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Abstract

9 There is wide variation in endemic tuberculosis (TB) levels between countries and we seek to identify
10 possible causes of these differences. In this study we present an epidemiological model of Mycobacterium
11 tuberculosis infection to investigate the effects of host genetics and demographic factors on epidemic TB.
12 We discuss the general framework for this approach and present analytical results to identify important
13 parameters affecting steady-state prevalence and incidence rate of TB disease. We then use numerical
14 simulations of our model to observe the effects of a genetically susceptible subpopulation on TB disease
15 dynamics at the population level. Finally, we simulate infection within a genetically heterogeneous popu-
16 lation in two demographic settings: India (a typical population with high TB prevalence) and the USA (a
17 typical population with low TB prevalence). Results show that changes in transmission parameters, the
18 fraction of the population genetically susceptible to infection, and demographic factors strongly affect TB
19 prevalence and incidence rates.
20 � 2002 Published by Elsevier Science Inc.

21 Keywords: Tuberculosis; Genetic susceptibility; SIR mathematical model; Prevalence; Incidence rate; Next generation

22 operator

23 1. Introduction

24 Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis, which
25 is estimated to infect roughly one-third of the world’s population resulting in 2–3 million deaths
26 each year [1]. Although between 90% and 95% of infections occur in developing countries [1], the
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27 emergence of HIV as well as multi-drug-resistant (MDR) strains of M. tuberculosis will dra-
28 matically change the dynamics of infection world-wide [2]. Other factors may contribute to the TB
29 epidemic including elimination of TB control programs, IV drug use, poverty, and immigration
30 [3,4].
31 TB is an ancient disease whose world-wide prevalence had been declining long before vacci-
32 nation and protective strategies were implemented [5–7], but its recent reappearance in developing
33 countries and the high burden of infection in regions of Southeast Asia have sparked renewed
34 interest in TB. The current world estimate of prevalence is 33% while the incidence rate of active
35 (infectious) TB is estimated to be 140 per 100 000 per year (/100k/yr) [8]. Wide variation exists in
36 the severity of TB between countries. For example, prevalence and incidence in the U.S. are
37 roughly 5% and 6/100k/yr, respectively [9], while in India and other Southeast Asian regions,
38 prevalence and incidence may be as high as 50% and 200–400/100k/yr, respectively [8,10,11].
39 Humans are the natural reservoir forM. tuberculosis, which is spread from person to person via
40 airborne droplets [12]. M. tuberculosis may need only a low infectious dose to establish infection
41 (ID50 � 10) [13]. Factors that affect transmission of M. tuberculosis include the number, viability,
42 and virulence of organisms within sputum droplet nuclei, and most importantly, time spent in
43 close contact with an infectious person [14–17]. Socio-economic status, family size, crowding,
44 malnutrition, and limited access to health care or effective treatment also influence transmission
45 [18,19]. Consistent estimates of M. tuberculosis transmission rates do not exist; however, it is
46 known that transmission is rather inefficient for most strains [20]. Infection with M. tuberculosis is
47 dependent on non-linear contact processes that are determined by population size and density, as
48 well as other factors. Demographic characteristics of a population, therefore, play a significant
49 role in the development and progression of a TB epidemic.
50 The type and strength of immune response that develops following initial infection with M.
51 tuberculosis results in either latent infection, in which the bacteria are contained, or active disease,
52 where the host suffers clinical symptoms and can transmit bacteria [21,22]. Estimating the risk of
53 developing these various outcomes is difficult and varies greatly between studies [23]. It is gen-
54 erally accepted that only 5–10% of initial infections produce primary active TB [21,22], although
55 one study reports percentages as high as 40% [24]. There is a 5–10% lifetime risk of a latent in-
56 fection reactivating to active TB disease [14,15]. A loss (or reduction) of immunity in a latently
57 infected individual, due to HIV for example, may increase the probability of reactivation up to
58 10% per year [24].
59 A key question for researchers then is what allows for different disease outcomes following
60 infection with M. tuberculosis. A number of factors contribute, ranging over environmental,
61 microbial and host characteristics [25]. In this paper we present a mathematical model of epidemic
62 TB in a population that is heterogeneous regarding susceptibility to infection withM. tuberculosis.
63 Our model is an extension of standard susceptible, infected, and removed (SIR) epidemic models,
64 yet is novel because we account for genetic heterogeneity (susceptibility or resistance) to infection
65 with M. tuberculosis.
66 The paper is organized in the following manner. We first discuss the general framework of the
67 model, then determine the basic reproduction number for epidemic TB in a population with
68 known susceptibility to infection. We identify major parameters affecting prevalence and inci-
69 dence rates of TB infection in the heterogeneous population. Next, we present numerical simu-
70 lations of our model and compare two case studies. First, we illustrate the effects of a particular
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71 host susceptibility genotype/phenotype on population-level TB disease dynamics. Parameter
72 values for this example reflect a setting such as India, where specific evidence suggests a link
73 between underlying susceptibility to active TB with a genetic component of the immune system.
74 Second, we investigate heterogeneity to infection in two demographically different populations
75 with extremely different TB prevalence levels, one with high birth and death rates (similar to those
76 of India) and one with low birth and death rates (similar to those of the USA). Our overall goals
77 are to determine which parameters significantly affect prevalence and incidence of TB in the
78 general population and to make predictions regarding relative roles of inherent susceptibility
79 versus population demographics.

80 2. Genetic factors associated with tuberculosis

81 Several studies have found that genetic factors influence susceptibility and resistance to M.
82 tuberculosis infection [25–32]. These studies employ a variety of methods including large-scale
83 association-based population case/control studies of candidate genes, family-based linkage
84 analysis, investigation of rare individuals with exceptional mycobacteria susceptibility, and
85 comparison with murine models of disease. Such studies enable identification of particular host
86 genes that influence susceptibility to TB disease.
87 The major components of susceptibility and resistance to TB appear to be linked directly to the
88 immune response, and in particular, the major histocompatibility (MHC) molecules responsible
89 for antigen presentation to immune effector cells. Two types of MHC molecules, class I and class
90 II, play different roles in an immune response to foreign pathogens. Human MHC molecules are
91 termed human leukocyte antigen (HLA) molecules. Increased susceptibility and resistance to
92 more than 500 diseases has been shown to be associated with various HLA antigens, alleles, or
93 haplotypes (sets of genes that are typically inherited as a unit) [33]. In some diseases, the HLA
94 expression may influence the balance and strength of the immune response [34]. The level and type
95 of immune response to a particular pathogen may vary among populations that have different
96 distributions of HLA molecules.
97 Many HLA genotypes are implicated in susceptibility to M. tuberculosis infection [26–28,35].
98 Variable binding of mycobacterial antigens to the various HLA molecules may affect the intensity
99 of the adaptive immune response and thus influence susceptibility to TB [36,37]. Table 1 sum-

Table 1

HLA genes that correlate with susceptibility to active TB in the Indian population

HLA allele Association with active TB References

HLA-DR2 þþþ [28,44–46]

HLA-DRw6 þ [44]

HLA-DQ1 þ [28]

HLA-DQw1 þ [45]

HLA-A10 þ [46]

HLA-B8 þ [46,75]

HLA-B15 þ [76]

A positive association ðþÞ indicates that the presence of the particular allele correlates with active TB disease. The

HLA-DR2 allele is more commonly and strongly associated ðþ þ þÞ with active TB disease.
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100 marizes associations of HLA with active TB within India, although studies have been conducted
101 in other countries and even within specific ethnic groups (see [38–43]).
102 HLA-DR2. Expression of HLA-DR2 is strongly and consistently linked to pulmonary TB and
103 the severe multi-bacillary form of TB in India [28,44–47] (see Table 1). HLA-DR2 correlates with
104 increased levels of serum antibody levels [26,28,45], indicating an elevated humoral immune re-
105 sponse, associated with active disease. The presence of the HLA-DR2 allele may induce tolerance
106 to M. tuberculosis, leading to uncontrolled growth of the bacilli [47]. In addition, HLA-DR2
107 correlates with decreased production of key proteins that play crucial roles in granuloma for-
108 mation and subsequent containment of bacteria [48,49].

109 3. Modeling epidemic TB

110 Our goal is to develop a mathematical model of epidemic TB that allows us to investigate effects
111 of demographics on epidemic TB in a population with inherently susceptible and/or resistant
112 subpopulations. Without loss of generality, we present our model in the context of genetic sus-
113 ceptibility to M. tuberculosis infection.
114 We are motivated by previous work from our group which presents one of the first models of
115 HIV infection within a genetically heterogeneous population (see [50]). In that work, epidemic
116 HIV is characterized within three subpopulations (wild type, heterozygotes, or homozygotes)
117 according to a protective 32-bp deletion in the CCR5 chemokine receptor, denoted CCR5D32. To
118 incorporate the role(s) of genetic heterogeneity in this model, phenotypic differences are accounted
119 for through both parameter values and dynamic birth processes. Simulation results show that
120 prevalence of HIV/AIDS is greater in populations lacking the CCR5D32 allele. In addition, HIV
121 is shown to provide selective pressure for CCR5D32, thus increasing the frequency of the allele.
122 We develop a mathematical model of epidemic TB using a modified SIR model with mutually
123 exclusive groups of individuals who are uninfected, UðtÞ, latently infected, LðtÞ (those infected
124 with M. tuberculosis but not infectious), or actively infected with M. tuberculosis, T ðtÞ (those
125 infected and infectious). Our goal is to study the effects of a genetically susceptible subpopulation
126 on the dynamics of epidemic TB at the population level, so we further subdivide each of these
127 three groups to include individuals carrying a susceptibility allele, resulting in the six mutually
128 exclusive populations: UNðtÞ, LNðtÞ, TNðtÞ, and USðtÞ, LSðtÞ, TSðtÞ, where the subscript N (neutral)
129 denotes those without a susceptibility genotype and S (susceptible) denotes those with a sus-
130 ceptible genotype. Due to extensive diversity in the HLA genetic system, we examine disease
131 relationships based upon the presence of susceptibility with no distinction between homozygotes
132 and heterozygotes. Fig. 1 shows interactions of the six subpopulations.

133 3.1. The model

134 A system of non-linear, ordinary differential equations are used to model the dynamics of
135 individuals within the population. Setting PðtÞ ¼ UNðtÞ þ USðtÞ þ LNðtÞ þ LSðtÞ þ TNðtÞ þ TSðtÞ
136 and suppressing time-dependence, t, for each variable, the six model equations are
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dUN

dt
¼ bð1� mÞ � bwUN

TN
P

� bxUN
TS
P
� lUN ; ð1Þ

dUS

dt
¼ bm � byUS

TN
P

� bzUS
TS
P
� lUS; ð2Þ

dLN

dt
¼ ð1� pNÞbwUN

TN
P

þ ð1� pNÞbxUN
TS
P
� rNLN � lLN ; ð3Þ

dLS

dt
¼ ð1� pSÞbyUS

TN
P

þ ð1� pSÞbzUS
TS
P
� rSLS � lLS; ð4Þ

dTN
dt

¼ pNbwUN
TN
P

þ pNbxUN
TS
P
þ rNLN � lTBTN ; ð5Þ

dTS
dt

¼ pSbyUS
TN
P

þ pSbzUS
TS
P
þ rSLS � lTBTS; ð6Þ

143 Eqs. (1) and (2) describe the rate of change in uninfected populations UN and US. There is a gain in
144 each population from constant birth rates bð1� mÞ (into UN ) and bm (into US). A loss in each
145 population occurs as a result of infection withM. tuberculosis at rate bjUiTk=P (where i; k 2 fN ; Sg
146 and j 2 fw; x; y; zg), and constant death (l). Eqs. (3) and (4) represent the rate of change in the
147 latently infected populations. The rate of change in LN and LS increases due to M. tuberculosis
148 infections which result in latent infection (at rate ð1� piÞbjUiTk=P , where i; k 2 fN ; Sg and

Fig. 1. A TB epidemic model including genetically neutral (UN ; LN ; TN ) and genetically susceptible (US ; LS ; TS) popu-
lations. Births (b) occur at a constant rate with a fraction ðmÞ being genetically susceptible to infection. Transmission/

receipt of M. tuberculosis depends on bj ðj ¼ w; x; y; zÞ, and potential interactions leading to infection are indicated by

dashed lines. pi and ri represent direct progression to active TB and the reactivation rate of latent disease, respectively.

We account for all-cause death, l, and death due to active TB, lTB. In all cases, i ¼ N ; S.
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149 j 2 fw; x; y; zg) and decrease from reactivation of latent infection at rate riLi (i 2 fN ; Sg), and
150 natural death (l). The rate of change of the actively infected populations TN and TS are described
151 in Eqs. (5) and (6). M. tuberculosis infections which progress directly to active disease are source
152 terms at rate pibjUiTk=P (i; k 2 fN ; Sg and j 2 fw; x; y; zg). They also increase due to reactivation
153 of latent disease (at rate riLi, where i 2 fN ; Sg). Finally, the rate of change of TN and TS are re-
154 duced by disease-related death (at rate lTB).

155 3.2. Prevalence and incidence rate

156 Models of infectious diseases typically describe prevalence and incidence rates of infection.
157 Here we define prevalence as the fraction of the population with either latent or active TB. We
158 calculate prevalence using the formula:

PrevalenceðtÞ ¼ LNðtÞ þ LSðtÞ þ TNðtÞ þ TSðtÞ
PðtÞ :

160 The incidence rate of an infectious disease is defined as the number of new, infectious cases of
161 disease per unit time. In our model, only members of the TN and TS classes are infectious.
162 Therefore, we calculate incidence as the number of new cases of infectious TB per 100 000 pop-
163 ulation per year, and we use the formula:

IncidenceðtÞ ¼ 100000

P ðT Þ 
 pNbwUNðtÞ
TNðtÞ
PðtÞ

� ��
þ pNbxUNðtÞ

TSðtÞ
PðtÞ

� �
þ rNLNðtÞð Þ

þ pSbyUSðtÞ
TNðtÞ
P ðtÞ

� �
þ pSbzUSðtÞ

TSðtÞ
P ðtÞ

� �
þ rSLSðtÞð Þ

�
;

165 where PðtÞ indicates the total population size at time t.

166 4. Definitions and assumptions

167 4.1. Vital dynamics

168 All individuals born into the population are uninfected. For this paper, we assume a constant
169 birth rate, b, although this assumption will be modified in a subsequent paper to account for
170 changes in the birth rate over time (in a similar manner as in [50]). Our model analysis and
171 simulations rely on the constant birth rate assumption; however, this is an initial simplification
172 necessary for isolating and identifying affects of genetic susceptibility on present-day TB disease
173 dynamics.
174 Death rates in the model are dependent on disease status. We assume that individuals in the
175 uninfectious populations UN , US, LN , and LS die from all-cause death at constant rate l. Due to
176 the different time scales of all-cause death and active disease death rates, and that initially we do
177 not account for treatment, we assume individuals with active TB die only from disease at constant
178 rate lTB. Parameter estimates for b and l are readily available from population vital studies or
179 census data.
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180 4.2. Host genetic factors

181 Individuals entering uninfected classes (at rate b) are divided between neutral and susceptible
182 populations, with a proportion m entering the susceptible group. Within the model framework, m
183 represents the fraction of the general population exhibiting a susceptible phenotype. If we con-
184 sider a specific genotype underlying this phenotype, then m must be derived from the allelic fre-
185 quency according to dominance patterns for that allele. In the current model implementation, we
186 hold m constant under the assumption that we are examining model steady-state values rather than
187 evolution over time. We do not consider selection for or against neutral or susceptible genotypes
188 as in [50], although these processes are presently being explored.
189 Model parameters within the susceptible subpopulation may represent both genetic and non-
190 genetic factors. To account for this within the modeling framework, we introduce the parameter �S
191 to describe the possible influence(s) of genetic susceptibility on baseline (genetically neutral) pa-
192 rameters (�S, susceptibility factor). In this work, we do not report specific values for �S, as they
193 have not yet been identified; rather we use �S as a notational parameter to indicate where we
194 include influences of genetic susceptibility in the model.
195 Based on the observed significant correlation of HLA-DR2 with active TB (Table 1) we hy-
196 pothesize three possible ways that the HLA-DR2 susceptibility allele may affect the dynamics of
197 epidemic TB:

198 1. HLA-DR2þ individuals have an increased probability of direct progression to active TB upon
199 initial infection; in this case, the susceptibility factor is represented by �p.
200 2. HLA-DR2þ individuals exhibit an increased reactivation rate from latent to active TB; in this

201 case, the susceptibility factor is represented by �r.
202 3. HLA-DR2þ individuals are more likely to transmit and/or receive M. tuberculosis; in this case,

203 the susceptibility factors are represented by �x, �y , and �z.

204 We assume �S P 1 in each case to satisfy our susceptibility phenotype hypotheses. We would
205 use �r 6 1 (�r, resistance factor) if we were investigating a resistance phenotype instead.
206 Direct progression to active TB. When transmission of M. tuberculosis is successful, newly in-
207 fected individuals will develop either latent infection or active TB with differing probabilities. We
208 denote the probability of direct progression to active TB by pi (i ¼ N ; S); thus (1� pi) is the
209 probability of developing latent infection. By hypothesis (1), we assume pN 6 pS. In other words,
210 pS ¼ �ppN , where �p P 1.
211 Reactivation of latent TB. The parameter ri ði ¼ N ; SÞ denotes the average annual reactivation
212 rate from latent to active TB, and may be interpreted as the lifetime risk (probability) of reac-
213 tivation divided by the average duration of latent infection. We assume rN 6 rS to satisfy hy-
214 pothesis (2). Again, we take rS ¼ �rrN , where �r P 1.
215 Disease transmission parameters. Although some studies have demonstrated that TB trans-
216 mission can result from latently infected individuals whose sputum tests negative for M. tuber-
217 culosis bacteria [51], we assume that latently infected individuals are not infectious. Furthermore,
218 we assume that latently infected individuals cannot be reinfected by actively infected individuals.
219 Reinfection is a controversial topic in TB epidemiology, and it is currently unclear whether it
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220 occurs, or to what extent [52,53]. In our model framework, transmission of M. tuberculosis occurs
221 when there is adequate contact between an infectious and a susceptible individual.
222 Contact and transmission rates for TB are subject to a number of environmental and host-
223 specific conditions. Contact rates may increase dependent on demographic conditions such as
224 population density and crowding, or social patterns [19,52]. Furthermore, the probability of
225 successful transmission once contact occurs likely depends on characteristics of both the trans-
226 mitter and recipient (i.e., the number, viability, and virulence of the organisms within sputum
227 droplet nuclei, immune status of the recipient, etc.). Therefore, we assume that transmission rates
228 in our model are determined by broad demographic and social contexts, as well as by phenotypes
229 of neutral and susceptible subpopulations in the model. For additional discussion of various
230 forms and interpretations of transmission rates, see [54,55].
231 We assume non-linear contact dynamics in large populations and use the standard incidence
232 expression ðbUÞT=P (represented by U � T ) to model successful transmission of M. tuberculosis
233 [54,56]. We use four different transmission rates to separate demographic from genetic influences.
234 We define bw as the average number of contacts per unit time resulting in successful transmission
235 of M. tuberculosis due to contact between members of the phenotypically neutral subpopulation.
236 Thus, bw represents contact between an individual from the UN compartment and an individual
237 from the TN compartment (represented by UN � TN ). We next define bx ¼ �xbw for UN � TS,
238 by ¼ �ybw for US � TN , and bz ¼ �zbw for US � TS. To reflect hypothesis (3), we assume
239 bw 6 bx 6 by 6 bz, or more generally, we require 16 �x 6 �y 6 �z.

240 5. Analytical results

241 Initial analysis of the model in Mathematica [57] reveals four possible steady-state solutions of
242 which only two are biologically relevant to the model. One steady state depends only on the vital
243 dynamics of the susceptible populations (UNðtÞ, USðtÞ), and can be found analytically to be

U
�
N ;U

�
S ;L

�
N ; L

�
S; T

�
N ; T

�
S

� �
¼ bð1� mÞ

l
;
bm
l
; 0; 0; 0; 0

� �
: ð7Þ

245 This represents an uninfected steady state, as there are no latently or actively infected individuals.
246 The infectious steady state, representing epidemic or endemic infection, ðU I

N ;U
I

S; L
I

N ;L
I

S; T
I

N ; T
I

SÞ is
247 also observed, but is more complicated to compute directly.
248 One of the primary goals of constructing a model of TB infection is to determine under what
249 conditions the disease will reach an endemic state. Mathematically this question is answered by
250 identifying bifurcation points in the parameter space of the model. Epidemiologically this ques-
251 tion is answered by determining the basic reproduction number of an infection, represented by R0,
252 for the population [58,55]. R0 is a normalized bifurcation condition for an SIR model, such that
253 R0 > 1 implies that the endemic steady state is stable, and R0 6 1 implies that the uninfected steady
254 state is stable.
255 For SIR models which track homogeneous populations, the definition and construction of R0 is
256 well understood. For a single population, the value is given by the product of (1) the effective
257 contact rate, (2) the average duration of an infectious case, and (3) the probability that an infected
258 individual will become infectious (e.g. [59]). For the present model, we have two such R0 values for
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259 the mutually exclusive scenarios: (1) RN
0 , where the entire population is genetically neutral (i.e.

260 v ¼ 0), or (2) RS
0, where the entire population is genetically susceptible (i.e. v ¼ 1); we calculate

RN
0 ¼ ðbwð1� mÞÞ 1

ltn

� �
pn

�
þ rnð1� pnÞ

rn þ l

�
or

RS
0 ¼ bzmð Þ 1

lts

� �
ps

�
þ rsð1� psÞ

rs þ l

�
:

262 These values, however, fail to predict the behavior of the heterogeneous population in any
263 meaningful way. Infection dynamics in heterogeneous populations are sufficiently different from
264 those of a homogeneous population such that the standard formulation of R0 does not apply.
265 Determination of R0 for the mixed population must be done analytically.

266 5.1. Implicit determination of R0

267 Model Eqs. (1)–(6) are sufficiently complicated to make analytic determination of the eigen-
268 values for either the infected or uninfected steady states an impractical approach to the problem
269 of predicting bifurcation behavior. We present an implicit method to determine conditions under
270 which a bifurcation may occur in the model. Although the method of Next Generation Operators
271 (see [60,61]) does not work for the full model (1)–(6), it can be used to verify our formulation of R0

272 under the case of separable (proportionate) infectivity, i.e., bx ¼ rbw and bz ¼ rby (results not
273 shown).
274 Using the criterion that at least one eigenvalue is equal to zero at a bifurcation point, we
275 transform the characteristic equation detðJ � kIÞ ¼ 0, where J is the Jacobian matrix of system
276 (1)–(6), into the bifurcation condition detðJÞ ¼ 0. While this condition is necessary for a bifur-
277 cation to occur, it is not sufficient. However, we show through numerical analysis that this con-
278 dition does indeed predict when a bifurcation occurs in this case.
279 Substituting the value of the uninfected steady state (Eq. (7)), into the Jacobian matrix J yields

�l 0 0 0 �ð1� mÞbw �ð1� mÞbx

0 �l 0 0 �mby �mbz

0 0 �rN � l 0 ð1� mÞð1� pNÞbw ð1� mÞð1� pNÞbx

0 0 0 rS � l mð1� pSÞby mð1� pSÞbz

0 0 rN 0 ð1� mÞpNbw � lTB ð1� mÞpNbx

0 0 0 rS mpSby mpSbz � lTB

��������������

��������������

¼ 0;

281 where the order of the state variables is (UN , US, LN , LS, TN , TS). After some algebra this reduces to
282 the condition:

R ¼ WþZþXY�WZ ¼ 1; ð8Þ
284 where

W ¼ ðbwð1� mÞÞ 1

lTB

� �
pN

�
þ rNð1� pNÞ

rN þ l

�
; ð9Þ
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X ¼ ðbxð1� mÞÞ 1

lTB

� �
pN

�
þ rNð1� pNÞ

rN þ l

�
; ð10Þ

Y ¼ ðbymÞ
1

lTB

� �
pS

�
þ rSð1� pSÞ

rS þ l

�
; ð11Þ

Z ¼ ðbzm
1

lTB

� �
pS

�
þ rSð1� pSÞ

rS þ l

�
: ð12Þ

289 Since the expression R is equal to 1 at the bifurcation point, we provisionally call R the R0 value
290 for the heterogeneous population and examine further. The condition detðJÞ ¼ 0 may not cor-
291 respond to a transcritical bifurcation; it is possible that this condition also describes a point where
292 the number of stable dimensions of a saddle point changes. In order to ensure that the expression
293 we have derived represents a transcritical bifurcation condition, we independently vary each
294 parameter numerically and observe the resulting bifurcation behavior (Fig. 2). In each case,
295 numerical experiments show that for R < 1 the uninfected steady state is stable and the endemic
296 steady state is unstable, while forR > 1, stabilities are reversed. AtR ¼ 1, the steady states collide
297 in a transcritical bifurcation; it is clear that the behavior is constrained such that the transcritical
298 bifurcation is the only event during which eigenvalues change signs. Thus, R 
 R0.
299 Just as the R0 expression for a homogeneous population has a probabilistic interpretation, so
300 does R0 for a heterogeneous population. Eqs. (9) and (12) of the expression represent the contact
301 rate, duration of infectiousness, and probability of becoming infected for cases involving only
302 members within each subpopulation (for example, bw is the contact rate for individuals within the
303 genetically neutral subpopulation only). The product of Eqs. (10) and (11) accounts for cases that

Fig. 2. Transcritical bifurcation at R 
 R0 ¼ 1.
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304 involve contact (interaction) between members of the subpopulations. Finally, the product of Eqs.
305 (9) and (12) must be subtracted, as these cases involve the homogeneous subpopulations and have
306 already been accounted for in Eqs. (9) and (12).

307 5.2. Implications of R0

308 The most basic demographic descriptions of a population are through its birth and death rates.
309 In this model framework, the birth rate b does not appear in the expression for R0, indicating that
310 the control of epidemic TB is independent of birth rate. This fact is due to our choice of a constant
311 birth rate instead of a birth rate that is a function of population size. All other parameters appear
312 in the expression for R0 (see Eq. (8)).
313 Variation in model parameters (due to measurement error, uncertainty, etc.) will influence the
314 value of R0 and thus the prevalence of TB. To investigate changes in R0 due to variation in pa-
315 rameters, Blower has derived an alternative expression for R0 from a simple SIR model of epi-
316 demic TB in a homogeneous population [62]. Sanchez and Blower then conduct a sensitivity and
317 uncertainty analysis to identify the relative contribution of model parameters on the value of R0

318 from their model [63]. Results show that the per capita natural death rate (l) and the per capita
319 death rate due to TB (lTB) are two of the most influential parameters in determining the mag-
320 nitude of R0. Although the numerical technique of Latin Hypercube Sampling (see [64–66]) was
321 used to obtain these results, one can see from partial derivatives of Eq. (8) with respect to either l
322 or lTB that changes in these two parameters will provide the strongest contribution to changes in
323 R0.

324 6. Numerical simulation of genetic susceptibility

325 Numerically simulating a mathematical model of epidemic TB allows us to observe and
326 quantify effects of host-specific genetic susceptibility factors on steady-state population-level
327 prevalence and incidence rate values. To illustrate these effects, we present the following simu-
328 lation results in a consistent format: baseline present-day distributions of steady-state prevalence
329 and incidence rate values are shown and then compared with those resulting from changes in
330 parameters representing hypotheses (1)–(3) associated with the genetically susceptible subpopu-
331 lation.
332 We first use our mathematical model to investigate how the presence of a host susceptibility
333 gene, specifically the HLA-DR2 allele, affects epidemic TB. We test the hypothesis that the en-
334 hanced susceptibility observed with this allele may partially explain why the prevalence of TB in
335 India is roughly 50% (compared to a 33% world average and an estimated five percent in the USA,
336 where the HLA-DR2 allele is far less prevalent) and an incidence rate between 200 and 400 /100k/
337 yr (nearly 50 times the incidence rate in the USA) [8,10,11].
338 Parameter values used in the following experiments represent the genetic and epidemic TB
339 situation in India and are summarized below, and a brief discussion of how they were estimated
340 follows (see Table 2). Values for many parameters are determined from vital statistics and TB data
341 available from the World Health Organization (WHO) and other recent literature. Estimates for
342 some parameters are scarce or unknown, specifically the parameters associated with genetic
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343 susceptibility (�p, �r, �x, �y , and �z). Therefore we conduct a detailed sensitivity and uncertainty
344 analysis on a range of values for all parameters (see [64–66] for similar methodology). Low values
345 represent demographic and epidemiological data from the United States, while high values are
346 taken from the Indian epidemic.
347 The frequency of HLA-DR2 allele in India is roughly 30% [28,44–47,67,68], while the frequency
348 of HLA-DR2 allele in caucasoid populations of Western Europe and the United States is only 8–
349 15% [33,69]. Therefore, initial conditions for the Indian population are calculated by distributing
350 30% of the population into the genetically susceptible subpopulation and ensuring that 33% of the
351 population is infected with M. tuberculosis. Initial conditions for the USA are calculated by
352 distributing 11% of the population into genetic susceptibility categories and starting with a
353 prevalence of 5%.
354 Negative control simulations. We perform two negative control experiments to test the well-
355 posedness of our model. Define LðtÞ ¼ LNðtÞ þ LSðtÞ (total latent TB cases) and
356 T ðtÞ ¼ TNðtÞ þ TSðtÞ (total active TB cases). First, to represent an infection-free population with
357 no susceptible phenotype, we fix m ¼ 0 and LðtÞ ¼ T ðtÞ ¼ 0. Simulation results indicate that
358 UNðtÞ ¼ b=l, while USðtÞ, LðtÞ, T ðtÞ, prevalence, and the incidence rate are zero (data not shown).

Table 2

Variables and parameters

Variables Definition India initial condition USA initial condition References

UN ðtÞ Uninfected, neutral 696 918 000 persons 250 780 000 [77] and calculated

USðtÞ Uninfected, susceptible 298 679 000 persons 27 864 500 [77] and calculated

LN ðtÞ Latent TB, neutral 344 288 000 persons 13 793 700 [77] and calculated

LSðtÞ Latent TB, susceptible 147 552 000 persons 1552 640 [77] and calculated

TN ðtÞ Active TB, neutral 1 716 000 persons 30 466 [77] and calculated

TSðtÞ Active TB, susceptible 735 817 persons 3385 [77] and calculated

Parameter Definition India values USA values References

b Birth rate 25 567 802 yr�1 3 892 489 yr�1 [78]

m Frequency of susceptible

phenotype

30% [46,67,68]

10% [33,69]

l Non-TB death rate 0.01587 yr�1 0.01314 yr�1 [78]

ltb TB death rate 0.8 yr�1 0.8 yr�1 [79]

bw # secondary infections

(UN � TN )

bI
w: [5,7] yr

�1 bU
w : [3,5] yr

�1 [22,80,81]

bx ¼ �xbw # secondary infections

(UN � TS)
bI
x: [7,9] yr

�1 bU
x : [5,7] yr

�1 Estimate

by ¼ �ybw # secondary infections

(US � TN )

bI
y : [7,9] yr

�1 bU
y : [5,7] yr

�1 Estimate

bz ¼ �zbw # secondary infections

(US � TS)
bI
z: [9,11] yr

�1 bU
z : [7,9] yr

�1 Estimate

pN Direct progression, neutral 5–10% 5–10% [21,22]

pS ¼ �ppN Direct progression, susceptible 10–20% 10–20% Estimate

rN Reactivation rate, neutral 0.00167–0.0033 yr�1 0.00125–0.0025 yr�1 [15,14]

rS ¼ �rrN Reactivation rate, susceptible 0.0033–0.0066 yr�1 0.0025–0.0050 yr�1 Estimate
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359 Second, to represent an infection-free population with 30% frequency of the susceptibility phe-
360 notype, we fix m ¼ 0:30 and LðtÞ ¼ T ðtÞ ¼ 0. Simulations show UNðtÞ ¼ bð1� mÞ=l and
361 USðtÞ ¼ bm=l, while LðtÞ, T ðtÞ, prevalence, and the incidence rate are zero (data not shown).

362 6.1. Baseline simulation

363 Recall that current WHO estimates of prevalence and the incidence rate are 33% and 140/100k/
364 yr, respectively. We now fix m ¼ 0:30 and allow parameters to vary within their respective baseline
365 ranges (pN ¼ pS 2 ½0:05; 0:10�, rN ¼ rS 2 ½0:00167; 0:0033�=yr, and bj 2 ½5:0; 7:0�=yr (j ¼ w; x; y; z)).
366 This scenario represents a population with 30% frequency of susceptibility but assumes no ill-
367 effects of being genetically susceptible. In other words, parameter variation is due only to natural
368 uncertainty in parameter estimation and includes no detrimental effects of a susceptible pheno-
369 type. Fig. 3 shows the baseline distributions for prevalence and incidence rate values. Baseline
370 prevalence has mean 32% and standard deviation (S.D.) 8%. The baseline incidence rate has mean
371 130.83/100k/yr and S.D. 42.45. Baseline prevalence and incidence rate results are consistent with
372 present-day world averages of 33% and 140/100k/yr, respectively [8].
373 One might consider that the variation seen here could account for the differences in world-wide
374 endemic TB levels. However, comparing countries like India and the USA, two countries whose
375 prevalence and incidence rates are dramatically different, there may indeed be other factors
376 that shift the distributions for those countries around a different mean. Therefore, we examine
377 further.

Fig. 3. Baseline simulation: present-day distributions for baseline prevalence (A) and incidence rate (B) with 30% HLA-

DR2 allele in the population (m ¼ 0:30), not accounting for detrimental effects on disease progression or transmission

rates. Gray bars represent distributions for the fraction of simulations resulting in observed steady-state prevalence and

incidence rates. Here m ¼ 0:30 and pN ¼ pS 2 ½0:05; 0:10�, rN ¼ rS 2 ½0:00167; 0:0033�=yr, and bj 2 ½5:0; 7:0�=yr
ðj ¼ w; x; y; zÞ (see Table 2).
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378 6.2. Effects of host genetic susceptibility on prevalence and incidence

379 Although it is known that the HLA-DR2 allele is associated with active TB disease, it is not
380 known how the dynamics of TB infection at the population level are altered by the presence of a
381 host-level susceptibility factor. Our model therefore serves as an experimental device to test hy-
382 pothetical effects of a susceptibility phenotype and it can provide information that may be difficult
383 to otherwise determine. We are attempting to explain, at least partially, why prevalence and in-
384 cidence rate values of TB in India (up to 50% and 200–400/100k/yr, respectively [8,10,11]) are
385 substantially higher than in other countries and WHO world-wide averages. In the following
386 simulations, we allow for the three hypothetical effects of the HLA-DR2 susceptibility phenotype
387 in our model, testing each hypothesis separately, then investigating their combined effects. Pa-
388 rameter values for the genetically neutral HLA-DR2� population are fixed at average values
389 throughout (see Table 2).

390 6.2.1. Hypothesis 1: Increased direct progression to active TB (pS)
391 Our first hypothesis is that HLA-DR2þ individuals exhibit an increased risk of direct pro-
392 gression to active TB, relative to the average 5–10% progression rate [21,22]. We allow for the
393 probability of direct progression to active TB, pS, to range in the interval [0.10, 0.20]. In this
394 scenario, the prevalence remains well below 50% (mean 39.6%, S.D. 2%) and the range on inci-
395 dence rate is 145–205/100k/yr (mean 178/100k/yr, S.D. 17.86). Fig. 4 indicates that increasing pS
396 alone has only a minimal effect on prevalence and the incidence rate, as simulations produce a
397 distribution whose mean is only slightly above baseline. This suggests that the HLA-DR2 allele
398 likely has other effects on disease dynamics, either separate from or in addition to Hypothesis 1.

Fig. 4. Hypothesis 1: distributions of prevalence (A) and incidence rates (B) due only to the effects of an increase in

direct progression to active TB in the HLA-DR2þ population (pS). Gray bars represent distributions for the fraction of

baseline simulations resulting in observed steady-state prevalence and incidence rates. White bars represent distribu-

tions for the fraction of simulations resulting in observed steady-state prevalence and incidence rates due to increased

pS . Here pS 2 ½0:10; 0:20� while m ¼ 0:30, pN 2 ½0:05; 0:10�, rS ¼ rN ¼ 0:002485=yr and bw ¼ bx ¼ by ¼ bz ¼ 6:0=yr.
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399 6.2.2. Hypothesis 2: Reactivation from latent TB to active TB (rS)
400 We now assume that the only effect of the HLA-DR2 susceptibility allele is to increase the rate
401 of reactivation. Under this hypothesis, HLA-DR2þ individuals are capable of mounting an ap-
402 propriate immune response to initial infection withM. tuberculosis, and therefore initially develop
403 latent disease, but they exhibit an increased reactivation rate, rS, perhaps due to waning immunity.
404 We allow rS to vary within the interval [0.0033, 0.0066]/yr. In this scenario, the prevalence remains
405 below 50% (mean 41.9%, S.D. 2%) and the range on incidence rate is 156–236/100k/yr (mean 198/
406 100k/yr, S.D. 23.21) (see Fig. 5). Similar to Hypothesis 1, we find increasing rS only has a minimal
407 affect on shifting prevalence and the incidence rates.

408 6.2.3. Hypothesis 3: Transmission and receptive rates of infection (bw, bx, by , bz)
409 We next test the hypothesis that HLA-DR2þ individuals experience only an increase in their
410 ability to transmit and/or receive M. tuberculosis. It is not known whether this trait is charac-
411 teristic of a HLA-DR2þ transmitter (e.g. the organism exhibits greater virulence and/or viability
412 in susceptible individuals, or these individuals have a greater bacterial load in sputum, etc.) or a
413 HLA-DR2þ receiver, or both. We choose bw 2 ½5:0; 7:0�/yr, bx ¼ by 2 ½7:0; 9:0�/yr, and
414 bz 2 ½9:0; 11:0�/yr, to reflect our assumptions that bw 6 bx 6 by 6 bz, where the number of sec-
415 ondary infections caused by one infectious individual is greater for susceptible–susceptible in-
416 teractions (bz) than for neutral–neutral interactions (bw).
417 Results show that with variation in bj ðj ¼ w; x; y; zÞ values, prevalence of TB remains below
418 50% (mean 45.3%, S.D. 3%) and the incidence rate varies between 147 and 200/100k/yr (mean 179/
419 100k/yr, S.D. 11.29) (see Fig. 6). Variation in bj values has a more marked effect on prevalence
420 levels than on the incidence rate. Although increased transmission/receipt of M. tuberculosis by

Fig. 5. Hypothesis 2: distributions of prevalence (A) and incidence rates (B) due only to the effects of an increase in the

reactivation rate in the HLA-DR2þ population (rS). Gray bars represent distributions for the fraction of baseline

simulations resulting in observed steady-state prevalence and incidence rates. White bars represent distributions for the

fraction of simulations resulting in observed steady-state prevalence and incidence rates due to increased rS . Here

rS 2 ½0:0033; 0:0066�=yr while m ¼ 0:30, pS ¼ pN ¼ 0:075, rN 2 ½0:00167; 0:0033�=yr and bw ¼ bx ¼ by ¼ bz ¼ 6:0=yr.
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421 HLA-DR2þ individuals results in the high prevalence rates as in India, it cannot fully explain the
422 high levels of both prevalence and the incidence rate as seen in India.

423 6.2.4. Combined effects of Hypotheses 1, 2, and 3
424 Biologically, the preceding experiments suggest that the presence of the HLA-DR2 allele likely
425 affects the dynamics of epidemic TB in multiple ways. The minimal effects on prevalence and the
426 incidence rate due to variation in pS, rS , or bj ðj ¼ w; x; y; zÞ values alone suggests that their
427 combined effects may more realistically account for the effects of a susceptibility allele, allowing
428 for the current state of TB within India. Therefore, we perform an experiment combining the
429 mechanisms of action of the previous three experiments, simultaneously varying pS, rS, and the bj

430 values.
431 Simulation results for the combined effects indicate that both prevalence and the incidence rate
432 are increased significantly over the baseline simulation, with prevalence ranging from 49.4% to
433 63.8% (mean 56.9%, S.D. 3%) and the incidence rate varying between 220 and 366/100k/yr (mean
434 299/100k/yr, S.D. 30.40) (see Fig. 7). These values of prevalence and the incidence rate are sig-
435 nificantly higher than baseline and likely are more representative of the current state of TB in
436 India, lending support to the fact that a susceptibility allele likely has multiple effects on M. tu-
437 berculosis infection dynamics.
438 To investigate the statistical relationship between each of the six parameters pS, rS, bw, bx, by

439 and bz and the outcome variable prevalence, we conduct a partial rank correlation of each input
440 parameter (see [66] for similar methodology). The partial rank correlation coefficient, c, indicates

Fig. 6. Hypothesis 3: distributions of prevalence (A) and incidence rates (B) due only to the effects of an increase in the

transmission/receipt rates of the HLA-DR2þ population (bx, by , bz). Gray bars represent distributions for the fraction

of baseline simulations resulting in observed steady-state prevalence and incidence rates. White bars represent distri-

butions for the fraction of simulations resulting in observed steady-state prevalence and incidence rates due to increases

in bx, by , and bz ranges. Here bw 2 ½5:0; 7:0�=yr, bx ¼ by 2 ½7:0; 9:0�=yr, bz 2 ½9:0; 11:0�=yr, while m ¼ 0:30, pS ¼ pN ¼
0:075 and rS ¼ rN ¼ 0:002485=yr.
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441 the degree of monotonicity between a parameter and an outcome (e.g. [66]). A partial rank
442 correlation of the six parameters (pS, rS, bw, bx, by , bz) indicates that pS, rS , bw, and bx ¼ by are key
443 contributors to the variation from baseline prevalence (average c � 0:95) while pS and rS are key
444 elements for variation from the incidence rate baseline (cpS � 0:948; crS � 0:9713).

445 6.3. Genetic susceptibility discussion

446 The ranges of prevalence and the incidence rate due to combined interactions of pS, rS, and bj

447 ðj ¼ w; x; y; zÞ contain simulations with prevalence values over 55% and incidence rates greater
448 than 350/100k/yr, over-shooting what have been reported. This suggests two possibilities. First,
449 susceptibility parameter value ranges may be too large, due to the fact that no data exist reporting
450 the probability of direct progression to TB, the reactivation rate of latent TB infection, or the
451 transmission rate of TB due to a susceptible genotype. However, these parameter ranges are a first
452 approximation and still lend insight as to possible effects of a host susceptibility factor on epi-
453 demic TB. Second, the model uses only neutral and susceptible subpopulations; i.e., we do not
454 account for a subpopulation with natural resistance in our model. This likely leads to overesti-
455 mation of both prevalence and the incidence rate of TB within India. These inflated outcomes hint
456 at the existence of a resistant subpopulation, which could decrease levels of both prevalence and
457 the incidence rate (as seen in simulations, data not shown).

Fig. 7. Combined Hypotheses 1,2,3: distributions of prevalence (A) and incidence rates (B) due to the combined effects

of increases in the direct progression ðpSÞ, reactivation rate ðrSÞ, and the transmission/receipt rates of the HLA-DR2þ

population (bx, by , bz). Gray bars represent distributions for the fraction of baseline simulations resulting in observed

steady-state prevalence and incidence rates. White bars represent distributions for the fraction of simulations resulting

in observed steady-state prevalence and incidence rates due to increases in pS , rS , bx, by , and bz. Here pS 2 ½0:10; 0:20�,
rS 2 ½0:0033; 0:0066�=yr, bw 2 ½5:0; 7:0�=yr, bx ¼ by 2 ½7:0; 9:0�=yr, bz 2 ½9:0; 11:0�=yr, while m ¼ 0:30, pN ¼ 0:075 and

rN ¼ 0:002485=yr.
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458 7. Demographic influences on M. tuberculosis infection in heterogeneous populations

459 There are four parameters within our model that may be influenced by demographics: birth rate
460 (b), natural death rate (l), transmission parameters (bj; j ¼ w; x; y; z), and the fraction of the
461 population that is genetically susceptible to M. tuberculosis infection (m). Values for b, l, and m are
462 greater in India than in the USA (see Table 2).
463 Demographic factors such as crowding, closed environments, nutrition, and access to health
464 care and treatment, likely affect the value of bj [19]. We choose transmission rates for the USA
465 (bU

j ) to be less than or equal to rates for India (bI
j) based on studies showing an increase in

466 transmission of M. tuberculosis in crowded environments and closed spaces [52]. India has a
467 population five times larger than the USA within an area one third the size. Therefore, the
468 probability of encountering an infectious individual and the time spent in close contact with an
469 infectious individual (the duration and intensity of exposure) are likely greater for more dense
470 populations.
471 As our goal is to determine the effects of demographic variations on prevalence, we simulate a
472 baseline scenario where we allow for variation in demographic parameters while all other pa-
473 rameters are fixed at their median values. This creates a distribution for prevalence due to vari-
474 ation in demographics. Ranges for bU

j and bI
j (j ¼ w; x; y; z) are noted in Table 2. Parameter ranges

475 on b and l for both countries were created by increasing and decreasing the fixed value in Table 2
476 by one factor of the countries’ respective growth rates. For example, the range on b for India was
477 created by calculating b� 0:018b and the range on b for the USA was determined from
478 b� 0:009b. See Fig. 8 for the baseline simulation.
479 In the rest of this section, we investigate changes in demographic parameters in pairs: b; l and
480 then m;bI;U

j . We do this to isolate parameters that were previously discovered to have strong effects
481 on prevalence (see Section 6).

Fig. 8. Simulations for the distribution of prevalence for two populations under 2 scenarios. Panel A: India demo-

graphics with high genetic susceptibility (m ¼ 30%) to M. tuberculosis infection (white bars) and low genetic suscepti-

bility (m ¼ 10%) to M. tuberculosis infection (gray bars). Panel B: USA demographics with high genetic susceptibility

(m ¼ 30%) to M. tuberculosis infection (white bars) and low genetic susceptibility (m ¼ 10%) to M. tuberculosis infection

(gray bars).
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482 7.1. Birth (b) and death (l) rates

483 Previously we discussed that, analytically, variations in the annual birth rate, b, have no in-
484 fluence on prevalence; numerical simulations agree with this result (data not shown). As discussed
485 in [63], the per capita natural death rate l is one of the most influential parameters in determining
486 the magnitude of R0, and thus the prevalence of TB. There is an inverse relationship between
487 prevalence and death rate as an increase in death rate reduces the number of individuals at risk for
488 infection. This relationship is observed regardless of the fraction of the susceptible subpopulation,
489 m.
490 The per capita death rate due to TB disease, lTB, is even more strongly influential in deter-
491 mining the magnitude of R0, and thus the prevalence of TB. This is clear since lTB indicates how
492 long (on average) an individual remains infectious (capable of transmitting M. tuberculosis) in the
493 absence of treatment. The longer an individual remains infectious (i.e., the smaller lTB is), the
494 larger prevalence will be in the general population. Small changes in the value of lTB dominate
495 variations in all other parameters, seen by the partial rank correlation coefficient clTB

� �0:9483.
496 In fact, the correlation value for lTB indicates a significantly greater impact (p ¼ 0:0001) on
497 prevalence compared with any other parameter.

498 7.2. Transmission ðbjÞ and frequency of genetic susceptibility ðmÞ

499 In Fig. 6 we see that, in addition to the frequency of genetic susceptibility, m, transmission rates
500 bj ðj ¼ w; x; y; zÞ are the most important parameters influencing TB prevalence. It is difficult or
501 impossible to gather reliable data on these rates. Thus, we perform additional experiments to
502 determine whether the influence of m and b are modulated by demographic factors, and to examine
503 further the relative dependence of prevalence on these two classes of parameters.
504 To examine the relative influence of transmission and HLA-DR2 frequency, we vary m in the
505 range [0.0, 0.5] and perform three simulations:

506 1. vary only bw in the range [3,7],
507 2. vary only bx ¼ by in the range [7,11], and
508 3. vary only bz in the range [11,15].

509 These simulations are duplicated for the two sets of demographic parameters reflecting both
510 India and the USA. See Fig. 9 for contour plots of prevalence of TB versus both m and b for India
511 (panels A, B, C) and the USA (panels D, E, F).
512 Results of these experiments show that in a population with a large genetically susceptible
513 subpopulation (high values of m), prevalence is only marginally dependent on the transmission
514 parameters bj ðj ¼ w; z; y; zÞ. However, in a population with a small genetically susceptible sub-
515 population (low values of m), bw is far more influential on prevalence than either bx or bz. This is
516 due to the fact that the majority of the population is in the two compartments UN and TN . Even at
517 low HLA-DR2 frequencies, varying m augments prevalence to a greater extent than varying the
518 transmission parameters bj ðj ¼ w; z; y; zÞ.
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519 8. Discussion

520 In this study we have used an epidemiological model to investigate the effects of genetic sus-
521 ceptibility and demographic factors on epidemic tuberculosis. Wide variation in endemic TB levels
522 between countries underlies the importance of identifying factors responsible for these differences,
523 especially when designing treatment and public health strategies. This paper is novel as it in-
524 vestigates various explanations for differences in epidemic TB levels in distinct population set-
525 tings. Mathematical models are powerful tools for studying the complex, non-linear dynamics of
526 M. tuberculosis epidemics. In addition, mathematical models can provide clues to underlying
527 mechanisms of disease dynamics that epidemiology studies alone cannot.

Fig. 9. Contour plots of TB prevalence versus m and bj ðj ¼ w; x ¼ y; zÞ for Indian (panels A, B, C) and USA (panels D,

E, F) demographics. Prevalence contours of 30%, 40%, 50%, and 60% are indicated by open circles, triangles, squares,

and closed circles, respectively.
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528 Specifically, we model two subpopulations, one with genetic susceptibility to M. tuberculosis
529 infection and one that is genetically neutral. Our choice of modeling genetic susceptibility is ar-
530 bitrary for this paper, and one could easily envision a similar approach to modeling a subpop-
531 ulation that is genetically resistant to infection. A model that accounts for all three
532 subpopulations, genetic resistance, neutrality, and susceptibility, is more realistic and is currently
533 being investigated.
534 There are limitations to our initial approach, however, mainly due to the complex nature of
535 modeling infectious disease in heterogeneous populations. One inherent difficulty is that many
536 parameters incorporate both genetic as well as demographic (or social) components, in particular
537 the disease transmission parameters bj ðj ¼ w; x; y; zÞ. These limitations require a number of
538 simplifications, which we are careful to point out in our assumptions (Section 4). Current and
539 future research projects will investigate relaxing these.
540 We also do not attempt to model temporal TB epidemic dynamics. Rather, we focus on the
541 effects of particular parameters, especially those that relate to genetic susceptibility, on changes in
542 the present-day steady-state levels of prevalence and incidence. Because of this approach, we do
543 not account for genetic selection on m, the fraction of the population with a particular susceptible
544 phenotype. Many papers have been written which account for populations that undergo genetic
545 selection due to infectious diseases [50,70–72]. We are currently exploring selection for or against
546 traits of the neutral and susceptible populations in extensions of this work.
547 As a necessary simplification, we also do not account for changes in demographic parameters
548 (birth and death rates) over time (as in [50]). This again reflects our initial approach of analyzing
549 steady-state values rather than demographic trends over time. Once we gain better understanding
550 of parameter contributions, we can relax this simplification and follow the approach similar to
551 [50,73] for estimating and using demographic parameters that evolve over time.
552 The basic reproduction number R0 of an infectious disease indicates whether or not the disease
553 will become established within the population. Determining an R0 expression for many epidemic
554 SIR models can be routine. For scenarios where multiple strains (subtypes) of an infectious
555 disease exist, an R0 number is calculated for each strain. However, our model tracks only one
556 strain ofM. tuberculosis in a population with multiple subpopulations. In this case, we must define
557 a single R0 for the population as a whole, rather than an R0 for each subpopulation. This is a
558 significantly more difficult task.
559 We used an implicit method for generating an expression for R0 (see Eqs. (8)–(12)). This
560 method is based on the idea that R0 is a normalized bifurcation condition for the model. We
561 validate our calculation of R0 using the Next Generation Operator method under the limiting
562 condition of proportionate infectivity (scalability of the transmission parameters bj

563 ðj ¼ w; x; y; zÞ); results not shown).
564 The roles of genetic susceptibility and resistance to infectious diseases are clearly important but
565 not well understood. In this paper we first simulate epidemic TB in a population with known
566 susceptibility to infection. Results show that the presence of a small genetically susceptible sub-
567 population can dramatically increase prevalence and incidence of TB in the general population.
568 We then study epidemic TB in two demographically different populations, India and the USA,
569 and explore how demographic factors impact TB prevalence.
570 Obvious demographic differences between the USA and India are birth and death rates. Our
571 choice of assuming a constant birth rate b means that changes in the birth rate will have no effect
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572 on prevalence of TB. This is reasonable as a constant birth rate simply scales the size of the
573 population, and thus the sizes of the subpopulations, while keeping the ratio of infecteds to
574 uninfecteds, i.e., prevalence, constant. Changes in the death rate l and lTB dominate changes in
575 all other parameters.
576 Two other parameters, disease transmission (bj) and the fraction of the population genetically
577 susceptible to active TB disease (m), also have strong influences on prevalence. Results of simu-
578 lations varying these two parameters indicates that in populations with a high level of genetic
579 susceptibility, prevalence is only slightly affected by changes in bj. In a population with a small-
580 genetically susceptible subpopulation, bw is far more influential than bx or bz. This is expected, for
581 when m is small, a greater proportion of the population is in the uninfected, genetically neutral
582 classes (UN and TN ). This follows since transmission of M. tuberculosis to individuals in the UN

583 population is governed by bw.
584 We are presently investigating treatment strategies that compare treating an entire population
585 or targeting a particular subpopulation [74]. Using our model, we can study trade-offs between
586 therapy of active TB disease and chemoprophylaxis of latent disease in heterogeneous popula-
587 tions. The added effects of drug-resistance, treatment non-compliance, and co-infection with other
588 diseases together with ideas on genetic susceptibility needs to be investigated further.
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