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Mathematicd modding

Surgica research embraces many disciplines ranging from molecular
biology to human physiology. Irrespective of the physical scale that
characterizes a particular project, most surgica investigators will confront
some significant aspect of their research which will benefit from—if not
explicitly require--mathematica modeling. In this chapter, we explore
fundamental aspects of mathematical modeling to address three questions.
Why is mathematical modeling an essentia surgical research tool? What is
(and what is not) a mathematical model? How is a mathematica model
designed and used? Answers to these questions constitute an introduction to
mathematical biology and serve to illuminate an interface between that
discipline and surgical research.

An important point is that surgeons subconsciously employ models every
time a constellation of symptoms is recognized as diagnostic and specific
care is delivered. Surgeons extrapolate their accumulated experience to more
and more generd Situations. Such extrapolation to more genera Situations
and to behaviors over timeis an hypothesisin its own right, an hypothesis
that surgeons routinely verify (and modify) in daily care. Thus testing the
extrapolation hypothesis -- "does this particular patient fit the model | use to
describe a particular disease process?' -- isclinicdly routine. Modds are
merely collections of hypotheses regarding the mechanisms and magnitudes
of processes that influence the system under study. This chapter illustrates
the way in which mathematics can be used as alanguage for surgically

useful moddling.

Why model?

A formal answer to the "Why model?' question is “to encapsulate
knowledge regarding a complicated problem into a smplified
representation.” In afamiliar example, we surgeons find it much easier to
follow the description of a new operation if medical illustrations are
provided instead of intraoperative photographs. The medicd illustration
extracts the critical tissue relationships and allows us to focus on the relevant
manipulations. A medical illustration is an excedllent example of a static
mode.

Static Modds
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Common folklore suggests that the young surgeon initially displays
technical skills by “building model airplanes’. Demondtrations of dexterity
aside, creation of such scaled physical models provide for examination of
gpatiad organization and relationships that are not otherwise discernable. For
example, the passenger in seat 15-C of aBoeing 737 isunlikdy to
gppreciate that the length and wingspan of her conveyance are nearly
identical; moreover, this smilarity is echoed throughout the Boeing line.
This systematic examination of physical models can lead to knowledge
abstraction: “Boeing builds square airplanes.”

Abstracted knowledge about an object that can be embedded into a static
model is frequently used in bedside surgical care. For example, water in the
adult human is commonly modeled to occupy two compartments, an
intracellular space and an extrace lular space, where the extrace lular space
itself consists of two compartments, an interstitial space and an intravascular
gpace. Clinicd estimates of the magnitudes of fluid and electrolyte deficits
rely on such a static mode.

Dynamic Moddls

The passenger in 15-C islikely less concerned with dimension than with a
safe and swift journey. The journey depends on engineering, and the
passenger in 15-C is reassured that a professiona team has designed systems
and subsystems to reliably interact in highly specific and predictable ways.
The key phraseis “designed...to interact”.

Biomedical engineering excepted, the surgical investigator does not
participate in the design of the object under study. In most surgical research
projects, the goal is to elucidate the design. The key tool is controlled
perturbation of the study object followed by sequential measurement of
object parameters. From the measurements—whether the data describe gene
expression, bulk flow of blood through the heart, or spread of a particular
bacterium through an intensive care unit—surgical investigators make
inferences about the relevance of a particular process. The inferences
become hypotheses that are experimentally probed, most often by comparing
objectsthat differ in asingle feature: the knockout mouse versus its parent;
flow at a hematocrit of 20 versus a hematocrit of 40; use of water-based
handwashing versus alcohol foam degerming.
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Data accumulate much faster than knowledge. The classical, reductionist
approach to scientific inquiry requires afull factoria experimenta design
such that each relevant process ought to be tested across the full range of
expected performance in order to understand the effect of that individua
process upon the whole experimental system . Organ physiologists a
generation ago often performed such systematic studies. Their detailed
experiments became the basis for clinically essential models such as cardiac
performance as a function of preload, afterload and contractility. Such
experiments on the microscale of cells and molecules and on the macroscale
of large populations are difficult to design and even more difficult to
perform. The usua approach isthat ardatively few observations made
under arbitrary but strictly controlled conditions in which the object under
study has been intentionally “isolated from confounding influences’ are
extrapolated to more general, andytically more complicated stuations. The
potential for error is obvious, the realization al too frequent.

The Hidden Hypothesis

The passenger in 15-C isflying in an airplane whose behavior over time was
predicted on the basis of an explicit design. The surgical investigator pursues
the “inverse problem”. The design of the object under study isto be
extracted from its behavior over time subject to a host of noisome
experimenta constraints. We have adready aluded to the limit of the number
of datathat may be collected. Biologic objects aso limit the types of data
that can be collected. The precision of the data obtained from biological
objectsistypicaly less than that obtained from physical objects. And so on.
The extrapolation to the more general situation and to behaviors over timeis
an hypothesisin its own right, an hypothesis that is subject to verification by
experiment. Testing this “extrapolation hypothesis’ drives modeling such
that behaviors are predicted and then experimentally tested. As stated in the
introductory paragraphs, models themselves are merely collections of
hypotheses regarding the mechanisms and magnitudes of processes that
influence the object under study. *

What is (and what is not) a mathematical mode ?

1 . L . . .
Asacollection of hypotheses which itself is an hypothesis, models can never be proven “correct”. Their
greatest investigational valueliesin illuminating what is“missing” or “wrong”.
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A mathematical modd isatool with that an investigator encapsulates
hypotheses concerning the mechanisms and relationships that underlie the
behavior of a system over time. Equations are used to describe the
relationships. It isimportant that surgeons understand that once the
relationships are described as mathematical equations, solutions to those
equations are often readily obtained by desktop computers.

Mathematical models are ubiquitous in surgical care. Some are expressed as
informal "rules’, such as the "three-for-one rule" (which states that three
volumes of abalanced salt infusion are required to compensate for each
volume of acute blood loss). The 3:1 rule originates from experiments
showing that water and small ions readily equilibrate across blood vessel
walsinto the interstitial compartment, and a model that envisions the
interstitial compartment to be twice as large as the intravascular
compartment.

Other mathematical models are more formal, such as the pharmacokinetic
models that guide administration of aminoglycoside antibiotics. The
nomograms that surgical residents use to make dose adjustments are Ssmply
graphic representations of models of the agueous compartments and the
predicted clearance rate of the drug. Each patient is viewed as an individual
experiment, with the model offering continuous predictions about plasma
concentrations. Measuring the patient's plasma level of thedrug at a
particular time is atest of the model, not of the patient. An accurate
prediction merely indicated that the dose may be left unchanged. An
Inaccurate prediction does something more--it not only indicates to the
surgeon that the dose must be changed but aso suggests that the model
contains relations that are inaccurate or incomplete. Indeed, unexpectedly
high levels may suggest that thereisincipient rena insufficiency whereas
unexpectedly low levels may suggest that the patient has a larger-than-
normal volume of distribution.

However useful they may be, memorable "rules’ and nomograms are no
more than representations of someone else's model. The surgical investigator
must ultimately venture into building his own modd if heisto make and test
hypotheses concerning the design of the object being studied. He must
ultimately propose relationships that govern the measurable parameters,
make predictions, perturb the object, and observe the fidelity with which his
model describes the behavior of his system. Smply stating the anticipated
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change in aparameter ("I predict drug D will cause parameter P to
decrease") is not amodel. It may well be an event predicted by a model, but
the prediction is not the model.

Modd Building: An Example

To illustrate one way that modeling illuminates a problem to focus attention
on particular aspects of that problem, consider this familiar and vexing
scenario.

Review during rounds of a postoperative patient shows two abnormalities.
First, the urine output is decreasing. Second, the serum creatinine
concentration isrising. The patient has received appropriate volumes of
fluid. The inescapable conclusionis that the patient has acute renal
insufficiency. The apparent cause of the kidney failure is identified and
reversed. The next day, the serum credtinine level has climbed again. Has
the true cause of the renal insufficiency been identified? Why has the serum
cregtinine level risen? Is there another cause for the problem? When will the
creatinine concentration peak and begin returning towards normal? These
gnawing guestions have cost every surgeon anxious moments.

To apply mathematical modeling to this (or any other) problem, the universe
of the problem must be explicitly defined aong with the hypothesized
relationships among the components of the experimenta system. In the case
of the patient with rend insufficiency, it is enough to define the universe to
include a source of creatinine (muscle breakdown), areservoir in which the
creatinine is accumulated ( in total body water), and sinks into which the
cregtinine flows (urine).

total creatinine in

total body water tubular secretion

5 @O

muscle breakdown

glomerular filtration
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Figure 1. Schematic representation of production and elimination of creatinine. Tubular secretion and
glomerular filtration are independent processes which occur in the kidneys and deliver creatinine into
the urine.

This graphic representation encapsulates not only the universe but also the
relationships represented in what will become a " conservation of
mass'relationship. The graphic emphasizes that we are not particularly
interested in the exact source of the creatinine, only that the source continues
to pour creatinine into the reservoir by the process of myolysis. The graphic
also recognizes that the kidney has two distinct mechanisms by which it
removes creatinine from plasma (and, by extension, from total body water):
filtration by the glomerulus and secretion into the rend tubule. Although
both mechanisms deliver creatinine into the urine, we can and will treat them
as distinct processes. The conservation of mass relationship can be "read" as
follows.

"The rate of change in the total amount of creatinine (where the total

amount is equd to the concentration of creatinine multiplied by the

volume in which the creatinine is distributed) must equal the

difference in the rates at which creatinine is being delivered and

creatinine is being disposed. Cregtinine is delivered by asingle

process (muscle breakdown). Creatinine is disposed by two processes,

tubular secretion and glomerular filtration. The rate of glomerular

filtration depends on the loca creatinine concentration.”

A conservation of mass equation containing these relationships might read:

% =R- (S+glCr)) (1)

where [Cr] is the concentration of creatinine in body water, V, isthe
volume of that body water, R isthe rate of creatinine released by muscle
breakdown, S istherate at which creatinine is secreted by the renal tubules,
and gisthe glomerular filtration rate. The instantaneous rate of changeis
denoted by the derivative, d/dt.

Two data series are immediately available to the clinician at the bedside.
One isthe series of concentrations of creatinine [Cr]. Surgeons mentally
calculate D[Cr] as the data are being examined (" The creatinine went up 1
mg/dl since yesterday!") The other series, typicaly ignored on patient
rounds, is the series of time intervals (Dt) at which the [Cr] determinations
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were made. What (if anything) can be inferred from relationships between
the incremental change in creatinine, D[ Cr]/Dt and the average vaue of [Cr]
during the change?

The following simple expansion comes from elementary calculus. If mand n
are both functions of the variablet, then

d(m) _ cn
at at at

Rearrangement of termsin equation (1) yields

dicr] _ 1
V.

1, .. dv,
v (g +T)[Cr] (2)

r

(R-S)-

T

Inspection shows that so long as V¢, Rand Sare constant, the slope of a
d[Cr]/dt vs. [Cr] plot will bealinear function of g. ? In other words, the
slope of the d[Cr]/dt vs. [Cr] plot--which some refer to as a phase plot or
phase portrait--represents the glomerular filtration rate as long as the volume
of distribution is more or less constant.

Few of us—surgeons or mathematicians—have the intuition or experience to
relate clinical datato this rather unfriendly-looking equation. Fortunately,
neither are necessary. Desktop microcomputers with appropriate modeling
software substitute nicely. The next severa sectionsillustrate how equation
(2) might be analyzed using a couple of popular modeling software
packages.

2 Mathematically inclined readers may wish to examine this equation in several special cases. First, if
coefficients are constant then an analytic solution is possible. In this case, D[Cr]/Dt can be calculated
precisely, and the difference between the measurable and the infinitessimal d[Cr]/dt can be estimated.
Second, behaviors during an acute change in g (step, ramp and so on) display characteristic plots of
d[Cr]/dt vs. [Cr]. Third, and perhaps most important, the effect of sequential acute changesin g (two steps)
give characteristic behaviorsin the plot.
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STELLA

STELLA (High Performance Systems, Hanover NH) is the most intuitive
modeling system used in surgical laboratories. The smple, graphical
approach to defining relationships among elements in the modeling universe
and carefully selected defaults invites even the novice to begin modeling
within the first hour working with this package. Indeed, STELLA isusedin
secondary schools and college courses to introduce scientists and
nonscientists to systems thinking.

The STELLA workspace is deceptively smple. It is never necessary to
actualy write an equation. Rather, the equations are "written" as the modeler
defines flows among the el ements of the model system. The specifications
can take many forms including equations, numerical arrays and even hand-
drawn curves. To set up the clinical problem in STELLA, we used this
model

Measured Cheatinine

Total Creatinine bular secretion

5, O

muscle breakdown

glomeypular filtration

Volume of Creatinine Distribution

Measured Creatinine . i
Glomerular Filtration Rate

Figure 2. STELLA model of creatinine production and elimination. Seetext for further details.
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The core of the pictureisidentical to Figure 1. Severa variables have been
added to the model so that flows can be more precisely specified. For
example, glomerular filtration is the product of the glomerular filtration rate
and the concentration of creatinine (“measured creatining”) in the plasma.
This“measured creatining” isthe ratio of the total creatinine to the total
volume of creatinine distribution. The process of tubular secretion is known
to be both saturable by and dependent on the concentration of creatinine, so
a“ghost” of the measured creatinine is inserted to influence the tubular
secretion process.

Exploration of the model requires rationa selection of starting parameter
vaues. Knowledge of "starting" values comes from clinical experience or
direct experimental measurement. We chose to begin with an archetypal 70
kg patient, a young man with normal renal function. We suggested that with
anormal diet, exercise and muscle mass, he would deliver 1.6 gm (1600 mg)
to the circulation each 24 hour day. About 60% of his body mass is water, so
that the initial volume of distribution of this small molecule is about 42 liters
(420 decilitersor dl ). Since anormal creatinine concentration is about 1.0
mg/dl, we set the total creatinine to 420 mg. We set hisinitial glomerular
filtration rate at 80 ml/min (1150 dl/day). We set hisinitid secretion rate at
150 mg/day. All of these values are normals retrievable from phsiology and
medical textbooks.

Table 1. Modd Parameters

Parameter Initid Vaue Comment
Body Mass 70 kg archetype
Total Body Water 42 L =420 dL 60% body mass; may

wish to changeto a
variable in next
iteration of the modd

Total Body Creatinine | 420 mg 1 mg/dl distributed in
420 di

Creatinine Production 1600 mg/day typical for young male,

Rate normal diet

Glomerular Filtration 80 ml/min = 1150 Low-normd vaue

Rate dl/day

Creatinine Secretion 150 mg day L ow-normd vaue

Rate
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Second, we check to make sure that these normal valuesyied a stable
profile over time. By definition, normal physiologic values should represent
an equilibrium point.

1 : MEESUrEd El'EEﬁl'lil'lE EDD e o e e i e e g o v e e o o Pt R i o e v e o o o i ¢
2: glomenalar filtration 240000
Frmbular secretion 400 .00
2 2 2 2
1:hleazured Creatinine 200
2: glﬂmemlarﬁmaﬁﬂn 12':":”:”:'. ................................................................................................
Fabular secretion 25000
3 3 £ 3

Tt ] 1 !
1:Measured Creatinine  [0.00
2: glomenalar filtration 0.0o
J:tubular secretion 0.o0

oon .00 10.00 15.00 20.00

Mane=

Figure 3. Time plot of stable renal function. The red line shows a stable creatine
concentration. The blue line shows a stable glomerular filtration. The purple line shows a
stable tubular secretion. The scale shows that tubular secretion normally represents <20%
of total creatinine clearance.

Since the creatinine is stable, a phase plot of itsfirst derivative versus the
creatinine concentration is just a point.
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1: Measured Crea... v. Delta C\Delta T

15.009

d[Cr)/dt

oo ()

0 500 3.00 600 [Cr]

Figure 4. The phase plot of the first derivative versus creatinine concentration is asingle point.
Thisisnot only stable over time (d[Cr]/dt is zero) but aso thisis atrue equilibrium point for this
system. In a perfectly compensated physiologic system, creatinine does not change.

Consder the same patient with two modifications. First, the glomerular
filtration rate changes with time

Glomerular Filtration

1400 ~ 1 4 5
1200 A
1000 -
800
600
400 A 2 3
200 A
0 . . . .
0 5 10 15 20

day

GFR, dl/day

Figure5. Inthisscenario, the patient receives a nephrotoxic drug for several days, after which the
toxicity isrecognized and the drug removed. Kidney function recovers spontaneously. Numbers on
curve refer to regions of curve that will be inferred from Figure 8.

Second, the tubular secretion is a saturable process.
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Tubular Secretion
500 q
° 400 A
IS
< 300 1
=)
@ 200 A
(&]
o
“ 100 -
0 T ]
0 5 10
Measured Creatinine Concentration,
mg/dl

Figure 6 . Tubular secretion can partially compensate for the loss of glomerular
filtration. The secretion process is here modeled as a saturabl e process, reaching
saturation at about 3 mg/dl.

In this setting, the dynamics of creatinine concentration, glomerular filtration
and tubular secretion change markedly over time.

1:e=are Crealdre [ 1 R T R e P
Z:gkomend imkon 2400
J:bdx=aebon  g@m

1:Meassel Crealnre 3m
Ziglkmends Mimkn 000
3 Lhda seqebon 200

1 Me=nre Crealdre g
Ziglomends Miakn om
3: b e bn om T '

D=

Figure 7. The temporal dynamics of renal failure and recovery. Compare the patterns of measured creatinine
(red) glomerular filtration (blue) and tubular secretion (purple) at different times. Clinically, we measureline 1,
creatinine. What we --and our patients!--are interested in, however, isline 2, glomerular filtration. The
problem isthat line 2 bears no obvious relation to line 1 except that both eventually reach a steady state. How
can datafrom line 1 be used to infer information about line 2? Examine Lines 1 and 2 car efully. Note that
Line2istotal glomerular filtration of creatinine, not glomerular filtration rate. Notetherelationships
among the dopes of thetwo linesat each point in time.
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Pl otting measured credtinine, [Cr], against itsfirst derivative d[Cr]/dt, a
useful dynamicis seen.

1: Measured Creatinine v. DeltaC\Delta T

TNt R R D PR R R R P

Glomerular
Start/Finish filtration
With normal recovery begins
physiologic while creatinine

1 varation Still FISING- - oor b
near 2

equilibrium
d[Cr]/dt /\ 3 Peak
0007 <+ [C1

Total glomerular
filtration
......continues to rise
even while
creatinine is

falling.

-15.00 T !
0.00 3.00 6.00

[Cr]

Figure8. The plot of d[Cr]/dt vs. [Cr] isaloop, returning to the baseline value of [Cr] with no change
(areturn to stable function). Inflections signal change in glomerular filtration performance. Compare
with the previous figure and with figure 5.

This plot provides useful insight to the clinician. Given a"step change” (i.e.
instantaneous) decrement in glomerular filtration rate followed by a
spontaneous (and equally instantaneous) increment back to the GFR
baseline, a dynamic plot of daily measurements of [Cr] versus time produces
exponential curves. However, adynamic plot of D[Cr]/Dt versus [Cr]
provides direct insgght not only into changing glomerular filtration but aso
into the likely peak vaue of [Cr] (as a zero-crossing). Thisresult is easily
tested against clinical data

Clinicaly, one readily obtains D[Cr]/Dt and, of course, an average [Cr] value
bracketing D[Cr]/Dt. The “dynamic plot” will not be a continuous loop but
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rather a collection of points. With sufficiently frequent creatinine
determinations, the inflection at position 2 (in figures 5 and 8) can be
discerned. It is an interesting exercise to specify various insults to the kidney
(i.e. GFR manipulations) in the STELLA model (available at the textbook
website) and observe the change in shape of the phase plot.

MATLAB/Smulink

MATLAB/Smulink is functionaly smilar to STELLA.

MATLAB (The MathWorks, Natick, MA) is an integrated technical
computing environment that combines numeric computation, advanced
graphics and visudization, and a high-level programming language. Itisa
widdy-extensible system that can be used for diverse laboratory computing
tasks including (but not limited to) signal acquisition, processing and
anaysis, experiment control; and modeling. At MATLAB's core is arobust,
programmable computation engine. MATLAB's architecture promotes the
use of toolsthat sit "on top" of MATLAB. One of these tools, Simulink,
facilitates modeling, smulating, and anayzing dynamic systems.

A "conservation of mass' model analogous to that presented in Figure 2
looks like this when constructed in Simulink.
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Figure 9. Simulink/MATLAB conservation-of- creatinine mass model for renal function. Compare
with Figure 2.

The elements of the Simulink model do not precisely correspond to the the
elements of the STELLA mode although they are functionally smilar. The
reason for the absence of 1:1 correspondence isthat Simulink is much more
than a modeling environment. Options for data management and flow are
more extensive and additional specifications are required.
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The Smulink/ MATLAB combination is highly recommended for surgeons
and investigators who have some prior knowledge of the mathematics
behind the modeling (e.g. ordinary differential equations, dynamic systems
theory) and will take advantage of the powerful matrix gpproach embedded
in MATLAB. The MATLAB environment is ideally suited for such
problems as finite e ement modeling in which complex interactions among
dozens of elements must be accounted for in each processing step.

Other Graphical Representations; Madonna

Although run-time and demonstration versions of STELLA and
Smulink/MATLAB that run existing models are available a no codt,
authoring versions of these programs that permit creation of new models
may cost hundreds of dollars. An inexpensive but powerful aternative is
Berkeley Madonna (Berkeley, CA). Madonna, that was originaly designed
as an engine to accelerate processing in STELLA, numericaly solves
ordinary differential equations. The latest release includes a Ssimple graphic
authoring interface that is less sophisticated but smilar to STELLA.
STELLA code can be executed in Madonna at quite breathtaking speeds, a
feature that can be useful in complex STELLA models. A shareware
download version of Madonnais available for user testing.

Computing Tools: Maple and Mathematica

Investigators who are fluent in differential equations are likely familiar with
Maple (Waterloo Maple, Waterloo, Ontario, CANADA) and Mathematica
(Wolfram Research, Champaign, IL), two advanced numerics packages that
include powerful solvers. The absence of a graphical interface to modeling
(which is a symbol-based method of writing the relevant equations) is offset
by highly efficient computation. Investigators working at academic research
universities may be able to obtain extremely inexpensive licenses for these
packages through their libraries or information systems groups. However,
effective use of these tools requires at least some background in modeling
and alevel of comfort with the relevant mathematics.

Purpose-Built Modding Environments

Often the fastest way to develop a model is to adapt a model that has been
previously developed by another investigator for arelated application.
Models are published in books, in journas and, increasingly, on the internet.
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A particularly useful resource is the Society for Mathematical Biology that is
an affiliation of scientists and mathematicians who mode (and publish their
modelsin the Society's journal, Bulletin of Mathematical Biology). Some
models (see, for example, this genera model of cardiac flow) are writtenin a
generd purpose modeling environment (STELLA).

RIGHT ATRIUM RIGHT
VENA CAVA BICUSPID

PULMONARY ART

D3

AV NODE 2

TRANSMITTANC PACEMAKE

FITNESS

ACTIVITY

I FACTOR

JRANSMITTANCE,

MEDULLA

LEFT ATRIUM

MEDULLA LEFT

AORT, /TR'CUSP'D PULMONARY VEINS
PRESSURE || 'NESS PACEMAKER 2

Figure10. STELLA model of cardiac flow. Reproduced, with permission, from Hannon B and Ruth M,
Modeling dynamic biological systems. Springer-Verlag , New York, 1997, p. 119. Medularefersto
brainstem regulation of the heart rate. Fitness refersto physical fitness and cardiac efficiency. Activity
discriminates resting from active subjects. | Factor is an infarction factor. The model is reproduced at
the website.

Some models are sufficiently complex that they are purpose-built to create a
unique environment. For example, mathematical models of cell biology
consst of tightly integrated functions describing molecules, subcellular
organdlles, and membranes defining compartments within the cells. A useful
example of such amodd is"The Virtud Cell" that is available free to users
through a Java Applet interface to the National Resource for Cell Anaysis
and Modeling at the University of Connecticut.
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Figure 11. The biological interface to the current version of the Virtual Cell. This purpose-built modeling
environment includes tools necessary to describe and test molecular flows within and across membrane-

defined compartments. It is specially adapted to microscopic studies using molecular probes.

An dternative approach to the challenge of modeling a eukaryotic cell is
embedded in the E-CELL project. The E-CELL project was launched in

1996 at Keio Univergity (Japan) in order to model and smulate various

cellular processes with the ultimate goal of smulating the cell as awhole,
The first version of the E-CELL smulation system, that is a generic software
package for cell modeling, was completed in 1997. The E-CELL system
enables modeling not only of metabolic pathways but also of other higher-
order cellular processes such as protein synthesis, signal transduction, and
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membrane transport within the same framework. These various processes
are then integrated into asingle smulation modd.

Using the E-CELL system, Tomita and colleagues have successfully
congtructed a virtual cell with 127 genes sufficient for ~ self-support”. The
gene set was selected from the genome of Mycoplasma genitalium, the
organism having the smallest known genome. The set includes genes for
transcription, trandation, the glycolysis pathway for energy production,
membrane transport, and the phospholipid biosynthesis pathway for
membrane structure.

Tomitaand colleagues are presently constructing the following E-CELL
models. (1) human erythrocyte, (2) E. coli signal transduction for
chemotaxis, (3) gene expression network in E. coli lactose operon, and (4)
human mitochondria. The basic model of a human erythrocyte has been
recently completed. All of the parameters, such as the kinetic constants, are
based on experimental data available in published literature. With ample
nutrition, this “virtual” erythrocyte reaches a steady state, and its metabolite
concentrations in the steady state are comparable with thosein red
mammalian erythrocytes reported by laboratory experiments. In silico
experiments on the erythrocyte model that artificially hinders specific
enzymatic activities (e.g. hexokinase, GGPDH, phosphofructokinase, and
pyruvate kinase) explain the associated anemias.

Since both the E-Cdll and Virtua Cell models are accessible without cost
over the internet, interested readers can explore and contrast them at their
convenience. Both models assume that the user has some familiarity with
kinetic theory. The models appear to be complementary.

SUmmary

Mathematical models can be profitably applied to diverse problems and
projects in surgical research. The time invested in constructing and
evaluating models pays handsome dividends through explicit hypothesis
formulation and testing in silico. The results of mathematical models are
routinely applied at the bedside. Similar application to routine problems
encountered at the bench provides the investigator with insight into the
magnitude of the problem and the experimental directions most likely to
yield useful data
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Suggested Readings, References and URLS.

E-cdl. www.e-cdll.org

The E-cell website provides not only executable code but also detailed
information about the E-cell project, user manuals and related tools.
At the time of thiswriting, the downloadable binaries will run under
the LINUX OSon Intel and Alpha processors using the RedHat 5.2
and 6.1 kernels. (The system will be able to run on Linux 6.2 after
March 1, and a Windows release will occur in Fall, 2000.) The
authors have indicated their intention to make the source code
available. See the Tomita reference, below.

Edelstein-Keshet L. Mathematica modelsin biology. McGraw Hill, NY,
1988
An especially useful reference text for modeling novices. The clarity of
the presentation is excellent and the review of relevant mathematicsis
done with elegant ssimplicity.

Hannon B and Ruth M. Modeling dynamic biologica systems. Springer-
Verlag, NY, 1997.

Thistext is based on a variety of STELLA models. The models
presented range from the simple to the sophisticated, and several are
relevant to physiologic processes. The proseis clear and easily
understood even by rank amateur modelers.

Jdliffe RW and Jelliffe SM. A computer program for estimation of
creatinine clearance from unstable serum creatinine levels, age sex and
weight. Mathematical Biosciences 14:17-24, 1972

This classic paper is among the first to report a computational
solution to a dynamic model of creatinine kinetics.

Levey AS, Perrone RD, Madias NE. Serum creatinine and rena function.
Ann. Rev. Med. 39:465-490, 1988.

Thisis an easly digestible review of the relationship between serum
creatinine and renal function. Readers who wish to further develop
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the model presented in this chapter will wish to incorporate features
discussed in this paper.

Madonna. http://www.berkel eymadonna.com/index.html

The Berkeley Madonna website indudes the shareware download of
the current version of this software. Links are included to hundreds of
models. An authoring version can be purchased online.

Maple. http://www.maplesoft.com/

The Maple website contains useful information about the capabilities
of this suite of symbolic and numerical solvers. Licenses for Maple
are often available through university IS departments at nominal cost.

Mathematica. http://www.mathematica.com/

The Mathematica website is a rich source of information concerning
this powerful suite. Thereis a substantial discount (over 90%) offered
to students who are working in accredited programs towards a
degree.

MATLAB/Smulink. http://www.mathworks.com/

The MATLAB website provides enormous help to the end-user
through information, help files and forums. Although thereisno direct
download, the sales force is very responsive and will typically provide
a time-limited trial to potential customers. The power of
MATLAB/Smulink needs to be explored first-hand to appreciate its
potential.

Nationa Resource for Cell Analysis and Modéling.
http://www.nrcam.uchc.edu/

This website provides Java code and an interface to the purpose-built
model of cell dynamics, the Virtual Cell. The general computational
framework is unique and especially adaptable to microscopy in which
molecular probes have been used to interrogate soecific molecules
and gradients.
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Society for Mathematical Biology. http://www.smb.org

The Society for Mathematical Biology website contains numerous
links to modeling resources as well as to an online (electronic)
version of the Society’ s journal, the Bulletin of Mathematical Biology.

STELLA. http://www.hps-inc.com/

The STELLA website contains not only run-time versions of the
STELLA software but also links to a variety of modelsthat illustrate
modeling concepts. The authoring version includes well-written
documentation that is readily absorbed even by those with no prior

modeling experience. The tutorials are fast and effectively illustrate
the capability of the package.

TomitaM, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi
F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3% E-CELL:
software environment for whole-cdll smulation. Bioinformatics 15:72-84,
1999

This seminal paper describes the development and application of E-
cell. It isa monument to modeling complexity and a testament to the

power and potential of computational biology to address complex
systems relevant to clinical care.



