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1 Introduction

Cancer is a major cause of death worldwide, resulting from the uncontrolled growth
of abnormal cells in the body. Cells are the body’s building blocks, and cancer starts
from normal cells. Normal cells divide to grow in order to maintain cell population
equilibrium, balancing cell death. Cancer occurs when unbounded growth of cells in
the body happens fast. It can also occur when cells lose their ability to die. There
are many different kinds of cancers, which can develop in almost any organ or tis-
sue, such as lung, colon, breast, skin, bones, or nerve tissue. There are many known
causes of cancers that have been documented to date including exposure to chemi-
cals, drinking excess alcohol, excessive sunlight exposure, and genetic differences,
to name a few [37]. However, the cause of many cancers still remains unknown. The
most common cause of cancer-related death is lung cancer. Some cancers are more
common in certain parts of the world. For example, in Japan, there are many cases
of stomach cancer, but in the United States, this type of cancer is pretty rare [49].
Differences in diet may play a role. Another hypothesis is that these different popu-
lations could have different genetic backgrounds pre-disposing them to cancer. Some
cancers also prey on individuals who are either missing or have altered genes as com-
pared to the mainstream population. Unfortunately, treatment of cancer is still in its
infancy, although there are some successes when the cancer is detected early enough.
To begin to address these important issues, in this work we will focus solely on ge-
netic issues related to cancer so that we can explore a new treatment area known as
gene therapy as a viable approach to treatment of cancer.

Genes are located on chromosomes inside all of our cells and are made of DNA.
Humans have approximately 35,000 genes. Gene therapy is an experimental treat-
ment currently being tested in clinical trials that involves introducing additional ge-
netic material (either DNA or RNA) into cells to fight cancer in a few different ways.
There are several gene therapy approaches that are being explored. First, scientists
are attempting to use gene therapy to replace missing or mutated genes with healthy
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genes (for example, p53, [41]). Second, scientists are attempting to put genes into
tumors that act like suicide bombs once they are turned on by drugs that are admin-
istered to the patient [53]. Similar to the suicide genes, a third approach is to insert
genes that make tumors more susceptible to treatments such as chemotherapy and ra-
diotherapy. And finally, gene therapy is being used to improve the immune response
to cancers by enhancing the ability of immune cells, such as T cells, to fight cancer
cells [42]. Figure 1 summarizes these different gene therapies. Not surprising, gene
therapy research has continued to includes other genetics manipulations of gene ex-
pression through delivery of modified genes, short pieces of RNA known as siRNA
(see [5]), naked plasmid DNA, and even viruses as vectors for delivery of genetic
material into cells. To reduce the risks of side effects, specific tissues and cell types
must be targeted. Not only is the type of gene therapy best suited for each case not
known a priori, the choice of which gene to target, the dose and timing of treat-
ments all must be determined. A recent review summarizes advances in gene therapy
and also highlights opportunities for systems biology and mathematical modeling to
synergize efforts with experimentalists and clinicians to push cancer research for-
ward [22].

Mathematical modeling has been instrumental in the past 50 years in helping
decipher different aspects of complex systems in biology. In particular, mathematical
modeling has had an impact on our understanding of cancer biology and treatment
(cf. [4, 24, 60] for excellent reviews). We begin by briefly reviewing existing models
designed specifically for capturing tumor-immune dynamics, one of which forms the
basis for our current work. As a first step to exploring the use of gene therapy on the
tumor-immune interaction during cancer, we will apply a simple mathematical model
to explore the dynamics of these different types of gene therapies, with the goal of
predicting optimal combinations of approaches leading to clearance of a tumor. We
present the model and its analysis (both analytical and numerical) and offer some
conclusions.

2 Brief Review of Mathematical Models Describing
Tumor-Immune Dynamics

For the past 40 years, mathematical models have been developed describing many
aspects of cancer from tumor growth dynamics ( cf. [11, 21, 31]), angiogenesis and
vascularization (cf. [35,39,52]), to the topic of immune response to tumors. Since the
work herein will be focused solely on tumor-immune dynamics, we briefly review
work in this area.

Tumor-immunemodels have been around since the early 1990s and have evolved
to capture very complex aspects of the immune response as knowledge of the molec-
ular dynamics of immunity has increased. For example, an important aspect of im-
munity is the recognition of non-self, or foreign antigens. Specialized antigen pre-
senting cells (known as macrophages and dendritic cells) present foreign antigen to
immune cells, such as T cells, to train them to respond and clear the foreign material
(like bacteria and viruses). Of course, since tumor cells began as self, or non-foreign



A Mathematical Model of Gene Therapy for the Treatment of Cancer 357

Fig. 1. Gene therapy and immunotherapy treatments. As denoted by the numbers in the figure:
(1) Replace missing or mutated genes with healthy genes. (2) Insert genes into tumors that act
like suicide bombs once they are turned on by drugs (3) Insert genes that make tumors more
susceptible to treatments such as chemotherapy and radiotherapy. (4) Augment the immune
response to cancers by enhancing the ability of immune cells, such as T cells and dendritic
cells, to fight cancer cells.

host cells, the level of antigenicity of the tumor may be weak as the human immune
system is trained to not kill self. Mathematical models of tumor-immune interactions
that have explored dynamics at this scale are [25,33,40,47,51]. Recently, Joshi et al.
[30] develop a new mathematical model to capture immunotherapy that involves the
antigen presentation pathway and its role in tumor-immune dynamics. Other models
focus only on therapy as well as on boosting immunity [3,6,8–10,15–17,20,28,48].
Immune competition models have been studied [14, 33, 34], which focus on the dy-
namics between host immune cells and tumors. These type of studies have their
origin in the Lotka-Volterra models established almost 100 years ago.

2.1 Lotka-Volterra Models for Tumor-immune Interactions

The idea to use the qualitative theory of ordinary differential equations in mathemat-
ical biology reaches back to 1920’s when Lotka and Volterra formulated a simple
mathematical model in population dynamics theory. A good summary published in
1997 by Adam and Bellomo [1] presents a summary of early work regarding this ap-
proach to tumor-immune dynamics, and much of the original work on this was done
by Kutznetsov [29] and colleagues. We review it briefly.
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Let y(t) be the population of predator and x(t) is population of its prey (for
example, one can imagine populations of wolves and rabbits in a forest). Assum-
ing that numbers x(t),y(t) are big enough and that the predator and prey popula-
tions are homogeneous, one can view them as continuous functions of time. Let
Δx(t) = x(t+Δ t)− x(t) and Δy(t) = y(t +Δ t)− y(t) be small variations of popu-
lations during a certain period of time Δ t. Taking Δ t = 1 (for example 1 day) one
can replace Δx(t), Δy(t) by their derivatives, i.e. write ẋ(t), ẏ(t) instead. The Lotka–
Volterra equations are given by

{
ẋ= ax−bxy
ẏ= −cy+dyx (1)

where a,b,c,d are some positive numbers.
The linear positive term ax in the first equation (prey) corresponds to exponential

growth; the negative predation term, −bxy, describes the rate prey are lost and is
proportional to number of prey and predators in mass action form. In the second
equation (predator), the negative linear term −cy corresponds to natural death, as
prey will not survive without prey, and +dxy describes the growth of the predator
population proportional to prey and number of predators. The simple form of Lotka-
Volterra (LV) system is remarkable. It allows for investigation of the quantitative
and qualitative behavior for all of its solutions both analytically and numerically.
First, no chaotic behavior is possible according to Poincaré-Bendixon theorem, and,
asymptotically, every non-periodic solution either goes to a fixed point or approaches
a limit cycle. Simple analysis shows that most solutions of LV system are periodic,
i.e. the population numbers x(t),y(t) are oscillating around a certain equilibrium state
x(t) = x∗,y(t) = y∗. The stable, stationary solution is (0,0).

In 1994 Kuznetsov et al. [29] applied Lotka–Volterra ideas to cancer modeling,
where E(t) represents the effector immune cells (predators) and T (t) the tumor cells
(prey). The equations, which are similar to the LV system, are written as follows:






Ė = s+ p
ET
g+T

−mET −dE

Ṫ = aT (1−bT)−nET

(2)

where s, p,g,m,d,a,n,b are positive parameters.
Here the exponential growth of T in the second equation, was replaced by a more

realistic one in logistic form: aT (1− bT) (originally due to Verhulst, 1838), where
b−1 is the maximal carrying capacity for tumor cells and a is the maximal growth
rate. The term−nET describes the loss of tumor cells due to the presence of immune
cells. In the first equation s is normal immune cell growth, which is n cell death with
d the loss rate; −mET describes the decay of E cells due to interacting with tumor
cells in a mass action way. The term p

ET
g+T

represents Mchaelis-Meten growth of

the immune response in response to tumors.
The Kuznetsov equations describe several important features and allow us to

make predictions that are relevant for understanding cancer immunotherapy. The
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paper by Kuznetsov et al. [29] establishes existence of long period oscillations of
tumor that agrees with recurrent clinical manifestations of certain human leukemias.
In addition, the model predicts the existence of a critical level of E-cells in the body
below which the tumor growth cannot be controlled by the immune response. It
describes qualitatively the ”escape” phenomena in which low doses of tumor cells
can escape immune defenses and grow into a large tumor, whereas larger doses of
tumor cells are eliminated.

The Kuznetsov model was generalized by Kirschner and Panetta in 1998 [26].
The idea was to introduce a third population (concentration) of effector molecules
known as cytokines, which are information signaling molecules used extensively in
intercellular communication by the immune system. Below we describe briefly the
Kirschner-Panetta equations. Tumor cells are tracked as a continuous variable as they
are large in number and are generally homogeneous; their concentration is denoted
by T (t). Immune cells (called effector cells) are also large in number and repre-
sent those cells that have been stimulated and are ready to respond to the foreign
matter (known as antigen); their concentration is denoted by E(t). Finally, effec-
tor molecules are represented as a concentration C(t). These are self-stimulating,
positive feedback proteins for effector cells that produce them. The equations that
describe the interactions of these three state variables are referred herein as the
Kirschner–Panetta (KP) system:






dE
dt

= cT − µ2E+
p1EC
g1+C

+ s1 (3a)
dT
dt

= r2T (1−bT)−
aET
g2+T

(3b)
dC
dt

=
p2ET
g3+T

+ s2− µ3C (3c)

(3)

In equation (3a), the first term represents stimulation by the tumor to generate
effector immune cells. The parameter c is known as the antigenicity of the tumor.
Since tumor cells begin as self, c represents how different the tumor cells are from
self cells (i.e., how foreign). The second term in (3a) represents natural death and the
third is the proliferative enhancement effect of the cytokine IL-2. In equation (3b),
the first term is a logistic growth term for tumor growth and the second is a clearance
term by the immune effector cells. In the final equation (3c), IL-2 is produced by
effector cells (in a Michaelis-Menten fashion) and decays via a known half-life (third
term).

To capture a novel treatment approach (still in use in some clinical settings),
KP introduced three terms into their models. The first one is Adoptive cellular im-
munotherapy (ACI), representing the introduction of immune cells into cancer pa-
tients that have been stimulated to have specific anti-tumor activity [42, 44–46]. T
cells, also known as lymphocytes, produce cytokines that are either self-stimulating
or can stimulate (or shut down) other cells. ACI is usually performed in conjunction
with large amounts of IL-2. There are two types of immune cells that are cultured for
this purpose: 1. LAK-(lymphokine-activated killer cells): cells taken from host and
then stimulated with activating factors. These cells are then injected back to patient.
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2. TIL-(tumor infiltrating lymphocytes): Immune cells are taken from patient, and
grown with high concentrations of IL-2 before injected back to the patient.

In the KP model, s1 represents the treatment terms of introducing LAK and TIL
cells to the tumor site of a patient. The second term, s2, is a treatment term that
represents administration of the cytokine IL-2 by a physician to a patient, to again
stimulate effector cell growth and proliferation.

The KP system can exhibit chaotic behavior. The typical example of chaotic be-
havior is the system of Lorenz (1963) representing a so called strange attractor. The
complete qualitative analysis of KP equations is much harder than the conventional
Kuznetsov model. Nevertheless, Kirschner and Panetta, using stability analysis and
modern bifurcation theory, classified representative behaviors of solutions and stabil-
ity of cancer-free equilibrium states. Description of oscillations with long time dor-
mant periods of illness were described in order to complete the studies by Kuznetsov.

Arciero and colleagues [5] extended the KP equation by including a suppressive
cytokines known as TGF-β and also a simple type of gene therapy known as siRNA
[38]. The use of siRNA is an early type of gene therapy where short-interfering RNA
fragments interfere with the expression of a specific gene and modify behaviors in
a cell. In addition, they added TGF-β to the model, which is a cytokine that acts to
suppress immunity by inhibiting activation of effector cells and reducing antigenicity
of tumors. It also stimulates tumor growth by promoting tumor vascularization. Their
model predicts that increasing the rate of TGF-β production for reasonable values of
tumor antigenicity enhanced tumor growth and its ability to escape host detection.
siRNA treatment focused on the gene expression for TGF-β : it acts to suppress TGF-
β production by targeting the messenger RNA that codes for TGF-β . Reducing TGF-
β helped to rescue these negative effects to the host. Another group also recently
explored the development of a microRNA-mRNA for the purpose of gene network
regulation in tumors [2]. In an additional paper, Burden and colleagues [12] explored
optimal control methods for determining the best treatment strategy based on the KP
equations. They designed a control functional to maximize numbers of effector cells
and interleukin-2 concentration while minimizing numbers of tumor cells. In 2008,
S. Banerjee [7] proposed a delay version of KP equations where the equation (3a)
was replaced by a new one:

dE(t)
dt

= cT (t)− µ2E(t)+
p1E(t− τ)C(t− τ)

g1+C(t)
+ s1 (4)

with the rest of the KP system (equations 3) remaining the same. The introduction
of a time delay, τ > 0, corresponds to the delay that occurs between the production
of a cytokine production, and its downstream binding and activation action on host
effector cells. In that work, Banerjee analyzed the local stability of the cancer free
equilibrium in the presence of the delay using semi-numerical bifurcation methods.

All of the above applications of dynamical system theory were studied using a
similar approach: investigation of local stability of solutions by linear approxima-
tion (i.e., non-linear equations are replaced by linear ones in a suitable regions of
phase space). However, non-linear phenomena have a much greater complexity and
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require analysis on a global level. Very few generalized methods have been devel-
oped; as such, usually each non-linear system must be studied individually. The main
difficulty is the presence of free, non-numerical parameters in the system as clearly
exemplified in the KP equations. Parameters (13 of them for KP model) such as
antigenicity, c, or maximal growth ratio, a, are not known experimentally. These pa-
rameters are mostly composite parameters that phenomenologically represent a set
of biological mechanisms in a simple way. To describe different qualitative scenarios
of the model when performing a stability analysis without using numerical values for
the model parameters is a critical task. Thus, we consider the pairing of numerical
and analytical methods as the best approach to gain as much information as possi-
ble. Finally, In 2009, Kirschner and Tsygvintsev [27] performed a global analysis
of the KP system using the generalized Lyapunov method. They derived sufficient
conditions that guarantee asymptotic convergence as t→+∞ of T (t) to 0. For a ”vir-
tual” patient, that would imply complete clearance of cancer once a corresponding
therapy is adopted. Another result of [27] was to analytically prove the existence of
host self-regulation of cytokine levels that never exceed certain critical values. See
also [13, 19] for further discussion.

3 A Gene Therapy Model

The problem with the use of LAK and TIL cells as described above is that only about
half of the TILs that are typically generated are reactive to tumors [50]. Thus, the
ability to genetically engineer TIL cells that are directed against tumor specific anti-
gens is a key objective. Recently, this was attempted in a small clinical trial [43] and
a small percentage of patients had complete tumor regression. In this study, Rosen-
berg and colleagues took a blood sample from each patient and transferred genes into
T cells inducing each cell to produce specialized T-cell receptors (TCR). These cells
are then transferred back into the patient. In the body, T cells produce TCRs on their
outer membrane and the TCRs recognize and attach to certain molecules found on
the surface of the tumor cells. Finally, signaling through the TCRs activates T cells
to attack and kill the tumor cells. To explore these studies further we will build on
the KP model.

First, to simplify the model we can remove the IL-2 equation (3c). We replace
the IL-2 saturation term in equation (3a) with a self-proliferation term, i.e. p1E/(E+
f ). The idea that the proliferation rate of effectors may be a decreasing function of
effectors has been explored by d’Onofrio et al. [18]. To capture the effects of gene
therapy (see Figure 1) we must allow for the immune parameters of the model, i.e. a
and c, to be step functions. Antigenicity, c, will signal stronger to the immune system
during gene therapy and the clearance of tumor cells, a, will be strongly enhanced
after gene therapy. Finally the source term representing TIL cells, s1(t) should be
time dependent.We can also combine this with a self-limiting gene therapy treatment
for tumors, which affects the growth rate of the tumor, r2, by allowing it to be a step
function that decreases its growth rate. The new equations are:
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Ė = c(t)T − µ2E+ p3
E

E+ f
+ s1(t),

Ṫ = r2(t)T (1−bT)−a(t)
ET

T +g2
.

(5)

It is this model that we analyze both analytically and numerically in the next
sections. We define the parameters of system (5), their values as well as their ranges
of variation in Table 1. They are mostly based on previously published data (cf.,
[5, 7]).

Table 1. Parameter values for the model (5)

Name De f inition Baseline(units) Range
µ2 Half-life of effector cells E 0.03 (1/time) 0.03
p3 Proliferation rate of E 0.1245 (1/time) 0.1245
f Half-sat for E proliferation term 10−3 (cells) [10−5,1]

s1(t) Immunotherapy term 1 (cells/time) [10−2,102]
c(t) Cancer antigenicity 0.05 (1/time) [10−3,0.5]
r2(t) Cancer growth rate 0.18 (1/time) [10−1,2]
b Cancer cell capacity (logistic growth) 10−9 (1/cells) 10−9
a(t) Cancer clearance term 1 (1/time) [10−2,102]
g2 Half-saturation, for cancer clearance 105 (cells) 105

4 Stability Conditions for Non-Autonomous Gene Therapy Model

In this section we derive conditions for global stability of the cancer free state (T = 0)
for the Gene Therapy model (5). First, we investigate the second equation of system
(5) independently from the first equation. Thus, we consider r2(t), a(t) and e(t) =
E(t) as arbitrary positive data functions:

Ṫ = r2(t)T (1−bT)−a(t)
e(t)T
T +g2

. (6)

The only biological plausible solutions should satisfy the condition T (t) ∈ [0,b−1].
Moreover, as easily seen from the second equation of system (5), the interval [0,b−1]
is dynamically invariant under the flow. Our first aim is to derive conditions on the
functions r2(t),a(t) and e(t), which would imply asymptotical global stability of the
cancer free equilibrium state T = 0.

Theorem 4.1. Let one of the following two conditions holds

Condition 1: There exist t0 > 0 and ε > 0 such that



A Mathematical Model of Gene Therapy for the Treatment of Cancer 363

a(t)e(t)
r2(t)

> g2+
(1−bg2)2

4b
+

ε
r2(t)

, ∀t ≥ t0 (7)

or

Condition 2: g2 > b−1 and there exist t0 > 0 and ε > 0 such that

a(t)e(t)
r2(t)

> g2+
ε

r2(t)
, ∀t ≥ t0. (8)

Then every solution of (6) satisfies lim
t→+∞

T (t) = 0 with exponential convergence.

Proof. We write equation (6) in the form:

Ṫ =
r2(t)T
T +g2

V (T ), (9)

where V is a quadratic polynomial with respect to T given by:

V (T ) = −bT2+(1−bg2)T +g2−
a(t)e(t)
r2(t)

, (10)

with discriminant D as follows:

D= (1−bg2)2+4b
(
g2−

a(t)e(t)
r2(t)

.

)
(11)

Condition 1 is equivalent to D< −4bε/r2(t). Thus,

r2(t)V (T ) < −ε, (12)

for all T , since the leading coefficient of V (T ) is negative (i.e., −b< 0, see Fig. 2).
The equation (9) can be written, for every fixed solution T (t), in the form:

Ṫ = −δT (t)T, (13)

where δT (t) = −r2(t)V (T )/(T + g2). Since T (t) is bounded above by b−1 and be-
cause of (12), the inequality δT (t) > δ0 > 0 begins from a moment of time. That
completes the proof of the exponential convergence of T (t) to 0 as t → +∞.

Now, let us assume that (10) have two real roots A and B, A < B. The quadratic

polynomial functionV (T ) has unique extremum given byC=
(1−bg2)
2b

< b−1, cor-

responding to maximal value of V (T ). Also, V (b−1) = −
a(t)e(t)
r2(t)

< 0. Both roots

are negative, i.e. A,B < 0 if and only if C < 0 and V (0) < 0. We assume that
r2(t)V (0) < −ε for certain positive ε . The same arguments of Condition 1 can be
applied.
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Fig. 2. The quadratic function V (T )

We note that Conditions 1 and 2 are also necessary for global stability of the state
T = 0: if both are not satisfied, it is always possible to choose parameter values that
return a solution for which T (t) is not converging to 0. As it follows from the analysis
above, key parameters governing the stability of cancer free equilibrium state T = 0
are included in the function:

S(t) =
a(t)E(t)
r2(t)

(14)

In order to stabilize or completely eliminate the cancer, we suggest the choice of
functions in system (5) that force S(t) to be uniformly bounded from zero for all val-
ues of time. Here, different paths can be proposed. We can adjust the external source
of effector cells s1(t) every time S(t) starts to decrease or, alternatively, the functions
r2(t),a(t) can be made E-dependent in a way that the stability condition S(t) > S0
holds until complete eradication of the tumor is achieved. Below we propose con-
ditions which do not involve effector cells, E(t) explicitly. In the next theorem, T0
plays a key role: if T falls below T0, the cancer is assumed cleared.

Theorem 4.2 (Main Stability Theorem). Let the following condition be satisfied
for all t ≥ t0 with some constants t0 ≥ 0, ε > 0, σ > 0, β > 0 and T0 ∈ (0,b−1)






µ2(ε+θ r2(t))2+(µ2 f − p3− s1(t)− c(t)T0)(ε +θ r2(t))a(t)
−(s1(t)+ f c(t)T0−β )a2(t) < 0

ε+θ r2(t)
a(t)

is a non− increasing function of time

f c(t)T0+ s1(t) > σ > 0

(15)
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where

Case a: θ = g2+
(1−bg2)2

4b

or

Case b: θ = g2 and g2 > b−1

The following statements hold:

Case I (partial clearance). For every solution (T (t),E(t)) of (5) given by initial con-
dition (T (t1),E(t1)), t1 ≥ t0 with T (t1) > T0 the function T (t) will reach in finite time
the value T0.

Case II (complete clearance). If condition (15) is satisfied with T0 = 0 then for all
solutions of the system (5)

lim
t→+∞

T (t) = 0 (16)

Proof. We write the first equation of the system (5) as follows

Ė =
K(E)

E+ f
(17)

where K is quadratic polynomial with respect to E given by

K = α̃E2+ β̃E+ γ̃ (18)

and α̃ = −µ2, β̃ = c(t)T (t)+ p3+ s1(t)− µ2 f , γ̃ = f c(t)T (t)+ f s1(t).
The conditions (7) and (8) can be all expressed, for suitable real positive number

θ in the following form
E(t)−h(t) > 0 (19)

with
h(t) =

ε+θ r2(t)
a(t)

(20)

Checking the discriminant of quadratic polynomial K(E) one proves that K(E) = 0
has always two real roots A< 0, B> 0 of opposite signs such that γ̃ > 0. Since the
leading coefficient α̃ < 0 the quadratic polynomial K(E) is positive in the interval
(A,B) and negative outside. The first inequality of (15), in the case T > T0, is equiv-
alent to condition K(h(t)) > β ⇒ h(t) ∈ [0,B) (see Fig. 3).

At the same time K(0) = γ̃ = f c(t)T (t)+ s1(t) f > σ . This implies that one will
have Ė(t) > β0/(E+ f ) with

β0 =min(σ ,β ) (21)

once the inequality (19) is violated, forcing E(t) to increase. Since h(t) is non in-
creasing function, the inequality (19) will be satisfied for certain t = t∗ and will hold
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Fig. 3. The quadratic function K(E)

then for all t ≥ t∗. As follows from the proof of Theorem 4.1 and (13), for t ≥ t∗ the
function T (t) will decrease till it takes the value T = T0. If T0 = 0 ( Case II ) then
one uses Theorem 4.1 again to derive (16).

One can interpret the significance of the inequality f c(t)T0 + s1(t) > σ > 0 in
(15) as follows. Once antigenicity is switched off, i.e. c(t) = 0, treatment, s1(t),
should be non-zero and vice versa. In the case of complete tumor clearance (T0 = 0),
the treatment term should be always positive above a certain level. Indeed, partial
clearance does not exclude future regressing via the ”escape” effect.

5 Numerical Simulations

Because the analytical results hold only for very small regions of parameter space,we
would like to explore the gene therapy model more fully. To this end, we will apply
statistical sampling techniques and numerical analysis to the system.

Sufficient conditions (15) of the Main Stability Theorem 4.2 imply large ranges
for the four treatment parameters c(t), s1(t), a(t), r2(t), which are directly related
to the four treatment strategies in Figure 1. The values of initial conditions have
been varied between 1 and 105 for the populations of effector and tumor cells, E(0)
and T (0). Global stability conditions (15) hold for any initial conditions (we use
E(0) = C(0) = 103 for our baseline run). Sufficient conditions (15) are tested nu-
merically by solving system (5) in Matlab using ode15s (a solver for stiff systems).
Since conditions (15) are sufficient, we combine techniques from uncertainty and
sensitivity analysis (see [32] for a review) to efficiently and comprehensively inves-
tigate treatment combinations and how they might affect cancer progression.
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Regions of the parameter space where cancer is cleared are searched by sampling
the parameter space in the ranges defined in Table 1. We only vary the 4 treatment
parameters, while all others are kept constant at their baseline values (see Baseline
column in Table 1). Samples are generated from uniform distributions and the sam-
pling scheme used is known as Latin hypercube sampling (LHS) [36]. LHS scheme
comprises three main steps: i) definition of probability density functions to use as
a priori distributions for the parameters under analysis, ii) number N of samples to
perform and iii) independent sampling of each parameter. The last step assumes that
each parameter distribution is divided into N subintervals of equal probability and
that the sampling is preformed without replacement. The accuracy of LHS is com-
parable to simple random sampling schemes but more efficient (i.e., with a signifi-
cant reduction in the number of samples needed). In our study we use a sample size
of 10,000 and tested numerically the impact of combining only constant treatment
strategies, although conditions (15) are also valid for time-varying inputs.

5.1 Sensitivity Analysis as a Way to Determine Optimal Parameters for
Treatment

In conjunction with uncertainty analysis, we use a generalized correlation coef-
ficient (partial rank correlation coefficient, PRCC) to guide our understanding of
which treatment parameter(s) contribute most to drive cancer proliferation or clear-
ance (our model outcomes). PRCC is one of the most popular sensitivity indexes
used for the analysis of deterministic models [32]. PRCCs results can be inter-
preted as a degree of correlation between input and output variability: PRCCs vary
between -1 and 1 and can be applied to any nonlinear monotonic relationship. A
test of significance is also available: only PRCCs that are significantly different
from zero are shown in this study. In order to select an optimal combination of
treatments, a pairwise comparison between PRCCs has been performed by a gen-
eralized z-test (see page 183 in [32]) and a ranking of the treatments is gener-
ated. Uncertainty and sensitivity analysis results are shown in Table 2. We review
these techniques and others in [32]; our Matlab scripts to perform LHS, PRCC as
well as other uncertainty and sensitivity analysis techniques are available online at
http://malthus.micro.med.umich.edu/lab/usanalysis.html.

Table 2 shows how all four parameters have PRCCs that are statistically different
from zero (with p< 0.01): not surprisingly they are all negatively correlated to can-
cer cell count (i.e., increasing their values from the baseline, decreases cancer cell
count). Two treatment parameters, a(t) and s1(t) (cancer clearance and immunother-
apy terms, respectively), have the highest impact on reducing cancer cells. The other
two parameters (i.e., c(t) and r2(t)) have similar PRCCs (they share the same rank-
ing since they are not statistically different from each other), so they are equally
effective in reducing cancer cell count. Figure 4 shows scatter plots of parameters
versus cancer-cell counts, resulting from our extensive uncertainty analysis with an
LHS scheme of 10,000 samples. We classify the outputs in four groups: complete
clearance (green dots, no cancer cells), partial clearance (blue dots, cancer cell count
below the initial condition T (0) = 103), small growth (red dots, cancer cell count
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Fig. 4. Treatment combinations. Scatter plot of the numerical solution of system (5). The
values plotted correspond to the cancer cell counts at day 2000 and they are classified by
color: green-clearance (no cancer), blue-partial clearance (cancer below the initial condition
of 103), red-small growth (from 103 to 106), black-large growth (above 106). The x and y
axis represent the six combinations of the 4 treatment parameters c(t), s1(t), a(t), r2(t) as
sampled in the LHS described in the Numerical simulations section. We vary all four inputs
simultaneously (sampling from uniform distributions within their respective ranges) and keep
the rest of the parameters constant to the baseline values shown in Table 1 (Baseline column).

between 103 and 106) and large growth (black dots, cancer cell count above 106).
Cases where conditions (15) are satisfied are included in the ”green” region of Fig-
ure 4. There is clearly a synergy between immunotherapy and cancer clearance terms
(s1(t) and a(t)): both must be large to achieve complete clearance (green). High val-
ues for s1(t) or a(t) are always associated with lower cancer cell counts, but no
correlation can be inferred between either of these two parameters and antigenicity
(c(t)) or cancer growth rate (r2(t)). Below we show two examples of numerical sim-
ulations leading to complete clearance, when conditions (15) are either satisfied or
not (Fig. 5). Clearance is usually achieved fast when conditions (15) are satisfied.

6 Conclusion and Discussion

Using mathematical models to explore important problems in biology is an ever-
increasing tool towards shedding light on these complex systems. Cancer modeling
has had a recent and successful history of making predictions that can assist in hy-
pothesis generation leading to experimental and perhaps clinical verification. For ex-
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Table 2. Uncertainty and Sensitivity Analysis Results. PRCC values significantly different
from 0 (with p< 0.01). PRCCs ranking based on generalized z-test (p< 0.05).

Name De f inition PRCC Ranking
a(t) Cancer clearance term −0.1993 1st
s1(t) Immunotherapy term −0.1061 2nd
c(t) Cancer antigenicity −0.0814 3rd
r2(t) Cancer growth rate −0.0791 3rd
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Fig. 5. Numerical solutions of system (5). Shown are plots for the baseline simulation (Param-
eters are chosen from the Baseline column in Table 1), for clearance when conditions (15) are
satisfied (values of the treatment parameters are: s1(t)=764.5072, r2(t)=0.0023, a(t)=38.0040,
c(t)=0.3710), and clearance where conditions (15) are not satisfied (values of the treatment pa-
rameters are: s1(t) = 102 ,r2(t)=0.0523, a(t)=2, c(t)=0.05). The rest of the parameters are set
to baseline values shown in Table 1.

ample, gene therapy is a relatively young idea in treatment of diseases, the practice of
which is even younger. As with the development of any therapy, questions relating to
which gene to target, or what combination of therapies can be used (immunotherapy
plus gene therapies) is important. A recent paper reviewed the importance of pairing
high-throughput experimental studies together with computational systems biology
studies to help determine the optimal answers to these questions [22]. Excitingly,
these types of studies can lead to personalized medical treatment, which one would
expect from medicine in the 21st century.

In this work, we begin by offering a small step in using mathematical models to
make predictions that could be useful to experimentalists and clinicians working in
the area of tumor-immune interactions and the development of treatment protocols.
To this end, we simplified an existing model describing tumor-immune dynamics [7]
by merging the effector molecule equation (for IL-2) into the effector cell equation,
and allowing for time-varying inputs representing several options for immunother-
apy and gene therapy. Sufficient global stability conditions of the cancer-free state
were derived and tested numerically. Since the conditions are sufficient, further nu-
merical analysis was performed to investigate regions of the parameter space where
the system clears the cancer, even when sufficient conditions are not satisfied. Our
results suggest that the source term of TIL cells, s1, in combination with the cancer
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clearance term, a, provide the optimal treatment combination: high levels of both
will clear the tumor. Further investigation is necessary to establish whether this is
a viable immunotherapy/gene therapy option in the clinical setting. We are working
now on deriving necessary conditions for the stability of the cancer-free state for the
model system (5) in the general time dependent therapy case.
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