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Abstract
Agent-based modeling has been recognized as a method to
bridge the translational gap in integrative systems biology.
However, the computational complexity of agent-based mod-
els at biologically relevant scales makes simulation impracti-
cal on traditional CPU-based serial computing. In this paper
we present a series of algorithms for simulating large scale
agent-based models on graphics processing units (GPUs).
GPUs have recently emerged as a powerful and economical
computing platform for certain applications in scientific com-
puting. As a test case, we have implemented an agent-based
model of tuberculosis. This model simulates the interaction of
the human immune system in the lung with Mycobacterium
Tuberculosis and tracks the formation of characteristic struc-
ture called garnulomas. The model represents immune cells
such as T-Cells and Macrophages using mobile agents, effec-
tor chemokines using field equations, and bacteria. Our im-
plementation is is two orders of magnitude larger and runs
three orders of magnitude faster than the original CPU-based
implementation.

1. INTRODUCTION
In the past two decades, there has been much progress

in understanding intra cellular processes. Research in the
”omics” fields such as proteomics and genomics has gen-
erated vast amount of knowledge. However, this knowledge
has not resulted in many usable clinical therapies. The tra-
ditional reductionist approach use in systems biology where
complex systems are reduced to a set of linear models has not
worked[1]. This is because biological systems are inherently
coupled, non-linear and heterogeneous. Moreover the under-
lying processes span multiple scales in time and space.
Increasingly mathematical formulations are being used to

build computer models of these phenomena. Processes such
as diffusion-reaction dynamics of chemicals can be modeled
using deterministic partial differential equations. In case of
interactions that are intrinsically random, stochastic differen-
tial equations are being used[2]. These two approaches are
referred to as equation based modeling as algebraic equations
are used to describe system dynamics. These approaches are
valid if the continuum assumptions hold. For systems where
continuum analysis fails due to the paucity in number of
the molecules, there are stochastic methods such Gillespie’s
Stochastic Simulation Algorithm (SSA)[3][4]. SSAs have be-
come extremely important in characterizing intra-cellular sig-
naling events[5][6]. However, all these previous methods are
not suited to the mutli-scale nature of biological systems.

1.1. Agent-BasedModeling in Systems Biology
Agent-based modeling has been recently recognized as

a method to overcome the translational gap in systems bi-
ology[7]. Agent-based models(ABM) are direct computa-
tional representations of discrete dynamics systems where
the system level behaviors emerge from the local interac-
tion of constituent entities called agents[8]. On a computer,
agent are represented as concurrent objects whose state tran-
sitions are governed by rules. Agent-based modeling is well
suited to capture the multi-scale nature of biological sys-
tems. ABMs are well suited to capture stochasticity, het-
erogeneity, and hierarchy that is present in biological sys-
tems. Agent rules can be explicitly derived from the de-
scription of biological functions obtained through bench re-
search. Unlike equation based modeling, ABMs are descrip-
tive and it is easier for biologists with limited mathematical
background to relate to this modeling technique. It has been
previously used to simulate inflammatory cell tracking[9]
[10], to model tumor growth[11][12], to simulate intracel-
lular processes[13][14][15] bio-molecular reactions, wound
healing[16][17], morphogenesis[18] [19] [20], microvascular



patterning[21], pharmacodynamics[22][23][24][25], tubercu-
losis[26], and sepsis[7][27].

1.2. Limitations of Agent-Based Modeling
ABMs suffer from two major limitations. Due to their

emergent nature, their behaviors cannot be characterized an-
alytically. Consequently, techniques for phase plane, bifurca-
tion, and stability analysis are non existent[28]. ABMs are
to be used in a manner similar to experimentation where sev-
eral Monte Carlo runs have to be done to generate statistically
dense data sets[27]. The emergent nature also means that the
system level behaviors are sensitive to agent populations. It
is therefore required to have representative agent populations
in the model. In systems biology, this can range anywhere
from a few hundred thousand agents to hundreds of millions
of agents.
There are several ABM toolkits that have been developed

over the previous two decades[29][30][31]. Most of these
toolkits provide a set of libraries for canonical agent actions
that can be extended to implemented model specific agent ac-
tions using OOP concepts such as inheritance. These toolk-
its are essentially discrete-event simulators[32] that model
agent actions as discrete events. A scheduler queues all the
agent actions for a given time step and executes them one
at a time. They are designed to execute serially on the cen-
tral processing unit (CPU). Large-scale biological models can
have billions of agent actions for every time step. Such large
scale simulations are infeasible on contemporary ABM toolk-
its. Parallel computing solutions using computing clusters are
marginally more scalable as compared to single computer im-
plementations. Large scale ABM simulation requires entire
new architectures and algorithms.

1.3. ABM Simulation on Graphics Processing
Units

GPUs were originally developed to handle computations
related to the shaded display of 3D objects. The need for
novel shading effects particularly in video games led ven-
dors to enable customized shading through user-defined func-
tions that could be programmed directly into hardware. This
programmability enabled computational scientists to use the
same hardware for general purpose scientific computing. Re-
cently, the increased use of GPU in scientific computing has
led to the development of specialized computing cards and
direct APIs.
GPUs follow the stream programming model[33]. Data is

represented as a stream of elements of the same type. The data
elements could be atomic variables such as integers, floats,
characters etc. or user defined complex data structures. Func-
tions called kernels mutate the data. In a typical update step,
several thousand instances of a single kernel act in parallel of
different elements of the data stream. One major restriction

on the data is that the update of the ith element in the stream
is not dependent on the updates of other elements in the same
time step, i.e., there are no precedence constraints. While a
small number of precedence constraints could be handled, a
strict ordering of events does not facilitate parallel execution.
The main challenege lies in formulating the ABM in terms of
the stream programming model.

2. PREVIOUS WORK
There are several research efforts related to ABM simu-

lation on the GPU. Harris et al.[34] developed an extension
of Cellular Automata called Coupled Lattice Maps to simu-
late boiling, react-diffusion, and convection. Kolb et al. [35]
developed a particle simulator implemented almost entirely
on the GPU. For spawning, they used a CPU-based allocator.
However, this allocator can be prohibitively time consuming
for large model sizes. Millán and Rudomı́n[36] developed a
system to simulate crowd behaviors on the GPU. However,
their work did not incorporate agent replication and colli-
sion avoidance. More recently Perumalla et al. [37] developed
an extended cellular automata approach to simulate several
canonical ABMs on the GPU. While their technique did in-
clude collision avoidance, it does not incorporate replication.
In addition, mobile agents are bound to lattice sites with a
maximum of one agent per site. Richmond et al. [38] have
recently developed techniques to simulated agents in a grid-
free environment. Their method is similar to many particle
systems developed previously. However, their agents are able
to communicate with each other in a user-defined radius.
The authors previously developed techniques for simulat-

ing large-scale ABMs on GPUs [39]. They demonstrated their
techniques by implementing a large-scale version of the Sug-
arScape ABM. Their incorporated incorporated features such
as environmental resource growth, agent replacement, agent
movement, agent mating, pollution formation, and pollution
diffusion. They develop a randomized memory allocator that
executed entirely on the GPU. In addition, they developed a
collision resolution algorithm based on z-culling. This work
has greatly expanded the size and complexity of models that
can be handled by performing all computations entirely on
the GPU.

3. PAPER OVERVIEW
In this paper we describe our data-parallel implementa-

tion of an ABM to simulate the formation of characteristic
structures called granulomas in the infection pathology of
Mycobacterium Tubersculosis (MTb). This model was pre-
viously developed by Segovia et al. [26]. The MTb ABM
is a discrete-time, discrete-space representation of the com-
plex dynamics resulting from the interactions of human im-
mune cells with theMTb pathogen in the lung. Mobile agents
are used to represent immune cells such as T-Cells and



Macrophages. The environment represents an section of the
aveolar lung tissue. Effects captured in the simulation include
agent motion, chemotaxis, diffusion-decay of chemokines,
lysis of bacteria by macrophages, and adaptive immune re-
sponse. We begin by briefly describing different elements of
the MTb ABM. Next, we describe various data-parallel al-
gorithms that have been developed to implement the ABM.
The results section describe the bench mark studies against
a serial implementation of the same ABM. We conclude the
paper with a discussion of results and future work.

3.1. Environment
The environment in the MTb ABM is modeled using as

a grid of static agents. These agents keep track on the level
of chemokines, bacteria, and the number of mobile immune
cells present at each grid location. Chemokine dynamics are
modeled using a linear diffusion decay equation given by:

dE
dt

= λ∇2E− γE (1)

where E is the field, λ is the diffusion constant, and γ is the de-
cay constant. Infected macrophages act as sources that release
chemokines at the grid point on which they are located at a
given time. Since the chemokines dynamics are two orders of
magnitude faster than mobile agent dynamics, a quasi static
assumption is used. In between every mobile agent update,
the chemokine field is advanced by hundred time steps as-
suming stationary agents. Subsequently, the chemokine field
is updated to account for chemokine release by mobile agents
using equation given by:

E(t+δt) = E(t)+Cm ∗δt (2)

where Cm is the chemokine released by an infected
macrophage per unit time, and δt is the time period of mobile
agent update. In the current version of the model, bacteria are
seeded at the center of the environment grid. Extra-cellular
bacteria grow in the environment according to the equation:

B(t+δt) =min{B(t)+B(t)∗αBE(1−
B(t)

1.1∗KBE
),KBE} (3)

where B(t) is the bacteria count at a grid location, αBE is
the bacteria growth rate, KBE is the maximum bacteria count
that can be held at any grid location. In addition, there is a
constraint that any grid cell can contain no more than one
macrophage and one t-cell simultaneously. A randomly cho-
sen sub-set of the grid locations act as source compartments.
These source compartments model blood vessels and are con-
duits for macrophages and t-cells to appear into the simula-
tion.

3.2. Macrophages
Macrophages are the most complex of the agent types

in the simulation. Every macrophage is represented us-
ing a mobile finite state machine (FSM). The macrophage
FSM has five states, namely: RESTING, INFECTED, AC-
TIVATED, CHRONICALLY INFECTED, and DEAD. Each
macrophage has a finite life span. When the enter the sim-
ulation, all macrophages are in the RESTING state. In this
state, they are capable of killing small amounts of extra-
cellular bacteria. They can also uptake extra-cellular bacte-
ria and become INFECTED. Intra-cellular bacteria BI(t) in
INFECTED macrophages grow according to the equation:

BI(t+δt) = B(t)I +BI(t)∗αBI (4)

where αBI is the bacteria growth rate. An INFECTED
macrophage can become ACTIVATED with a small probabil-
ity if it encounters a T-Cell in its vicinity. In the ACTIVATED
state, the macrophage kills all internal and extra-cellular bac-
teria it encounters. An INFECTED macrophage can also be-
come CHRONICALLY INFECTED if the intra-cellular bac-
teria grow and cross a pre-defined threshold. Intracellular
bacteria in CHRONICALLY INFECTED macrophage grow
according to:

BI(t+δt) =min{B(t)I +BI(t)∗αBI(1−
BI(t)
KI +30

),KBI} (5)

CHRONICALLY INFECTED macrophages burst when the
intra-cellular bacteria reach another threshold KBI and
spread the bacteria in the vicinity. CHRONICALLY IN-
FECTEDmacrophages can also die if they encounter T-Cells.
Macrophages also die when the age exceeds the lifespan.

3.3. T-Cells
T-Cells are immune effectors which start appearing in

the simulation on the tenth day of the infection. They have
two states, namely, LIVE and DEAD. T-Cells move about
in the environment and perform the task of activating IN-
FECTED macrophages and killing CHRONICALLY IN-
FECTED macrophages.

3.4. Agent Motion
In the absence of a chemokine field, both T-Cells and

Macrophages perform random motion. In the presence of a
chemokine field, motion occurs in the direction of the highest
gradient. All motion is governed by speed which is depen-
dent on the state of the agent. An agent moves to a grid point
if and only if the grid point is not occupied by an agent of the
same type. Otherwise, the agent remains stationary for that
time step. In case the grid point is occupied by another type
of agent, motion occurs with a small probability.



3.5. Cell Recruitment
At the beginning of the simulation, the environment is

seeded randomly with macrophages. As the simulation pro-
ceeds, macrophages and t-cells are recruited from outside the
environment through the source compartments. Cell recruit-
ment occurs only if there is a perceptible chemokine field and
the source compartment is not already occupied by an cell of
the same type.

4. DATA-PARALLEL TECHNIQUES FOR
MTB ABM SIMULATION

The main challenge lies in formulating the ABM in terms
of stream computation. Model data is to be represented as
stream, while as model update function are to be represented
as kernels. In our implementation, we use flat arrays to rep-
resent model data. Various agent actions such motion, .. are
formulated as kernels.

4.1. Data Representation
There are five arrays to represent model data. The first

is an array for representing macrophage state data. The
macrophage data structure is given by:

struct Macrophage
{
position pos; //environment cell location

unsigned int state; // agent state
float bacteria; //bacteria load
float age; //remaining life span
};

The second array is for representing T-cell state data. The T-
cell data structure is given by:

struct TCell
{
int x, y; //environment cell location
float fx, fy; //actual position
unsigned int state; // agent state
float age; //remaining life span
};

The third array holds the environment state data. The envi-
ronment data structure is given by:

struct env
{
float bacteria;
int sourceIndex;
}Env[];

Note that the environment data structure does not have space
for spatial location. Since environment agents are static,

their location is implicitly defined by the location in mem-
ory. The variable ”sourceIndex” indicates if the environment
grid point is a source location and if so, the index of the
source compartment. The value of sourceIndex ranges from 0
to MAX SOURCE COMPARTMENTS. Source location are
places where cell recruitment occurs. The chemokine field is
represented using a separate array ”E” of floats. This is to fa-
cilitate manipulation using Fourier Transforms. Finally, there
are two bit arrays ”Tcmap” and ”Mcmap”, one for resolving
T-Cell collision and the other for resolving Macrophage col-
lisions respectively.

4.2. Agent State Update
Agent state update is accomplished using a set of kernels.

The CPU is used to allocate memory on the GPU for various
agent state arrays as well as to initialize these arrays before
they are copied to the GPU (left side of figure 1). On the right
hand side in figure 1 is the illustration of the order in which
various kernels are invoked. In the following sections, each of
the kernels is described briefly.

Figure 1. Data-parallel simulation loop

4.2.1. Chemokine Update
As described previously, the chemokine dynamics are two

orders of magnitude faster than mobile agent dynamics.
Therefore, the model requires 100 updates of the chemokine
diffusion-decay equation before the mobile agents are up-
dated. The application of the diffusion decay kernel on the
chemokine field can be thought of as a convolution given by:

E(i, j) =
m

∑
l=0

m

∑
k=0

f (i− k, j− l)E(k, l) (6)

The size of f is a function of the number of time steps m.
The overall complexity of this operation is given byO(m2n2),
where n is the width of the chemokine field. Ifm<< n, then it
is best to do a direct convolution. However, for large m, com-
puting this convolution in the Fourier Domain improves the
complexity to O(m2log(m)+ n2log(n)). Computation in the



Fourier domain is possible because the governing equation is
linear time-invariant and the domain has periodic boundary
conditions. At the beginning of the simulation, the diffusion-
decay kernel for 100 time steps in the spatial domain is com-
puted on the CPU. It is then transferred to the GPU and the
FFT is computed and stored on the GPU. Algorithm 3 illus-
trates this procedure. f̂ is the FFT of the convolution kernel
f .

Algorithm 1 Computer Diffusion Decay Kernel
1: procedure compute-diffusion-decay-kernel()
2: On the CPU
3: f ← compute time domain kernel for 100 times steps
4: Transfer f to the GPU
5: f̂ ← FFT( f )

Algorithm 3 illustrates the procedure to update the
chemokine field in the Fourier domain. This procedure is run
along with the mobile agent update. This essentially elimi-
nates the ”stiffness” associated with the fast chemokine dy-
namics. Lines 2-4 solve the diffusion decay equation in the
frequency domain. Lines 6-9 account for chemokine release
by INFECTED, CHRONICALLY INFECTED, and ACTIVE
macrophages.

Algorithm 2 Update Chemokine Field
1: procedure update-chemokine-field(E,M)
2: Ê(t) ← FFT(E)
3: Ê(t+δt) ← f̂ ∗ Ê(t)
4: E(t+δt) ← invFFT(Ê(t+δt))
5: for all m ∈M in parallel do
6: loc← find loc(m.pos)
7: if m.state == INFECTED OR CHRONICALLY IN-

FECTED OR ACTIVATED then
8: E[loc]+ =CI
9: end if
10: end for

4.2.2. Environment Kernel
The environment kernel is the simplest. It only handles

extra-cellular bacteria growth according to equation . Algo-
rithm 1 illustrates the pseudo-code for environment updates.

Algorithm 3 Calculating Extra-Cellular Bacteria Growth
1: procedure update-extra-cellular-bacteria(Env)
2: for all e ∈ Env in parallel do
3: b← e.bacteria
4: b←min{b+b∗αBE(1− b

1.1∗KBE ),KBE}
5: e.bacteria← b
6: end for

4.2.3. Macrophage Update

Macrophages are the most complicated agents in the MTb
ABM. The behaviors of the macrophages are determined by
the agent state. Each of the agent states has different behav-
ioral rules. The variable ID is the index of the macrophage in
the array M. It is implicitly calculated by the thread of exe-
cution. The main kernel function listed in Algorithm 4 first
accounts macrophage death due to aging (lines 4-8). Line 9
handles agent motion. Next based on the current state of the
macrophage, different sub-kernels are called (lines 10-22).

Algorithm 4 Update Macrophages
1: procedure update-macrophages(M)
2: for all m ∈M in parallel do
3: ID← threadID
4: m.age← m.age-Δt
5: if m.age < 0 then
6: m.state = DEAD
7: return
8: end if
9: update position(ID,m.speed,m.pos,Mcmap)
10: if m.state == RESTING then
11: restingRules(m)
12: end if
13: if m.state == INFECTED then
14: infectedRules(m)
15: end if
16: if m.state == CHRONICALLY INFECTED then
17: chronicallyInfectedRules(m)
18: end if
19: if m.state == ACTIVATED then
20: activatedRules(m)
21: end if
22: end for

Algorithm 5 accounts for RESTING behaviors. If the
macrophage is at an environment grid where there is sufficient
bacteria (NRK , with a small probability pk it can get infected.
During infection, it uptakes Nrk amount of bacteria. Its speed
also changes (lines 5-10).



Algorithm 5 Resting Rules
1: procedure restingRules(m)
2: loc← find loc(m.pos)
3: bac← Env[loc].bacteria
4: r← rand[0,1]
5: if bac > Nrk then
6: bac← max(bac-Nrk, 0)
7: if r < pk then
8: m.bacteria = Nrk
9: m.state = INFECTED
10: m.speed = INFECTED SPEED
11: else
12: return
13: end if
14: end if

Algorithm 6 accounts for INFECTED behaviors. Infected
macrophages grow intra-cellular bacteria (line 2). Lines 3-6
implement state change to CHRONICALLY INFECTED if
the intra-cellular bacteria grow beyond a threshold Nc. Lines
8-14 handle macrophage activation by T-Cells in the Moore
neighborhood.

Algorithm 6 Infected Rules
1: procedure infectedRules(m)
2: m.bacteria = m.bactera *(1+αBI)
3: if m.bacteria > Nc then
4: m.state = CHRONICALLY INFECTED
5: m.speed = CHRONICALLY INFECTED SPEED
6: return
7: end if
8: n← number of T-Cells in the Moore neighborhood
9: r← rand[0,1]
10: if r < n∗ tactm then
11: m.state = ACTIVATED
12: m.bacteria = 0.0
13: m.speed = ACTIVATED SPEED
14: end if

Algorithm 7 accounts for CHRONICALLY INFECTED
behaviors. Line 2-4 handle intra-cellular bacteria growth.
Lines 5-10 handle the case where the intra-cellular bacteria
load is less than a threshold KBI and the macrophage is killed
by a T-Cell. Lines 14-16 handle the case where macrophages
die because of bacteria overload.

Algorithm 7 Chronically Infected Rules
1: procedure chronicallyInfectedRules(m)
2: bac← m.bacteria
3: bac = min{ bac+ bac*αBI (1- bac

KI+30 ), KBI}
4: m.bactera← bac
5: if bac < KBI then
6: n ← min number of T-Cells in the Moore neighbor-

hood
7: r← rand[0,1]
8: if n> 0 AND r < pTk then
9: m.bacteria *= 0.5
10: burst(m)
11: else
12: return
13: end if
14: else
15: burst(m)
16: end if

Algorithm 8 handles macrophage death. When a
macrophage dies, the intra-cellular bacteria load is evenly
distributed between the environment cells in the Moore
neighborhood (lines 2-5).

Algorithm 8 Killing Macrophages
1: procedure burst(m)
2: for p ∈Moore neighborhood of m.pos do
3: loc← find loc(p)
4: Env[loc].bacteria += m.bacteria/9.0f
5: end for
6: m.state = DEAD
7: return

4.2.4. T-Cell Update
The T-Cell update is much simpler compared to

macrophages. In the current model, T-Cells have just two
states, namely, LIVE, and DEAD. The T-Cell update kernel
increments the age of the kernel and calls the motion sub-
kernel. The motion sub-kernel for the T-Cells is the same as
that of macrophages.

Algorithm 9 Updating T-Cells
1: procedure update T-Cells() FOR all t ∈ T in parallel
2: ID← threadID
3: t.age← t.age-Δt
4: if t.age < 0 then
5: t.state = DEAD
6: return
7: end if
8: update position(ID,t.speed,t.pos,Tcmap)



4.2.5. Handling Motion
Both T-Cells and Macrophages move about in the environ-

ment. While T-Cells have a single speed, macrophage speed
changes based on the state. Additionally, the motion is con-
strained by the fact that no two cells of the same type can be
co-located at the same grid location. Algorithm.. illustrates
motion handling. The input arguments include speed, the po-
sition p, and the collision map array. The arrays Deltap con-
tain possible motion vectors. The variable ”loc” is an index
into the chemokine and collision map array corresponding to
the location of the agent. Lines 5-7 select a random motion
direction if the chemokine level at the given location is less
than the threshold Ethresh. Lines 10,11 generates the possible
new location and index. If the new index is the same as the
old, only the position is updated. If the new index already has
an agent that the motion is rejected. Lines 19-22 handle the
conflict if more than one agent try to move to the same lo-
cation. We use the atomic compare and swap functionality to
accomplish collision resolution. The variable

Algorithm 10 Handling Agent Motion
1: procedure update-position(ID,speed,p,collisionMap)
2: loc← find loc(p)
3: Δp[] ← array of unit vectors to moore neigbhorhood
4: e← E[loc]
5: if e< Ethresh then
6: k← rand[0,8]
7: else
8: k← direction of maximum chemokine gradient
9: end if
10: pnew ← p+Δp[k]*speed
11: new loc← find loc(pnew)
12: if collisionMap[loc] == OCCUPIED then
13: return
14: end if
15: if loc == old loc then
16: p← pnew
17: return
18: end if
19: if atomicCAS(collisionMap[loc],EMPTY,ID) ==

EMPTY then
20: collisionMap[old loc]← EMPTY
21: p← pnew
22: end if

4.2.6. Cell Recruitment
Cell recruitment involves dynamic memory allocation dur-

ing run-time. However, memory allocation, typically viewed
as a serial operation is not possible on the GPU. It is also not
efficient to do allocation on the CPU and transfer the updated
agent state array to the GPU every time step. We have devel-
oped a new algorithm to handle memory allocation based on

sorting. The agent state array is sorted based on whether the
agent is alive or dead (Algorithm 11,12). This groups live and
dead agents together in the array. Next, the number of live
agents are counted n using parallel pre-fix sum. The sorted
agent array and the total number of live agents are inputs to
the kernel that actually handles agent recruitment

Algorithm 11 Prepare Agent State Array for Cell Recruit-
ment
1: procedure prepare-agent-state-array(M)
2: M← sort(M,agent state)
3: n← count live agents in M using parallel pre-fix sum
4: return

For every environment compartment which is source com-
partment, based on the chemokine level, and the occupancy
of the collision map, a new cell is created in the agent state
array at an offset given by N-n+idx+1, where N is the size
of the agent state array, and idx is index of the source com-
partment. Note that this algorithm requires that the number of
empty slots in the agent state array be less than the number of
source compartments for successful allocation. However, we
have found that due to the stochastic nature of the simulation,
this limitation does not effect the end result.

Algorithm 12 Recruit Cells
1: procedure recruit-cells(M,n)
2:
3: for all e ∈ Env in parallel do
4: pos← grid location of e
5: loc← find loc(loc)
6: idx← Env[loc].sourceIndex
7: chm← E[loc]
8: if idx AND chm >CThresh AND collisionMap[loc] ==

EMPTYANDM[N−n+ ix+1].state == DEAD then
9: M[N−n+ idx+1] ← new agent at pos
10: collisionMap[loc] == OCCUPIED
11: end if
12: end for
13: return

Figure illustrates the process. In this agent state array, the
maximum capacity is N=9. The number of live agents is n=5.
The sorting routine places live agents at the front and the dead
agents at the rear end of the array. The allocation kernel given
in Algorithm 5 then places the new cells in the empty agent
state array cells. In this illustration, there are only two source
compartments.

5. RESULTS
The algorithms described above were implemented using

CUDA on a GeForce 8800M GTX GPU. This processor has



Figure 2. Parallel memory allocation for cell recruitment

Figure 3. Screen shot of simulation. In this figure, green pix-
els represent resting macrophages, orange pixels represent in-
fected macrophages, red pixels represent chronically infected
macrophages, and purple pixels represent T-Cells. All these
cells are chemotactically moving towards the center where
infected macrophages are releasing chemokines.

96 core and has 360 GFlops processing rate. The GPU imple-
mentation was benchmarked against a CPU implementation
running on a Intel Centrino processor. For the purpose of the
benchmarks, the simulation was run to account for 4 days of
real time with T-Cells arriving at the begining of the second
day. Figure 1 show the performance scaling with respect to
the increase in the environment size. It is clear that time for
simulation for the GPU implementation barely changes. At
a environment resolution of 256x256, the GPU implementa-
tion is .. faster than the CPU implementation. Figure 2 shows

Figure 4. Performance scaling with environment size. The
initial macrophage population is set to 100. The simulation is
run for 4 days worth of updates with T-Cells being recruited
on the 2nd day

Figure 5. Perfomance scaling with initial macrophage pop-
ulation. The environment size is set to 128x128

the scaling with the number of initial macrophages. The envi-
ronment resolution for this benchmark was set to 100x100. It
is apparent that the performance for both the CPU and GPU
does not degrade much in the ranges that we tested. Here
too, the GPU performance is much better. This clearly indi-
cates that most of the computational load is due to the cal-
culation of the diffusion decay equation in the environment.
Our implementation on the GPU has two advantages. First,
the multi-core GPU provides much better computing power
as compared to the CPU. Second, and more importantly, the
use of spectral methods(FFT) for solving the diffusion de-
cay equation provides an enhanced speed up due to the size
of the diffusion decay kernel. Figure shows the comparrison
between the output of the two implementations for the same
initial parameters. Here we track the amount of intra-cellular
bacteria over time. The two curves were generated by aver-
aging the results of 5 simulation runs. Clearly, the output of
both simulation show the same trend.



Figure 6. Tracking intra-cellular bacteria with respect to
time for the CPU implementation and the GPU implemen-
tation. The simulation is run for 15 days with T-Cells being
recruited on the 10th day. The environment is set to 128x128
with initial macrophage population set to 100.

6. CONCLUSIONS
We have successfully developed and implemented a se-

ries of data-parallel algorithms for simulating the Mycobac-
terium Tuberculosis ABM. Key innovation that have made
this possible include the collision handling algorithm based
on atomic compare and swap, and the parallel memory allo-
cation algorithm based on sorting. Our implementation exe-
cutes entirely on the GPU with no communication with the
CPU and therefore avoids the bottleneck posed by the slower
CPU-GPU memory bus. Our current simulation only mod-
els the dynamics of MTb in the lung. The perfomance gains
obtained through data-parallel execution opens up the pos-
sibility of scaling ABMs to realistic levels. We are working
on building an extended model that will include other organs
such as lymphnodes that are involved in the pathology. Our
ultimate goal is to build the complete organs system model
with each organ modeled as a separate ABM with intercon-
nects that will model the lymphatic and circulatory system.
This model will then be used to virtually test drug protocols.
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