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Mathematical modeling 
 
Surgical research embraces many disciplines ranging from molecular 
biology to human physiology. Irrespective of the physical scale that 
characterizes a particular project, most surgical investigators will confront 
some significant aspect of their research which will benefit from—if not 
explicitly require--mathematical modeling. In this chapter, we explore 
fundamental aspects of mathematical modeling to address three questions. 
Why is mathematical modeling an essential surgical research tool? What is 
(and what is not) a mathematical model?  How is a mathematical model 
designed and used?  Answers to these questions constitute an introduction to 
mathematical biology and serve to illuminate an interface between that 
discipline and surgical research.  
 
An important point is that surgeons subconsciously employ models every 
time a constellation of symptoms is recognized as diagnostic and specific 
care is delivered. Surgeons extrapolate their accumulated experience to more 
and more general situations. Such extrapolation to more general situations 
and to behaviors over time is an hypothesis in its own right, an hypothesis 
that surgeons routinely verify (and modify) in daily care. Thus testing the 
extrapolation hypothesis -- "does this particular patient fit the model I use to 
describe a particular disease process?" -- is clinically routine.  Models are 
merely collections of hypotheses regarding the mechanisms and magnitudes 
of processes that influence the system under study. This chapter illustrates 
the way in which mathematics can be used as a language for surgically 
useful modelling. 
 
Why model? 
 
A formal answer to the "Why model?" question is “to encapsulate 
knowledge regarding a complicated problem into a simplified 
representation.” In a familiar example, we surgeons find it much easier to 
follow the description of a new operation if medical illustrations are 
provided instead of intraoperative photographs. The medical illustration 
extracts the critical tissue relationships and allows us to focus on the relevant 
manipulations. A medical illustration is an excellent example of a static 
model.  
 
Static Models 
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Common folklore suggests that the young surgeon initially displays 
technical skills by “building model airplanes”. Demonstrations of dexterity 
aside, creation of such scaled physical models provide for examination of 
spatial organization and relationships that are not otherwise discernable. For 
example, the passenger in seat 15-C of a Boeing 737 is unlikely to 
appreciate that the length and wingspan of her conveyance are nearly 
identical; moreover, this similarity is echoed throughout the Boeing line. 
This systematic examination of physical models can lead to knowledge 
abstraction: “Boeing builds square airplanes.” 
 
Abstracted knowledge about an object that can be embedded into a static 
model is frequently used in bedside surgical care. For example, water in the 
adult human is commonly modeled to occupy two compartments, an 
intracellular space and an extracellular space, where the extracellular space 
itself consists of two compartments, an interstitial space and an intravascular 
space. Clinical estimates of the magnitudes of fluid and electrolyte deficits 
rely on such a static model.  
 
Dynamic Models 
 
The passenger in 15-C is likely less concerned with dimension than with a 
safe and swift journey. The journey depends on engineering, and the 
passenger in 15-C is reassured that a professional team has designed systems 
and subsystems to reliably interact in highly specific and predictable ways. 
The key phrase is “designed…to interact”. 
 
Biomedical engineering excepted, the surgical investigator does not 
participate in the design of the object under study. In most surgical research 
projects, the goal is to elucidate the design. The key tool is controlled 
perturbation of the study object followed by sequential measurement of 
object parameters. From the measurements—whether the data describe gene 
expression, bulk flow of blood through the heart, or spread of a particular 
bacterium through an intensive care unit—surgical investigators make 
inferences about the relevance of a particular process. The inferences 
become hypotheses that are experimentally probed, most often by comparing 
objects that differ in a single feature: the knockout mouse versus its parent; 
flow at a hematocrit of 20 versus a hematocrit of 40; use of water-based 
handwashing versus alcohol foam degerming. 
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Data accumulate much faster than knowledge. The classical, reductionist 
approach to scientific inquiry requires a full factorial experimental design 
such that each relevant process ought to be tested across the full range of 
expected performance in order to understand the effect of that individual 
process upon the whole experimental system . Organ physiologists a 
generation ago often performed such systematic studies. Their detailed 
experiments became the basis for clinically essential models such as cardiac 
performance as a function of preload, afterload and contractility. Such 
experiments on the microscale of cells and molecules and on the macroscale 
of large populations are difficult to design and even more difficult to 
perform. The usual approach is that a relatively few observations made 
under arbitrary but strictly controlled conditions in which the object under 
study has been intentionally “isolated from confounding influences” are 
extrapolated to more general, analytically more complicated situations. The 
potential for error is obvious, the realization all too frequent.  
 
The Hidden Hypothesis  
 
The passenger in 15-C is flying in an airplane whose behavior over time was 
predicted on the basis of an explicit design. The surgical investigator pursues 
the “inverse problem”. The design of the object under study is to be 
extracted from its behavior over time subject to a host of noisome 
experimental constraints. We have already alluded to the limit of the number 
of data that may be collected. Biologic objects also limit the types of data 
that can be collected. The precision of the data obtained from biological 
objects is typically less than that obtained from physical objects. And so on.  
The extrapolation to the more general situation and to behaviors over time is 
an hypothesis in its own right, an hypothesis that is subject to verification by 
experiment. Testing this “extrapolation hypothesis” drives modeling such 
that behaviors are predicted and then experimentally tested. As stated in the 
introductory paragraphs, models themselves are merely collections of 
hypotheses regarding the mechanisms and magnitudes of processes that 
influence the object under study. 1 
 
 
What is (and what is not) a mathematical model?  
                                                                 
1 As a collection of hypotheses which itself is an hypothesis, mo dels can never be proven “correct”. Their 

greatest investigational value lies in illuminating what is “missing” or “wrong”.  
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A mathematical model is a tool with that an investigator encapsulates 
hypotheses concerning the mechanisms and relationships that underlie the 
behavior of a system over time. Equations are used to describe the 
relationships. It is important that surgeons understand that once the 
relationships are described as mathematical equations, solutions to those 
equations are often readily obtained by desktop computers. 
 
Mathematical models are ubiquitous in surgical care. Some are expressed as 
informal "rules", such as the "three-for-one rule" (which states that three 
volumes of a balanced salt infusion are required to compensate for each 
volume of acute blood loss). The 3:1 rule originates from experiments 
showing that water and small ions readily equilibrate across blood vessel 
walls into the interstitial compartment, and a model that envisions the 
interstitial compartment to be twice as large as the intravascular 
compartment.  
 
Other mathematical models are more formal, such as the pharmacokinetic 
models that guide administration of aminoglycoside antibiotics. The 
nomograms that surgical residents use to make dose adjustments are simply 
graphic representations of models of the aqueous compartments and the 
predicted clearance rate of the drug. Each patient is viewed as an individual 
experiment, with the model offering continuous predictions about plasma 
concentrations. Measuring the patient's plasma level of the drug at a 
particular time is a test of the model, not of the patient. An accurate 
prediction merely indicated that the dose may be left unchanged. An 
inaccurate prediction does something more--it not only indicates to the 
surgeon that the dose must be changed but also suggests that the model 
contains relations that are inaccurate or incomplete. Indeed, unexpectedly 
high levels may suggest that there is incipient renal insufficiency whereas 
unexpectedly low levels may suggest that the patient has a larger-than-
normal volume of distribution.   
 
However useful they may be, memorable "rules" and nomograms are no 
more than representations of someone else's model. The surgical investigator 
must ultimately venture into building his own model if he is to make and test 
hypotheses concerning the design of the object being studied. He must 
ultimately propose relationships that govern the measurable parameters, 
make predictions, perturb the object, and observe the fidelity with which his 
model describes the behavior of his system. Simply stating the anticipated 
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change in a parameter ("I predict drug D will cause parameter P to 
decrease") is not a model. It may well be an event predicted by a model, but 
the prediction is not the model.  
 
 
Model Building: An Example 
 
To illustrate one way that modeling illuminates a problem to focus attention 
on particular aspects of that problem, consider this familiar and vexing 
scenario. 
 
Review during rounds of a postoperative patient shows two abnormalities. 
First, the urine output is decreasing. Second, the serum creatinine 
concentration is rising. The patient has received appropriate volumes of 
fluid. The inescapable conclusion is that the patient has acute renal 
insufficiency. The apparent cause of the kidney failure is identified and 
reversed. The next day, the serum creatinine level has climbed again. Has 
the true cause of the renal insufficiency been identified? Why has the serum 
creatinine level risen? Is there another cause for the problem? When will the 
creatinine concentration peak and begin returning towards normal? These 
gnawing questions have cost every surgeon anxious moments.  
 
To apply mathematical modeling to this (or any other) problem, the universe 
of the problem must be explicitly defined along with the hypothesized 
relationships among the components of the experimental system.  In the case 
of the patient with renal insufficiency, it is enough to define the universe to 
include a source of creatinine (muscle breakdown), a reservoir in which the 
creatinine is accumulated ( in total body water), and sinks into which the 
creatinine flows (urine).  
 

total creatinine in
total body water

muscle breakdown

~

tubular secretion

glomerular filtration
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This graphic representation encapsulates not only the universe but also the 
relationships represented in  what will become a "conservation of 
mass"relationship. The graphic emphasizes that we are not particularly 
interested in the exact source of the creatinine, only that the source continues 
to pour creatinine into the reservoir by the process of myolysis. The graphic 
also recognizes that the kidney has two distinct mechanisms by which it 
removes creatinine from plasma (and, by extension, from total body water): 
filtration by the glomerulus and secretion into the renal tubule. Although 
both mechanisms deliver creatinine into the urine, we can and will treat them 
as distinct processes. The conservation of mass relationship can be "read" as 
follows.  

"The rate of change in the total amount of creatinine (where the total 
amount is equal to the concentration of creatinine  multiplied by the 
volume in which the creatinine is distributed) must equal the 
difference in the rates at which creatinine is being delivered and 
creatinine is being disposed. Creatinine is delivered by a single 
process (muscle breakdown). Creatinine is disposed by two processes, 
tubular secretion and glomerular filtration. The rate of glomerular 
filtration depends on the local creatinine concentration." 
 

A conservation of mass equation containing these relationships might read:  
 

])[(
)]([

CrgSR
dt

VCrd Cr &&& +−=
∗

      (1) 

 
where [Cr] is the concentration of creatinine in body water, VCr is the 
volume of that body water, R&  is the rate of creatinine released by muscle 
breakdown, S&  is the rate at which creatinine is secreted by the renal tubules, 
and g& is the glomerular filtration rate. The instantaneous rate of change is 
denoted by the derivative, d/dt. 
 
Two data series are immediately available to the clinician at the bedside. 
One is the series of concentrations of creatinine [Cr]. Surgeons mentally 
calculate ∆[Cr] as the data are being examined ("The creatinine went up 1 
mg/dl since yesterday!") The other series, typically ignored on patient 
rounds, is the series of time intervals (∆t) at which the [Cr] determinations 

Figure 1. Schematic representation of production and elimination of creatinine. Tubular secretion and 
glomerular filtration are independent processes which occur in the kidneys and deliver creatinine into 
the urine.  
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were made. What (if anything) can be inferred from relationships between 
the incremental change in creatinine, ∆[Cr]/∆t and the average value of [Cr] 
during the change? 
 
The following simple expansion comes from elementary calculus. If m and n 
are both functions of the variable t, then  
 

 
Rearrangement of terms in equation (1) yields 
 

 
Inspection shows that so long as VCr, R& and S& are constant, the slope of a 
d[Cr]/dt vs. [Cr] plot will be a linear function of g& . 2 In other words, the 
slope of the d[Cr]/dt vs. [Cr] plot--which some refer to as a phase plot or 
phase portrait--represents the glomerular filtration rate as long as the volume 
of distribution is more or less constant.  
 
Few of us—surgeons or mathematicians—have the intuition or experience to 
relate clinical data to this rather unfriendly-looking equation. Fortunately, 
neither are necessary. Desktop microcomputers with appropriate modeling 
software substitute nicely. The next several sections illustrate how equation 
(2) might be analyzed using a couple of popular modeling software 
packages. 
 
 
 
 

                                                                 
2 Mathematically inclined readers may wish to examine this equation in several special cases. First, if  
coefficients are constant then an analytic solution is possible. In this case, ∆[Cr]/∆t can be calculated 
precisely, and the difference between the measurable and the infinitessimal d[Cr]/dt can be estimated. 
Second, behaviors during an acute change in g (step, ramp and so on) display characteristic plots of 
d[Cr]/dt vs. [Cr].  Third, and perhaps most important, the effect of sequential acute changes in g (two steps) 
give characteristic behaviors in the plot.  
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STELLA 
 
STELLA (High Performance Systems, Hanover NH) is the most intuitive 
modeling system used in surgical laboratories. The simple, graphical 
approach to defining relationships among elements in the modeling universe 
and carefully selected defaults invites even the novice to begin modeling 
within the first hour working with this package. Indeed, STELLA is used in 
secondary schools and college courses to introduce scientists and 
nonscientists to systems thinking.  
 
The STELLA workspace is deceptively simple. It is never necessary to 
actually write an equation. Rather, the equations are "written" as the modeler  
defines flows among the elements of the model system. The specifications 
can take many forms including equations, numerical arrays and even hand-
drawn curves. To set up the clinical problem in STELLA, we used this 
model 
 

Total Creatinine

muscle breakdown

~

tubular secretion

glomerular filtration

Measured Creatinine

Volume of Creatinine Distribution
Measured Creatinine

~

Glomerular Filtration Rate  
 
 
 
 
 

Figure 2. STELLA model of creatinine production and elimination. See text for further details. 



Mathematical Modeling   Page 10                                                                                 

 
The core of the picture is identical to Figure 1. Several variables have been 
added to the model so that flows can be more precisely specified. For 
example, glomerular filtration is the product of the glomerular filtration rate 
and the concentration of creatinine (“measured creatinine”) in the plasma. 
This “measured creatinine” is the ratio of the total creatinine to the total 
volume of creatinine distribution. The process of tubular secretion is  known 
to be both saturable by and dependent on the concentration of creatinine, so 
a “ghost” of the measured creatinine is inserted to influence the tubular 
secretion process.  
 
Exploration of the model requires rational selection of starting parameter 
values. Knowledge of "starting" values comes from clinical experience or 
direct experimental measurement. We chose to begin with an archetypal 70 
kg patient, a young man with normal renal function. We suggested that with 
a normal diet, exercise and muscle mass, he would deliver 1.6 gm (1600 mg) 
to the circulation each 24 hour day. About 60% of his body mass is water, so 
that the initial volume of distribution of this small molecule is about 42 liters 
(420 deciliters or dl ). Since a normal creatinine concentration is about 1.0 
mg/dl, we set the total creatinine to 420 mg. We set his initial glomerular 
filtration rate at 80 ml/min (1150 dl/day). We set his initial secretion rate at 
150 mg/day. All of these values are normals retrievable from phsiology and 
medical textbooks. 
 
 Table 1. Model Parameters 
Parameter Initial Value Comment 
Body Mass 70 kg archetype 
Total Body Water 42 L = 420 dL 60% body mass; may 

wish to change to a 
variable in next 
iteration of the model 

Total Body Creatinine 420 mg 1 mg/dl distributed in 
420 dl 

Creatinine Production 
Rate 

1600 mg/day typical for young male, 
normal diet 

Glomerular Filtration 
Rate 

80 ml/min = 1150 
dl/day 

Low-normal value 

Creatinine Secretion 
Rate 

150 mg day Low-normal value 
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Second, we check to make sure that these normal values yield a stable 
profile over time. By definition, normal physiologic values should represent 
an equilibrium point. 
 

 
 
 
 
 
 
 
Since the creatinine is stable, a phase plot of its first derivative versus the 
creatinine concentration is just a point. 
 

Figure 3 . Time plot of stable renal function. The red line shows a stable creatine 
concentration. The blue line shows a stable glomerular filtration. The purple line shows a 
stable tubular secretion. The scale shows that tubular secretion normally represents <20% 
of total creatinine clearance. 
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d[Cr]/dt

[Cr]  
 
 
 
 
Consider the same patient with two modifications. First, the glomerular 
filtration rate changes with time 
 
 

 
 
 
 
 
Second, the tubular secretion is a saturable process. 
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Figure  4 . The phase plot of the first derivative versus creatinine concentration is a single point. 
This is not only stable over time (d[Cr]/dt is zero) but also this is a true equilibrium point for this 
system. In a perfectly compensated physiologic system, creatinine does not change. 

Figure 5.  In this scenario, the patient receives a nephrotoxic drug for several days, after which the 
toxicity is recognized and the drug removed. Kidney function recovers spontaneously. Numbers on 
curve refer to regions of curve that will be inferred from Figure 8. 

2 3 

4 51 
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In this setting, the dynamics of creatinine concentration, glomerular filtration 
and tubular secretion change markedly over time. 
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Figure 6 . Tubular secretion can partially compensate for the loss of glomerular 
filtration. The secretion process is here modeled as a saturable process, reaching 
saturation at about 3 mg/dl.  
 

Figure 7. The temporal dynamics of renal failure and recovery. Compare the patterns of measured creatinine 
(red) glomerular filtration (blue) and tubular secretion (purple) at different times. Clinically, we measure line 1, 
creatinine. What we --and our patients!--are interested in, however, is line 2, glomerular filtration.  The 
problem is that line 2 bears no obvious relation to line 1 except that both eventually reach a steady state. How 
can data from line 1 be used to infer information about line 2? Examine Lines 1 and 2 carefully. Note that 
Line 2 is total glomerular filtration of creatinine, not glomerular filtration rate. Note the relationships 
among the slopes of the two lines at each point in time. 
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Plotting measured creatinine, [Cr], against its first derivative d[Cr]/dt, a 
useful dynamic is seen. 
 
 

0.00 3.00 6.00
-15.00

0.00

15.00

1: Measured Creatinine v. Delta C\Delta T
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With normal
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filtration
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Total glomerular
filtration
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even while
creatinine is
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Peak
[Cr]

5/1

2

3

4

 
 
 
 
 
 
 
This plot provides useful insight to the clinician. Given a "step change" (i.e. 
instantaneous) decrement in glomerular filtration rate followed by a 
spontaneous (and equally instantaneous) increment back to the GFR 
baseline, a dynamic plot of daily measurements of [Cr] versus time produces 
exponential curves. However, a dynamic plot of ∆[Cr]/∆t versus [Cr] 
provides direct insight not only into changing glomerular filtration but also 
into the likely peak value of [Cr] (as a zero-crossing). This result is easily 
tested against clinical data. 
 
Clinically, one readily obtains ∆[Cr]/∆t and, of course, an average [Cr] value 
bracketing ∆[Cr]/∆t. The “dynamic plot” will not be a continuous loop but 

Figure 8 . The plot of d[Cr]/dt vs. [Cr] is a loop, returning to the baseline value of [Cr] with no change 
(a return to stable function). Inflections signal change in glomerular filtration performance. Compare 
with the previous figure and with figure 5. 

d[Cr]/dt 

[Cr] 
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rather a collection of points. With sufficiently frequent creatinine 
determinations, the inflection at position 2 (in figures 5 and 8) can be 
discerned. It is an interesting exercise to specify various insults to the kidney 
(i.e. GFR manipulations) in the STELLA model (available at the textbook 
website) and observe the change in shape of the phase plot. 
 
 
MATLAB/Simulink  
 
MATLAB/Simulink is functionally similar to STELLA. 
 
MATLAB (The MathWorks, Natick, MA) is an integrated technical 
computing environment that combines numeric computation, advanced 
graphics and visualization, and a high-level programming language. It is a 
widely-extensible system that can be used for diverse laboratory computing 
tasks including (but not limited to) signal acquisition, processing and 
analysis; experiment control; and modeling. At MATLAB's core is a robust, 
programmable computation engine. MATLAB's architecture promotes the 
use of  tools that sit "on top" of MATLAB. One of these tools, Simulink, 
facilitates modeling, simulating, and analyzing dynamic systems.  
 
A "conservation of mass" model analogous to that presented in Figure 2 
looks like this when constructed in Simulink. 
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The elements of the Simulink model do not precisely correspond to the the 
elements of the STELLA model although they are functionally similar. The 
reason for the absence of 1:1 correspondence is that Simulink is much more 
than a modeling environment. Options for data management and flow are 
more extensive and additional specifications are required.  
 

Figure 9. Simulink/MATLAB conservation-of- creatinine mass model for renal function. Compare 
with Figure 2.  
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The Simulink/MATLAB combination is highly recommended for surgeons 
and investigators who have some prior knowledge of the mathematics 
behind the modeling (e.g. ordinary differential equations, dynamic systems 
theory) and will take advantage of the powerful matrix approach embedded 
in MATLAB. The MATLAB environment is ideally suited for such 
problems as finite element modeling in which complex interactions among 
dozens of elements must be accounted for in each processing step. 
 
Other Graphical Representations: Madonna 
 
Although run-time and demonstration versions of STELLA and 
Simulink/MATLAB that run existing models are available at no cost, 
authoring versions of these programs that permit creation of new models 
may cost hundreds of dollars. An inexpensive but powerful alternative is 
Berkeley Madonna (Berkeley, CA). Madonna, that was originally designed 
as an engine to accelerate processing in STELLA, numerically solves 
ordinary differential equations. The latest release includes a simple graphic 
authoring interface that is less sophisticated but similar to STELLA. 
STELLA code can be executed in Madonna at quite breathtaking speeds, a 
feature that can be useful in complex STELLA models.  A shareware 
download version of Madonna is available for user testing. 
 
Computing Tools: Maple and Mathematica 
 
Investigators who are fluent in differential equations are likely familiar with 
Maple (Waterloo Maple, Waterloo, Ontario, CANADA) and Mathematica 
(Wolfram Research, Champaign, IL), two advanced numerics packages that 
include powerful solvers. The absence of a graphical interface to modeling 
(which is a symbol-based method of writing the relevant equations) is offset 
by highly efficient computation. Investigators working at academic research 
universities may be able to obtain extremely inexpensive licenses for these 
packages through their libraries or information systems groups. However, 
effective use of these tools requires at least some background in modeling 
and a level of comfort with the relevant mathematics. 
 
Purpose-Built Modeling Environments 
 
Often the fastest way to develop a model is to adapt a model that has been 
previously developed by another investigator for a related application. 
Models are published in books, in journals and, increasingly, on the internet. 
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A particularly useful resource is the Society for Mathematical Biology that is 
an affiliation of scientists and mathematicians who model (and publish their 
models in the Society's journal, Bulletin of Mathematical Biology). Some 
models (see, for example, this general model of cardiac flow) are written in a 
general purpose modeling environment (STELLA).  
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AV NODE 2PACEMAKER

PACEMAKER 2

RIGHT ATRIUM RIGHT
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Some models are sufficiently complex that they are purpose-built to create a 
unique environment. For example, mathematical models of cell biology 
consist of tightly integrated functions describing molecules, subcellular 
organelles, and membranes defining compartments within the cells. A useful 
example of such a model is "The Virtual Cell" that is available free to users 
through a Java Applet interface to the National Resource for Cell Analysis 
and Modeling at the University of Connecticut.  
 
 
 

Figure 10 . STELLA model of cardiac flow. Reproduced, with permission, from Hannon B and Ruth M, 
Modeling dynamic biological systems. Springer-Verlag , New York, 1997, p. 119. Medula refers to 
brainstem regulation of the heart rate. Fitness refers to physical fitness and cardiac efficiency. Activity 
discriminates resting from active subjects. I Factor is an infarction factor. The model is reproduced at 
the website. 
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An alternative approach to the challenge of modeling a eukaryotic cell is 
embedded in the E-CELL project. The E-CELL project was launched in 
1996 at Keio University (Japan) in order to model and simulate various 
cellular processes with the ultimate goal of simulating the cell as a whole.  
The first version of the E-CELL simulation system, that is a generic software 
package for cell modeling, was completed in 1997.  The E-CELL system 
enables modeling not only of  metabolic pathways but also of other higher-
order cellular processes such as protein synthesis, signal transduction, and 

Figure 11. The biological interface to the current version of the Virtual Cell. This purpose-built modeling 
environment includes tools necessary to describe and test molecular flows within and across membrane-
defined compartments. It is specially adapted to microscopic studies using molecular probes. 
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membrane transport within the same framework. These various processes 
are then integrated into a single simulation model. 
 
Using the E-CELL system, Tomita and colleagues have successfully 
constructed a virtual cell with 127 genes sufficient for ``self-support''.  The 
gene set was selected from the genome of Mycoplasma genitalium, the 
organism having the smallest known genome. The set includes genes for 
transcription, translation, the glycolysis pathway for energy production, 
membrane transport, and the phospholipid biosynthesis pathway for 
membrane structure. 
 
Tomita and colleagues are presently constructing the following E-CELL 
models: (1) human erythrocyte, (2) E. coli signal transduction for 
chemotaxis, (3) gene expression network in E. coli  lactose operon, and (4) 
human mitochondria. The basic model of a human erythrocyte has been 
recently completed. All of the parameters, such as the kinetic constants, are 
based on experimental data available in published literature. With ample 
nutrition, this “virtual” erythrocyte reaches a steady state, and its metabolite 
concentrations in the steady state are comparable with those in real 
mammalian erythrocytes reported by laboratory experiments. In silico 
experiments on the erythrocyte model that artificially hinders specific 
enzymatic activities (e.g. hexokinase, G6PDH, phosphofructokinase, and 
pyruvate kinase) explain the associated anemias.  
 
Since both the E-Cell and Virtual Cell models are accessible without cost 
over the internet, interested readers can explore and contrast them at their 
convenience. Both models assume that the user has some familiarity with 
kinetic theory. The models appear to be complementary. 
 
Summary 
 
Mathematical models can be profitably applied to diverse problems and 
projects in surgical research. The time invested in constructing and 
evaluating models pays handsome dividends through explicit hypothesis 
formulation and testing in silico. The results of mathematical models are 
routinely applied at the bedside. Similar application to routine problems 
encountered at the bench provides the investigator with insight into the 
magnitude of the problem and the experimental directions most likely to 
yield useful data.  



Mathematical Modeling   Page 21                                                                                 

Suggested Readings, References and URLs. 
 
E-cell. www.e-cell.org 
 

The E-cell website provides not only executable code but also detailed 
information about the E-cell project, user manuals and related tools. 
At the time of this writing, the downloadable binaries will run under 
the LINUX OS on Intel and Alpha processors using the RedHat 5.2 
and 6.1 kernels. (The system will be able to run on Linux 6.2 after 
March 1, and a Windows release will occur in Fall, 2000.) The 
authors have indicated their intention to make the source code 
available. See the Tomita reference, below. 

 
Edelstein-Keshet L. Mathematical models in biology. McGraw Hill,  NY, 
1988 

An especially useful reference text for modeling novices. The clarity of 
the presentation is excellent and the review of relevant mathematics is 
done with elegant simplicity.  
 

Hannon B and Ruth M. Modeling dynamic biological systems. Springer-
Verlag, NY, 1997. 

 
This text is based on a variety of STELLA models. The models 
presented range from the simple to the sophisticated, and several are 
relevant to physiologic processes. The prose is clear and easily 
understood even by rank amateur modelers.  
 

Jelliffe RW and Jelliffe SM. A computer program for estimation of 
creatinine clearance from unstable serum creatinine levels, age sex and 
weight. Mathematical Biosciences 14:17-24, 1972 
 

This classic paper is among the first to report a computational 
solution to a dynamic model of creatinine kinetics. 

 
Levey AS, Perrone RD, Madias NE. Serum creatinine and renal function. 
Ann. Rev. Med. 39:465-490, 1988.  

 
This is an easily digestible review of the relationship between serum 
creatinine and renal function. Readers who wish to further develop 
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the model presented in this chapter will wish to incorporate features 
discussed in this paper.  
 

Madonna. http://www.berkeleymadonna.com/index.html 
 

The Berkeley Madonna website includes the shareware download of 
the current version of this software. Links are included to hundreds of 
models. An authoring version can be purchased online. 

 
 
Maple. http://www.maplesoft.com/ 
 

The Maple website contains useful information about the capabilities 
of this suite of  symbolic and numerical solvers. Licenses for Maple 
are often available through university IS departments at nominal cost. 

 
Mathematica. http://www.mathematica.com/ 
 

The Mathematica website is a rich source of information concerning 
this powerful suite. There is a substantial discount (over 90%) offered 
to students who are working in accredited programs towards a 
degree. 
 

MATLAB/Simulink. http://www.mathworks.com/ 
 

The MATLAB website provides enormous help to the end-user 
through information, help files and forums. Although there is no direct 
download, the sales force is very responsive and will typically provide 
a time-limited trial to potential customers. The power of 
MATLAB/Simulink needs to be explored first-hand to appreciate its 
potential. 
 

National Resource for Cell Analysis and Modeling. 
http://www.nrcam.uchc.edu/ 
 

This website provides Java code and an interface to the purpose-built 
model of cell dynamics, the Virtual Cell. The general computational 
framework is unique and especially adaptable to microscopy in which 
molecular probes have been used to interrogate specific molecules 
and gradients. 
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Society for Mathematical Biology. http://www.smb.org 
 

The Society for Mathematical Biology website contains numerous 
links to modeling resources as well as to an online (electronic) 
version of the Society’s journal, the Bulletin of Mathematical Biology.   

 
 
STELLA. http://www.hps-inc.com/ 
 

The STELLA website contains not only run-time versions of the 
STELLA software but also links to a variety of models that illustrate 
modeling concepts. The authoring version includes well-written 
documentation that is readily absorbed even by those with no prior 
modeling experience. The tutorials are fast and effectively illustrate 
the capability of the package.    

 
 
Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi 
F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3rd E-CELL: 
software environment for whole-cell simulation. Bioinformatics 15:72-84, 
1999 
 

This seminal paper describes the development and application of E-
cell. It is a monument to modeling complexity and a testament to the 
power and potential of computational biology to address complex 
systems relevant to clinical care. 


