either a synergistic or
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Fig. 2. (A) Steady state dose response of NO ðx6Þ in the macrophage

model for various levels of NF-kB and Stat1 induction by LPS ðx11Þ and

IFN-g ðx12Þ, respectively, shows synergistic activation by multiple

activation signals. (B) Dose response of nitrite to various concentrations

of LPS and IFN-g in J774A.1 mouse macrophages shows a similar

synergistic activation. Data are from Chauhan et al. (2004); we selected a

subset of the data that is below saturation.
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Fig. 3. Crosstalk of activation pathways induced by common feedback.

(A) The sensitivity of [NO] to alterations in Stat1 transcription effect ðg32Þ

under constant LPS activity ðx11 ¼ 100Þ shows a dependence on IFN-g
activity ðx12Þ. During activation from LPS but low IFN-g signaling, the

negative feedback by NO to Stat1 can cause it to have a non-cooperative

influence on iNOS transcriptional activation (gray shaded region). Above

a certain threshold of IFN-g-induced Stat1 activation (marked zÞ the

interaction is cooperative, or synergistic ðSðx6; g32Þ40Þ. (B) Sensitivity of

[NO] to alterations in NF-kB transcription effect ðg31Þ under constant

IFN-g activity ðx12 ¼ 100Þ shows a parallel effect. This effect in both cases

is altered under cases lacking feedback ðg26; g16 ¼ 0, respectively) or with

positive feedback ðg26; g1640, respectively) where the sensitivity measure

does not reach zero above the quiescent steady state (marked yÞ. The

dashed lines (between y and z on the x-axis) represent S for negative

feedback when a piecewise model is used to prevent suppression of the

activation module below the quiescent steady state (see text for

explanation). Values of g16 and g26 are chosen with the constraints of

lines of equivalent gain described in Methods.
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non-synergistic influence on transcriptional activation
(Fig. 3, g16; g26o0Þ. Under dosing of only one activator
(for example, LPS) low-dose levels of IFN-g (less than z in
Fig. 3B) do not allow a synergistic influence of NF-kB and
Stat1 interactions on transcription, while higher levels of
IFN-g alter the sensitivity of NO to transcriptional
activation such that the interaction of NF-kB and Stat1
is synergistic. The model mechanism causing this phenom-
enon is negative feedback on Stat1 by NO, induced from
the LPS/NF-kB-activation pathway. This feedback induces
the IFN-g/Stat1 pathway to be at or below its quiescent
steady state level.

This crosstalk is confirmed by comparing the sensitivity
Sðx6; g32Þ when varying the feedback parameter g26

(Fig. 3B). The non-synergistic activation state is abolished
in the absence of this feedback ðg26 ¼ 0Þ or when it is
positive ðg2640Þ. We thus find that negative feedback
crosstalk (that is, feedback on Stat1 under primarily LPS
signaling or feedback on NF-kB under primarily IFN-g
signaling) contributes to maintenance of a quiescent
macrophage state in the absence of multiple decisive
activation signals. The possibility of low [NO] having
a positive feedback effect for NF-kB (Connelly et al.,
2001) brings this effect into question under conditions
of partial activation with high IFN-g signaling but
low LPS signal (Fig. 3A). If the level of NO induced by
IFN-g alone is high enough to surpass this proposed
low-level positive feedback threshold then the effect can
occur (and indeed is predicted by the model). Note
that for optimal maintenance of quiescence we predict
negative feedback ðg16o0Þ for this low-level activation
(discussed below).
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3.2. Global analysis: statistical sensitivities of parameters

under different activation stimuli and exogenous iron

treatments

To determine global statistical sensitivity of chosen
model outputs with respect to changes in parameter values
from Table 1, we applied uncertainty and statistical
sensitivity analyses using LHS and PRC, respectively, with
a sampling partition of N ¼ 1000 as described in methods.
With the non-dimensionalized model form used for this
part of the analysis, references to concentrations of
components (e.g. [NO]) refer to the normalized concentra-
tion. This analysis was performed under six different
activation signaling states: LPS alone, IFN-g alone,
LPSþ IFN-g and each of the above together with
exogenous iron. We find PRCs for [NO] ðx6Þ at a time
point of t ¼ 100 h after initial stimulation, which is at (or
near) the steady state for the 1000 simulations. The results
are summarized in Figs. 4 and 5. In Fig. 4, Panel A
indicates sensitivities of [NO] to parameters on the inter-
face of the AM and KM, while Panel B indicates
sensitivities of LIP level to these parameters. In Fig. 5,
Panel A indicates PRC coefficients in the absence of
exogenous iron and Panel B indicates PRC coefficients in
the presence of exogenous iron for parameters in the IRM,
including those on the interface of the KM and IRM.

Because we performed the analysis with [NO] near the
activated steady state, we find that turnover rates ðaiÞ do
not have a significant influence on outcome variable
(NO=x6 or LIP=x7) levels. Carrying out a statistical
sensitivity analysis under pre-steady state conditions
revealed that some turnover rates have significant but
minor PRCs: gai ;xi

o� 0:25. This is almost always the case
for iNOS mRNA and protein turnover rates a3 and a4 and
in some cases NO and LIP turnover rates a6 and a7 as well.
As component levels change over time after stimulation,
the kinetic order PRCs ðggij ;xi

and ghij ;xi
Þ change in a

predictable manner: those related to the AM and KM
generally follow [NO] while those related to the IRM
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Fig. 4. Significant partial rank correlations (statistical sensitivities) of paramet

levels ðx7Þ. Each parameter is shown for three activation states (LPS, IFN-g and
zero ðp40:01Þ. Correlations marked z are significantly reduced in absolute va

marked y are not significantly different from zero when a piecewise model is

steady state during partial activation (see text for explanation). �; �� : Correlat
between x6 and x7 under both treatment and lack of treatment with exogenous

represented by each parameter is shown in Fig. 1.
generally follow [LIP]. These transient PRCs are in line
with intuition, but in this work we emphasize steady state
correlations due to our focus on distinct activation states.
Under the various stimuli, one obvious result is that

kinetic order parameters have a much stronger PRC with
[NO] when their corresponding pathway is activated than
when it is not activated. For example, g111, the kinetic
order characterizing the change of NF-kB activation levels
with LPS treatment (Fig. 4) has a high PRC under stimuli
that include LPS but not during treatment with IFN-g
alone, with or without exogenous iron. As we would
expect, most parameters involved in either the AM or KM
(Fig. 4) have stronger absolute PRCs with [NO] than those
of the IRM (Fig. 5).

3.2.1. Interactions between the activation and killing

modules

The interaction between the AM and KM is determined
by parameters representing transcriptional activation
ðg31; g32Þ and feedback by NO ðg16; g26Þ. We find the
PRCs to be primarily dependent on the activation state
with regard to LPS and IFN-g but only slightly on the level
of exogenous iron (Fig. 4). For each activation state we
assume that NF-kB and Stat1 can be regulated both up and
slightly down. If we assume that the AM cannot be
downregulated below the quiescent state (see the piecewise
model variant in Methods and Appendix) some PRCs
become non-significant (Fig. 4yÞ.
Under both model variants NO crosstalk contributes to

maintenance of quiescence. Under signaling conditions
biased strongly to one signal or the other (i.e. LPS or IFN-
g alone) we find the PRCs for the two transcriptional
activation parameters ðg31 and g32Þ to have opposite signs
(þ in one, � in the other) while the statistical sensitivity of
[NO] to KM feedback to the AM is negative. Recall that
g16; g26o0 here; thus, a positive PRC means a negative
correlation between strength of feedback and [NO] (Fig. 4).
This effect is abolished under full activation: both
transcriptional activation parameters have positive correla-
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same activation state. The interaction represented by each parameter is shown in Fig. 1.
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tions with [NO], resulting in the synergistic interaction of
the two signals in iNOS/NO production (as in Fig. 3). As
the loss of statistical sensitivity of [NO] to some parameters
in the piecewise model variant shows (Fig. 4, Panel A yÞ,
the crosstalk effect raises the threshold for decisive positive
iNOS/NO regulation without the small antagonistic effect
seen in the model variant that allows AM suppression. In
either case, the PRCs of the transcriptional activation
parameters show cooperativity in the two signaling path-
ways only under full activation signaling.

The statistical sensitivity profile of [LIP] is almost the
same as for [NO] for the AM/KM interface parameters due
to increased iron uptake under cytokine and endotoxin-
induced activation conditions, with significant differences
only in g111 and g31 (Fig. 4; compare PRCs marked � for
[NO] (Panel A) with the PRC for the same parameter and
activation state for [LIP] in Panel B). Under exogenous
iron treatment there are more parameters with significant
differences between the sensitivities of [NO] and [LIP] to
them (Fig. 4, compare both � and �� in Panel A to the PRC
with the same parameter and activation state in Panel B).
Furthermore, under exogenous iron treatment the PRC of
[LIP] with some interactions is significantly lowered
compared to no iron treatment (Fig. 4, Panel B, zÞ.

3.2.2. Interactions between the killing and iron regulation

modules

We find the statistical sensitivity of [NO] ðx6Þ to
variations in the parameters in the IRM, including those
between the KM and IRM, to be lower than those
parameters between the AM and KM (compare Fig. 5
top panels to Fig. 4, Panel A). However, exogenous iron
treatment induces a significant change in the PRCs of [NO]
for most IRM parameters (Fig. 5, Panel B, top; significance
test not shown). The exception is h96, NO-induced
regulation of the IRM, in the fully activated state.
Statistical sensitivity of [LIP] ðx7Þ to IRM parameters is

predictably much higher, and generally opposite to [NO]
sensitivities (Fig. 5, top � versus bottom). Recall that [LIP]
sensitivities to AM/KM parameters mirrored those of
[NO]. The best explanation for the reversal in PRCs to
IRM parameters between [NO] and [LIP] is that, while an
increase in NO production tends to increase iron intake
into the LIP, an increase in exogenous iron and resultant
[LIP] increase tends to inhibit iNOS transcription and
result in a lowering of [NO].
We are therefore interested in which module dominates

the immune response under high iron conditions, as
[NO] is sensitive to the IRM parameters, and [LIP] is less
sensitive to AM/KM parameters under treatment with
exogenous iron. By comparing the statistical sensitivity
of [NO] to g37 (the parameter representing the regula-
tion of iNOS transcription by the LIP), gg37;x6

, to the
statistical sensitivity of [LIP] to h96 (the parameter
representing the regulation of the IRM by NO), gh96;x7

,
we can determine which module is dominant under
different conditions. For cases without exogenous iron
(Fig. 5, Panel A, yÞ the statistical sensitivity of [LIP] to h96
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(bottom) is significantly higher than the statistical sensi-
tivity of [NO] to g37 (top) in every activation state. This
changes during elevated exogenous iron conditions (Fig. 5,
Panel B, y and zÞ, when the absolute PRC of [LIP] with h96

is either not significantly different, or slightly significantly
smaller than the absolute PRC of [NO] to g37 in partial
activation states. However, under complete activation, we
find the absolute PRC of [LIP] with h96 to be elevated,
restoring the relationship seen under no iron treatment
above.

We conclude that with complete activation, the syner-
gistic interaction of LPS and IFN-g activation pathways
overcome the KM inhibition by the IRM even in
conditions of elevated iron, leaving only incremental
differences in parameter statistical sensitivity. However,
under partial activation conditions, the statistical sensitiv-
ity of the KM to the IRM is approximately in parity with
that of the IRM to the KM.
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Table 4

Predicted parameter regions that best meet each criterion denoted by a

score of �, 0 or þ

Parameter Stability Responsiveness Robustnessa Overall score

g31 þ þ � Positive

g32 þ þ � Positive

g16 � � � Negative

g26 � � � Negative

g37 � � � Negative

h96 � � � Negative

aIn some cases for the robustness criterion, there was not a clear score

derived from gains and sensitivities (see Fig. 7); however, taken together,

the other two criteria suggest a clear overall score. See text for details.
3.3. Local analysis: Evolutionary requirements for inter-

module interactions

Each interaction coupling the functional modules may
be stimulatory or inhibitory. The types of interactions
present determine the functional effectiveness of the
macrophage and ensure that the parameter values giving
the trade-off between quiescence and strong activation in
this model are biologically plausible. For each interaction
between the functional modules (Table 2) we have
evaluated the model according to three CFE (see Meth-
ods), scoring each parameter as stimulatory (+), inhibitory
(–) or zero (0) according to the type of interaction that
meets the requirements of each criterion (Table 4). We
illustrate the evaluation of two parameters, NF-kB
transcription ðg31Þ and NO feedback to NF-kB ðg16Þ

(Figs. 6–8), according to the CFE.
As discussed in Methods, several interactions in the

model are idealized and may be stimulatory or inhibitory
depending on the predominant mechanism assumed in the
model. We consider this plausible for the interactions of
nitric oxide with other system components ðg16; g26 and
h96Þ. The transcriptional regulation parameters ðg31; g32

and g37Þ have known or postulated mechanisms of either
stimulation or inhibition, though they may differ based on
cell type (Ganster et al., 2001). Regardless, we examine
these three parameters assuming any type of interaction is
possible. This allows us to see (i) confirmation that this
model predicts the correct interaction type, (ii) how the
evolution of positive transcriptional regulation may be
favored even in a system with many possible negative side
effects (i.e. nitric oxide production), and (iii) how the
coupling of iron regulation to NO production affects
macrophage activation and iron regulation.
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Fig. 7. Scores for g31 (panel A) and g16 (panel B) that maximize robustness of each dependent flux and variable to perturbation of independent variables

Y j ¼ log X j and parameters p during quiescence. Each logarithmic gain LðX i;X jÞ or sensitivity SðX i; pÞ is minimal at the score indicated by �, 0, or þ.

White boxes containing 0 indicate a score of 0 while those with no marking indicate no scoring preference for robustness. Note that the parameter of

interest is varied on its line of equivalent gain (Table 3). See Methods for definitions of LðX i ;X jÞ and SðX i ; pÞ.
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Fig. 8. Response time of nitric oxide ðx6Þ from quiescent levels to within 5% of the steady state or above for various levels of (A) NF-kB transcriptional

regulation ðg31Þ and (B) NO feedback to NF-kB ðg16Þ. The knockout parameter of interest is varied along its line of equivalent gain (Table 3). The minimal

response time indicates a score of (A) þ and (B) �. Depending on the activation state, the profile differs slightly, but a common minimum response

parameter value is shared by all activation states in every case. In (A), two of the cases show a trivial minimal response time for g31 ¼ 0 (marked yÞ or

g31o0 (marked zÞ. These cases are irrelevant as the system represented by those parameter values is completely non-responsive to the simulated activation

stimuli. No such non-responsive state exists for treatment by IFN-g alone because of the equivalence requirements imposed on the system (Table 2).
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For each criterion, we consider the parameter under
investigation to be wild-type if it is at its baseline estimated
value (Table 1). We vary the parameter along the line of
equivalent gain (LEG) (Table 3) and determine which
parameter value score, þ, �, or 0, best fits the criterion.
3.3.1. Stability: return to steady state after a small transient

perturbation

The first criterion we explore is stability, or the ability of
a system to return to steady state after a transient
perturbation. The local stability analysis of this system is
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a function of several parameters defined by the appropriate
Routh–Hurwitz criterion (see Methods). The stability
criterion is represented graphically as dashed lines in
Fig. 6. Note that as different parameter values from
equivalent systems are chosen along the lines of equivalent
gain, the margin of stability, defined as d, correspondingly
changes. This distance is independent of the macrophage
activation state. The score for this criterion for each
parameter is given by the type of interaction giving the
largest d. Thus, for the parameter g31 (Fig. 6A) we have
dð�Þodð0ÞodðþÞ, giving a score of + for g31 in terms of
stability. Similarly, for the parameter g16 (Fig. 6B) d is
maximized for g16o0, giving a score of–(see Table 3,
Stability column for the scores of all the tested parameters).

3.3.2. Robustness: Minimal sensitivity of component levels

to perturbation

The most functionally effective macrophage is insensitive
to small perturbations, or robust. That is, in the absence of
decisive activation signals, the macrophage must stay as close
to quiescence as possible. We tested system robustness for
each parameter of interest by computing the steady state
logarithmic gains Lðxi; xjÞ and Lðvi;xjÞ of the dependent
variables x and fluxes v for each independent variable, and
the sensitivities Sðxi; pÞ and Sðvi; pÞ for each kinetic order p

(Fig. 7; see Fig. 1 for the role of each precursor/independent
variable in the model). In some situations a gain may
preferentially be large, such as the gain of [NO] in the
presence of cytokine. However, each gain calculated here is
from a single signal at a time, not the multiple-signal situation
required for complete activation as in Fig. 2. We therefore
assume that gains to individual signals are preferentially low.

For transcriptional regulation parameters g31, g32 and
g37, a clear plurality or majority of the gains and
sensitivities do not support a single score (Fig. 7A shows
the profile for g31Þ. For transcriptional activation by
second messengers ðg31 and g32Þ we find 32.12% support
+, 32.82% support 0 and 35.05% support �. Here
perturbation of AM and KM parameters predominantly
supports + and perturbation of IRM parameters supports
�. For iron regulation of transcription ðg37Þ we find
21.27% support þ, 37.37% support 0 and 41.36% support
�. In this case perturbation of AM and KM parameters
predominantly supports–while perturbation of IRM para-
meters predominantly supports 0. We do not consider one
score to be definitively supported by the robustness
criterion in these cases, and rely on the other criteria for
the overall score (Table 4).

The interactions of NO with other model components
(represented by parameters g16; g26 and h96Þ show clear
pluralities or majorities of one score over the others. In
each of the cases a negative value is most robust (48.79% of
the gains and sensitivities for g16 and g26 and 52.47% for
h96Þ. The remaining gains and sensitivities are split between
a score of 0 (31.88% for g16 and g26; 32.58% for h96Þ and þ
(19.33% for g16 and g26; 14.94% for h96Þ, leaving–as the
favored score. This is shown for g16 in Fig. 7B.
3.3.3. Responsiveness: Fast NO elevation after stimulus

A functionally effective system minimizes the time to
steady state after stimulus. We explore the response time
under which levels of NO ðx6Þ come within 5% of the
activated steady state or above (i.e. we do not penalize the
system for overshoot because the goal for killing pathogen
should be to get nitric oxide levels up to at least a certain
level or above). We examine responsiveness for each of the
three activation states with LPS/IFN-g (Fig. 8). Results
with exogenous iron treatment are similar (not shown). As
expected, each activation state shows a distinct pattern of
response times, but in every case examined, they yield the
same score (summarized in Table 4).
The dynamic and specific nature of the numerical

simulations leave open several possible situations deserving
consideration. If the system starts from a partially
activated steady state (i.e. constant stimulus from one
signal, say LPS), response times after stimulation from the
other signal (here, IFN-gÞ are the same as if the system had
started in the quiescent steady state. We have also
investigated cases with initiation of the two stimulation
signals staggered over various short intervals, before the
system has reached steady state from the first signal (not
shown). The exact profiles differ slightly but in each case
the results support the same hypothesis as for other cases.
We conclude that examination of the three activation states
shown suffice to draw conclusions regarding the respon-
siveness criterion.
It is possible to achieve a minimal response time

representing baseline [NO] that is undisturbed by the
activation signal. This is observed for g31 ðy and z in
Fig. 8A), as well as g32; g26 and g37 for reasonable
parameter ranges. We consider these ‘‘non-response’’ cases
to be trivial. Slightly different activation states can change
the exact parameter value where this phenomenon occurs.
Thus, achieving an artificial minimal response time is likely
not relevant since multiple activation signals and the
possibility of strong activation are necessary for proper
macrophage function. Parameter values less than this no-
response point in Fig. 8A represent repressible systems,
causing NO levels to decrease in response to stimulus.
Determining the response time for g16 (Fig. 8B) and h96 is
more straightforward than the previous cases as levels
of NO are induced to a steady state level above that of
the quiescent state for biologically reasonable parameter
choices.
With the above considerations in mind we conclude

that a single score emerges for each parameter examined
(Table 4). Therefore g31 (Fig. 8A) scores + for respon-
siveness and g16 scores �.

4. Discussion

The process of macrophage activation for killing of
internalized pathogens has evolved a trade-off between a
robustly quiescent state and decisive activation under a
definitive signal. Experimental study of this system in



ARTICLE IN PRESS
J.C.J. Ray, D.E. Kirschner / Journal of Theoretical Biology 241 (2006) 276–294290
mouse and human cells has characterized components of
what are apparently the most important aspects of
macrophage activation and killing. This has allowed us to
construct a mathematical model for system-level investiga-
tion, with a view toward the interaction of functional
modules that determine the outcome of activation signal-
ing. Using this model, we have shown that the configura-
tion of intermodule regulatory interactions can permit a
near-quiescent state in the presence of partial activation,
while allowing complete activation upon receipt of multiple
activation stimuli. Our model suggests that there must exist
a synergistic response to multiple signals in order to
overcome stabilizing interactions for complete macrophage
activation. The role of iron regulation in the activation of
iNOS and NO production appears to be an asymmetric
relationship: iron levels respond to activation as part of the
overall response in a pattern consistent with sequestration
of iron from extracellular space under normal iron
conditions. Mechanisms of killing become sensitive to iron
regulation parameters under exogenous iron treatment, but
this is most apparent only under partial activation
conditions; under complete activation killing mechanisms
again predominate.

Each member of an intermodule pair of regulatory
interactions (i.e. g31=g16; g32=g26 and h96=g37Þ has a
dependence on the other in the pair for the predicted
interaction score based on the CFE. Thus, as we know that
g31 is positive (shown experimentally) then g16 is predicted
to be negative by the CFE. We also find that anti-
inflammatory feedback allows and enforces a system with
positive transcriptional regulation as compared to lack of
feedback or positive feedback (Figs. 6, 7 and 8B). We
therefore see with these interactions how a system that
must remain quiescent most of the time can maintain
quiescence robustly. This reasoning applies to each of the
other pairs of interactions as well. With the KM/IRM
interactions ðh96=g37Þ the resultant pair of scores is �=�
(Table 4).

AM signaling induces anti-inflammatory feedback to
both NF-kB and Stat1 in this model. The overall effect is to
increase the functional effectiveness of the macrophage
system (Table 4) by preventing activation in the absence of
multiple activating signals. Crosstalk feedback by NO on
Stat1 increases the threshold for activation under LPS
signaling alone (Figs. 3 and 4). Crosstalk to NF-kB by
IFN-g signaling also shows this effect to a lesser extent. We
explain these results as follows: For transcriptional
activation of iNOS, activated NF-kB, Stat1 and other
transcription factors must occupy their promoter regions
for transcription initiation and resultant iNOS/NO pro-
duction. In the absence of an activating signal, the
probability of these being together on the promoter is
low. When a single activation signal is present (e.g. LPS),
the level of NF-kB increases, raising the probability of
transcription initiation. However, the slight increase of NO
and resultant negative feedback to Stat1 lowers the
probability of Stat1 presence for initiation, or possibly
keeps it at a quiescent level, due to a crosstalk anti-
inflammatory feedback effect (Fig. 3). We have shown that
this crosstalk-inhibition effect is caused by the negative
feedback of NO to the unstimulated activator (Fig. 3).
The transcriptional signals are only working in concert
under conditions in which both of the signals are
sufficiently active. When this is the case the two signals
act synergistically to induce NO production (Fig. 2). The
activation of multiple signals thus allows the macrophage
system to overcome anti-inflammatory feedback for
complete activation.
The interactions between the KM and IRM help

determine the outcome of LIP levels during activation
and the outcome of macrophage activation under iron-rich
conditions. The exact effect of macrophage activation on
LIP levels may depend on different interactions (Kim and
Ponka, 2003; Wang et al., 2005). We find that the most
functionally effective motif results in NO production
inducing the influx of iron into the LIP via IRPs (i.e.
h96o0Þ, increasing LIP levels on the path to sequestration
of iron from plasma, consistent with hypoferremia (Weiss,
2005). Note that one need not argue for a direct benefit
of hypoferremia against extracellular pathogens for this
interaction to be functionally effective.
This result shows an indirect negative feedback to iNOS/

NO production via the IRM during activation. Under iron-
rich conditions this result implies a direct signaling effect of
iron influx on iNOS transcription, leading us to question
which functional module is dominant. Under a definitive
activation signal, the macrophage must show high induc-
tion of iNOS and NO in the KM, but this could be
inhibited, with potentially impairing results on the immune
response, under conditions of high iron in the IRM. We
have addressed this with global statistical analysis, which
shows a generally higher statistical sensitivity of [LIP] to
AM and KM parameters than [NO] shows to IRM
parameters under lower level iron conditions. Under
iron-rich conditions these statistical sensitivities are
brought into near-parity under partial activation condi-
tions (comparing the sensitivity of [NO] to g37 to the
sensitivity of [LIP] to h96; Fig. 5), but become asymmetric
again under complete activation. Thus exogenous iron
appears to play an incremental role in suppressing
macrophage activation, particularly important under
partial activation conditions. However, this can be over-
come so that activation of the KM predominates under
complete activation conditions. While the effect of [LIP] on
NO production is clear (Weiss et al., 1994; Dlaska and
Weiss, 1999; Harhaji et al., 2004), the possible role of this
interaction in exacerbating disease processes deserves more
study; this model suggests a role for iron in suppressing NO
expression by macrophages that depends on the macro-
phage activation state. This implies that mechanisms
required for robust macrophage responses may also worsen
response to infection under pathological iron conditions.
Since macrophage activation involves many mechanisms

beyond cytokine and endotoxin-induced nitric oxide
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production, the scope and applicability of our current work
is an important part of thinking about the system.
Depending on the mix of cytokines present, macrophages
may become activated in a classical or alternative manner
(e.g. Gordon, 2003). We have included a subset of
mechanisms for classical activation here. Our focus is on
quantitative regulation of the model’s components; spatial
considerations, especially mechanisms of phagocytosis,
comprise an important facet of macrophage function
that may alter the capability of nitric oxide to access
internalized pathogen (e.g. Myers et al., 2003; Miller
et al., 2004). Finally, de-activation is a naturally important
step in the cycle of macrophage immunological function
(reviewed in Gordon, 2003) that has its own set of
regulatory apparatus beyond the scope of this model,
which is concerned with the process of moving from a
quiescent state to activation.

We propose several possible avenues of extension based
on our results for the mechanisms of macrophage function
presented here. We note first the importance of nitric oxide
signaling to transcription factors that regulate iNOS
transcription. This may be examined in macrophage
culture by detection of nitrosylation crosstalk between
signaling pathways. For instance, detecting nitrosylation
of Stat1 and other IFN-g-inducible signals under LPS
stimulation (and of NF-kB and other LPS-inducible signals
under IFN-g stimulation) may further elucidate the roll of
NO in activation. Further, the effect of the NO feedback
effect may be assessed with consideration for more
complex AM interactions not captured here, such as
transcriptionally controlled feedback mechanisms. The
usefulness of this model may be extended by studying
macrophage interactions with a growing population of
intracellular bacteria, particularly the superoxide-resistant
Mycobacterium tuberculosis. Implementation of this exten-
sion into the model allows another criterion for macro-
phage functional effectiveness, namely clearance of
bacteria (manuscript in preparation).

Our results show the usefulness of approaching ques-
tions regarding the immune response with a view toward
the integrated function of the system. We propose that
known mechanisms for macrophage activation allow
contradictory demands of different contexts to be met
with a strong activation signal only in the presence of
synergistic activation of multiple signals stabilized by anti-
inflammatory feedback from a common output of the
signaling cascade. With this in mind other immune
signaling cascades may show similar topology and beha-
vior, explaining in part the evolutionary need for multiple
signals and complex cytokine networks to overcome
robustness to perturbations.
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Appendix A

A.1. Model equations

We represent the macrophage network S-system shown
in Fig. 1 as a series of differential equations:

dX 1

dt
¼ a1X

g111
11 X

g16
6 � b1X

h11
1 ,

dX 2

dt
¼ a2X

g212
12 X

g26
6 � b2X

h22
2 ,

dX 3

dt
¼ a3X

g313
13 X

g31
1 X

g32
2 X

g37
7 � b3X

h33
3 ,

dX 4

dt
¼ a4X

g414
14 X

g43
3 � b4X

h44
4 ,

dX 5

dt
¼ a5X

g515
15 X

g54
4 � b5X

h54
4 X

h55
5 ,

dX 6

dt
¼ b5X

h54
4 X

h55
5 � b6X

h66
6 ,

dX 7

dt
¼ a7X

g717
17 X

g79
9 � b7X

h77
7 X

h78
8 ,

dX 8

dt
¼ a8X

g814
14 X

g89
9 � b8X

h87
7 X

h88
8 ,

dX 9

dt
¼ a9X

g914
14 � b9X

h96
6 X

h97
7 X

h99
9 .

In practice we reduce the number of parameters with
basic assumptions about the kinetics as well as non-
dimensionalization (see Parameter estimation below). This
makes numerical simulations possible and gives the
following system:

dx1

dt
¼ a1ðx

g111
11 x

g16
6 � x1Þ,

dx2

dt
¼ a2ðx

g212
12 x

g26
6 � x2Þ,

dx3

dt
¼ a3ðx

g31
1 x

g32
2 x

g37
7 � x3Þ,

dx4

dt
¼ a4ðx3 � x4Þ,

dx5

dt
¼ a5ðx4 � x4x5Þ,

dx6

dt
¼ a6ðx4x5 � x6Þ,

dx7

dt
¼ a7ðx17x

g79
9 � x7x8Þ,



ARTICLE IN PRESS
J.C.J. Ray, D.E. Kirschner / Journal of Theoretical Biology 241 (2006) 276–294292
dx8

dt
¼ a8ðx

g89
9 � x7x8Þ,

dx9

dt
¼ a9ð1� x

h96
6 x

h97
7 x

h99
9 Þ.

A.2. Alternate representation of activation module

Under partial activation conditions the model predicts
one of the transcription factors to be below the quiescent
steady state. To address differences between this model and
a model where this is not possible we represent the fluxes vþ1
and vþ2 in a piecewise manner (Savageau, 2002) in some
instances:

vþ1p ¼
a1x

g111
11 x

g16
6 ; x

g111
11 x

g16
6 X1;

a1; x
g111
11 x

g16
6 o1

(

vþ2p ¼
a2x

g212
12 x

g26
6 ; x

g212
12 x

g26
6 X1;

a2; x
g212
12 x

g26
6 o1:

(

We avoided the need for identifying an upper limit by
simulating LPS and IFN-g doses low enough to be below
signal saturation.

A.3. Parameter estimation

A.3.1. Rate constants

We have estimated the turnover rates ai for Eqs. (1)–(4)
and (6) from half life data (Nelson et al., 2002; Andrews
et al., 2002; Brown et al., 1997; Weiss et al., 1994; Llovera
et al., 2001; Ying et al., 2001; Kosaka and Shiga, 1996,
respectively).

a5 ¼ b6 ðX 6 0=X 5 0Þ ¼ a6 ðX 6 0=X 5 0Þ at some operating
point. Estimation of the NO:NHA ratio is difficult because
actual NO levels are rarely measured in experiments.
However, at most levels there is more nitrite than NHA,
suggesting that there is more NO than NHA (Buga et al.,
1996; Meyer et al., 1997). We assume this ratio to be 2,
giving a5 ¼ 2 a6.

a7 ¼ b7 X 8 0. In erythrocytes the turnover half-life of
the LIP is about 1 h (Breuer et al., 1995). Estimates for
ferritin mass in macrophages range from 3:55� 10�4 to
8:5� 10�3 ng/cell (Mateos et al., 1998; Wesselius et al.,
1999; Smith et al., 2003). Given an approximate macro-
phage cell volume of 4990mm3 (Krombach et al., 1997) and
average apoferritin subunit size of 19.1 kDa (Harrison and
Arosio, 1996) we estimate X 8 0 2 ½3:7� 10�6; 8:5� 10�5� M,
giving a7 2 ½2:58; 61:8�mmol=h. We take the mean as the
default value. This overestimates the levels of apoferritin,
because the variable X 8 is for unbound only. It also
underestimates it, because it counts molarity of subunits,
not molarity of binding capacity. Nevertheless the sensi-
tivity analysis shows that this will suffice for our analysis.

a8 ¼ b8 X 7 0. Assuming an approximately 2-h half life of
ferritin (Kim and Ponka, 2002) and 1mM LIP level
(Kakhlon and Cabantchik, 2002) gives an estimate of
40mmol=h. The LIP level is probably an overestimate but
we sufficiently vary the parameter during the uncertainty
analysis to account for this.

a9 ¼ a9=X 9 0. Assuming a 1.8 h half-saturation time
for IRP2 during return to steady state after depletion
(Kim and Ponka, 2002), and total IRP2 levels in the cell of
0.00874–0:0132mm (derived from IRP1 numbers (Hentze
and Kuhn, 1996) and estimated IRP1/IRP2 ratios (Re-
calcati et al., 1999)) we estimate a9 2 ½29:2; 44:1�h

�1 mm�1.
We take the mean 36.7 as the default value.

A.3.2. Kinetic orders

General methods for estimation of kinetic orders are
found in Voit (2000). Several kinetic order parameters
correspond to simple first order processes. When this
occurs, the kinetic order is 1. This has been shown
experimentally for the following parameters: h11

(Nelson et al., 2002), h22 (Haspel and Darnell, 1999), h33

(Brown et al., 1997), h44 (Salimuddin et al., 1999), h66

(Thomas et al., 2001) (see below) and h99 (Kim et al., 2004).
The process of translation is 1-to-1 from mRNA to protein
subunit so g43 ¼ 1. The kinetic orders of iNOS substrate
catalysis ðg54 and h54Þ are 1 because of the proportionality
of iNOS to NO production (Marletta et al., 1988).
We set h55 ¼ 1, accurate for low levels of NHA. Under

high activation conditions, this parameter may be lower
(e.g. 0.5 near the Km ¼ 15 mM (Ghosh et al., 1995)).
However, this only affects the steady state of NHA, not
any other model components. This would require greater
consideration if we were concerned with NHA regulation
of arginase (Boucher et al., 1994), but for the aims of this
study it suffices to set h55 ¼ 1.
The kinetic order of NO loss in the intact cellular system

h66 ¼ 1 in hepatocytes (Thomas et al., 2001); the second-
order loss often observed in reaction with O2 is predomi-
nant in cell-free systems or extracellular space (e.g. Lewis
and Deen, 1994), not relevant here.
Parameters g31, g32, and g37 represent transcriptional

regulation of the iNOS gene. Based on (McKinney et al.
(1998)) we estimate g31 ¼ 1:19 and g32 ¼ 0:47 using linear
regression of sub-saturation dose response of NO�2 to LPS
and IFN-g. g37 can be estimated to a certain extent by a
study showing a 50% decrease in macrophage iNOS
mRNA with approximately a 50-fold increase in iron
(Weiss et al., 1994) (assuming a 1mM LIP steady state
(Kakhlon and Cabantchik, 2002); the estimate does not
change significantly even for a substantially lower LIP
steady state). Assuming that mRNA stability and other
significant components are not altered by the change in
iron levels, g37 ¼

log 0:5
log 50
� �0:177.

The parameters h77; h78; h87; and h88 represent the
relationship between iron and ferritin and metabolic
consumption of the LIP. As discussed in Methods, we
represent the ferritin binding capacity instead of the raw
number of subunits or complexes. Then one mole of iron
takes one mole of ferritin binding capacity and the
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parameters of this process ðh78; h87; and h88Þ equal 1. Since
X 8 (apoferritin) is an intermediate, its loss due to
degradation is negligible. h77 represents the weighted
average of kinetic orders for loss due to metabolic
consumption and chelation by apoferritin. In aggregate,
the loss is first order so h77 ¼ 1 (Breuer et al., 1995).

The parameter g89 represents the influence of IRP ðX 9Þ

on ferritin ðX 8Þ translation. When IRP2 levels are
decreased by the addition of NOþ, ferritin levels increase
linearly over time (Kim and Ponka, 2002). Assuming this
assay detected all forms of ferritin, g89 � �0:645:

We set all kinetic orders of independent variables to 1.
This has no effect on the model in most cases because the
levels of independent variables are arbitrary and usually
non-rate limiting. During the course of analysis we choose
a value other than 1 for g111 and g212 for controlled
comparisons in some cases (see Local detailed analysis in
methods).

The remaining unestimated parameters, h96; h97; g79; g16

and g26, represent regulatory interactions for which there
exist no quantitative data to our knowledge that would
allow us to estimate them. In the default case they are �0:5,
equivalent to a Michaelis–Menten process working at the
operating point (Voit, 2000).
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