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Abstract. There have been many models to date describing the interac-
tion of the immune system with HIV. Each presents some aspect or aspects
of the immune system believed to play a key role in the disease dynamics.
In this study, we again explore the immune interactions; however from a
very basic perspective. Qur focus is the key first order effects which are
necessary for a model of HIV-immune interaction to explain the different
stages of disease progression. Our model is a non-linear autonomous ODE
system; dependent on several biological parameters. We analyze the global
dynamics of the system for different sets of parameters varied within the
proper parameter space. We also include numerical simulations of the
relevant phase portraits.

§1. Introduction

Over the past decade a number of mathematical models have been developed
to describe the interaction of the immune system with the human immun-
odeficiency virus (HIV). For example, see [4,5,6,8,9,10,11,12,14]. Different
phenomenon are explained by the different models, but none of the models
exhibit all of what is observed clinically. This is partly due to the fact that
much about this disease’s mechanics is still unknown. However, many of the
major features can be simulated with even the simplest of models.

Thus, the main focus of the model we present is to explore the simplest
mathematical descriptions of the interaction of HIV and the human immune
system necessary to capture the first order effects seen clinically. Namely, the
three major outcomes are: an uninfected state, where the body clears HIV
(no infection present); an infected state, where the T cells and virus have high
turnover rates on a daily basis, but the overall appearance is of a steady state
with low levels of free virus in the blood and a significantly reduced T cell
count (from normal which is approx. 1000 per mm?); and then a progression
to AIDS state, where the T cells significantly decline and the virus population
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expands. The immunological understanding of these different stages of disease
progression are still not well understood, but we hope to gain insight into the
processes through the modeling endeavors.

In this work, we present a simple model for the interaction of the im-
mune system with HIV and then carry out a non-dimensionalization. On this
nondimensionalized version, we do an extensive global analysis using both
numerical and analytical techniques to analyze the rich behavior arising in
the dynamical system. Finally, we discuss the implications of mathematical
results for the biological problem of HIV disease progression.

§2. The Model and Its Non-Dimensional Version

HIV destruction of the immune system works mainly by infecting CD4+ T
cells, the cells responsible for the governing of the immune system. Therefore,
we create a model incorporating only these two populations and their interac-
tions and effects. More detailed models incorporating different classes of cells
and virus have been studied as well (e.g. [4,5,6,8,9,10,11,12,14,16]), but our
alm is to create a simple model capturing the rich clinical behavior. Define
T(t) to be the CD4*+ T cell population at time {. Define V(¢) to be the free
virus population at time {. We assume only one strain of virus. A simple
model describing the interaction of HIV with the immune system is then as

follows:
Cg o — uT(t) + T(t)—-%‘/:{-}%—)— - Ky rT(H)V (), (1)
id‘:_ = N - KyrTE)V () — Kny TV (E) + Gy V(). (2)

Initial conditions are T(0) = Tp, and V(0) = V5. (We assume the initial
innoculum is free virus and not infected cells.)

The model is explained as follows. The terms of (1), o + E.%%;T(t),
represent the source of new T cells. This incorporates T cells from the bone
marrow, thymus and general production. It also includes proliferative pro-
duction (whether direct or indirect) due to the presence of antigen. This
production changes over the course of infection, which is accounted for in the
choice of terms. This is followed by a natural death term, because cells have
a finite life span; the average of which is #—IT- The last term of (1) represents

the infection of CD4™m T cells by virus. This term is a mass action type term
with constant rate of infectivity Kv,r. We assume the law of mass action
applies here based on the large numbers of cells and virion involved. In (2),
the first term is the source for the virus population. Newly produced virion
are produced by infected CD4% T cells (hence it follows from (1)), whereby
new virion are produced at the rate N - Ky,rT(t). There is a high clearance
rate of virus, on a daily basis, [14], and this is reflected in the next term
—KT,VT(t)V(t). As there is much evidence to support the major production
of virus taking place in the external lymphoid system (LS), we account for this
phenomenon as a major contributor of virions, other than the small amount
produced i the blood [7]. The input rates of lymphoid system virus is Gy (2).



HIV Dynamics 163

This is a simple possible model representing the interactions of T cells
and virus. This model was studied in a 3 equation form (with a separate
equation for the infected T cells) and the parameter values were all estimated
there [4,5,6]. We summarize those results in Table 1, which gives a list of all
parameters along with their estimated numerical values.

If we first examine the system for steady-state values, we find there are
three possible steady states in the positive cone depending on the parameter
space. Hence, we define the different steady states for the system as follows:
Uninfected steady state (where the virus population and infected cells are

V=0and T = ﬁ), and an Infected Steady State (both virus and T cells exist

at some positive level). This corresponds to the extended latent period of the
disease. Another limiting behavior for the system is Progression to AIDS (the
T cell population goes to 0, and V grows without bound - which is consistent
with the Center for Disease Control’s definition for AIDS).

Before further analysis, we performed a non-dimensionalization. Define
the new variables as:

TIIBW — T/Tmax; Vnew - V/C, tnew — pt,

dT™Y AT /Tmax) _ oo 4T (3)
dtnew — d(pt}y — p dt’

Substituting (3) into (1) and (2) and suppressing the “new” notation, the equa-
tions are transformed into:

dT TV

?E""s—mT-{_“l—l-V—leT’ (4)
dv
S = NTV — VT + gV, (5)

with
g=— _ B kl_KV,TK NMNKV,TTma.x,
Trax * P p 14 p
fy = KV Twax g GV
P P

One advantage of this new system (4-5) is that the number of parameters
has been reduced from 9 to 6.

§3. The Phase Portrait Analysis

Define the right hand sides of (4-5) to be the functions f1(V,T) and f3(V,T),
respectively, as shown:

. 6
T-—~s-mT+:—:ﬂ/::—k1TV_—?.fz(V§T), (6)
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where all the parameters are positive.
Before we begin analysis of this system, we wish to point out a transfor-
mation. Let V = e and T = e?. Then this system is transformed into:

T = —ke? + g,
T

. _ e
ymS¢ y_m-l_(—l::eT)_kleI'

This system is well-known from Lotka-Volterra theory. It is easy to show
that the divergence of the vector field is div = —se™¥ which is always negative,
thus by Bendixson’s negative criterion, there are no periodic solutions, and all
bounded trajectories converge. We will however, be concerned directly with
the dynamical behavior of the phase portrait in the VT-plane, and what the
implications are to the biological problem of HIV-T cell dynamics. Therefore,
we will perform the remainder of the analysis on the original system given in
(6). Future work could examine how our original VT-plane and trajectories
are changed via this transformation. For example, the V = e and T = ¢¥
transformation maps the positive orthant into the whole plane. It would be
of interest to see how closed trajectories are mapped into closed trajectories,
etc. .

The dynamics of the system (6) depends strongly on the behavior of the
nullclines. These are given by the set {(V,T) | f1(V,T) = fo(V,T) = 0}. The
horizontal nullcline has two branches: V = 0 and the horizontal line

g *
= =T,

Hereafter we will assume (k; — N) > 0, as negative cell populations do not
make biological sense. The vertical nullcline is the graph of the function

s+ sV

ToerelV) = 2 17V - (®)

where 7 = m+k; —1. Note that Tyer:(0) = s/m, Tyert(—1) = 0, Tyert(V) — 0
as V — +occoras V — —oo.

Given that the vertical nullcline (8) depends on three parameters: k1, m
and s, its geometric features will also depend on them; particularly, whether
or not the denominator, D(V),

D(V) =k V2 +rV +m, (9a)
has roots. If they exist, the roots of D(V) are
—r4r? -4k
WV, = S (9b)
1

Clearly, the signs of V3 and V3 are of concern for biological feasibility as well.
Let us write the discriminant, d = r? — 4k;m, explicitly

T d=[(m—k)*=2(m+k)+1]. (10)
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We note that in the mk;-parameter plane the graphs of the functions

ki(m) = (1+m)+2y/m and ki(m)=(1+m)-2/m (11)
are the boundaries between the regions on which the function D(V') has none

or two real roots, corresponding to d < 0 and d > 0, respectively. Figure 1
illustrates the space of the parameters in the mk;-plane.

Fig. 1. Space parameters for the roots of D(V) = k1V2 + 7V 4+ m. On
the region (+) D has two real roots, on (—) there are not real roots and

on the graph of k} and k%, D has one real root.

Depending on the sign of d we will divide the analysis in three major
cases. Case 1is d < 0; Case 21is d = 0; and Case 3 is d > 0. The results are
summarized in Table 2 and the analysis follows in the next subsections.

3.1. Phase Portrait Analysis in Case 1:
d=[(m—ki)* - 2(m+k)+1] <0.

Here the function D(V), (9a), has no real roots. This situation corresponds
to the region marked with negative (—) signs in Figure 1, i.e.

m+1-2vVm <k <m+1+2y/m. (12)

First we need to determine the qualitative profile of Tyer: (8). One can verify
that, provided [k1V2 + (m + k1 — 1)V +m] # 0, Tyers has a maximum at
V =V = -1+ 1/vk1 whase value is Tyers(V;) = s/(2vE7 +m — ky — 1)
and one minimum at V = V3, = —1 — 1/vk1 whose value is Tvert(’i?g) =
s/(m =1 —2yk; — k1). For the set of parameters m and k; given in (12),

TodVY>0and T (V) < 0.
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™ Q m

Fig. 2. Case 1.a.i: d < 0. There are at most three steady states as the
value of T = T}, varies.

Depending on the value of the parameters, providing the inequality {12)
holds, we have three Sub-Cases.

Before the phase portrait analysis we first define the region of biological
interest, namely

Q={(V,T)|0<V <00;0<T < o0}.

Case l.a: k3 =1.

Here ¥} = 0 and V3 = —2. The condition d = [(m — k1) —
2(m + k1) +1] < 0, implies 0 < m < 4. In addition we have Tyere(0) =
s/m = maxT,er:(V) = M. For the parameter values in Table 1, the value of
M= % in this scaled form. The graph of T, is the curve shown in Figure 2.
Depending on T™, we have there possible cases (see Figure 2):

i) 0 < T* < M. Here the system (6) has three equilibria: P, and R.
Given the biological interpretation of the variables, the point P is
not feasible.

il) 7™ = M. Here the points P and R collapse into (), thus the system
(6) has only one equilibrium: Q.

iii) T* > M. Here the nullclines have no intersection. Thus the system
(6) has one equilibrium point: Q.

Now we will determine the qualitative behavior of the trajectories of (6) for
each one of the above cases. Particularly we will focus on the existence of
trajectories of (6) connecting pairs of equilibria (when it makes sense) i.e. on
the existence of heteroclinic trajectories of (6).
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Case 1.a.1.

The coordinates, (V*,T%*), of the equilibrium R are T* = 5ty and V* is the
positive root of
T*VE+ (mT* — )V +T*m — s =0, (13)

i.e.

—(mT* — s} + /(mT* — 5)2 —4T*(T*m — s)

2T )
This results from the condition 7% < s/m. The other equilibrium is . Our
analysis starts by considering the local phase portrait of (6) around each
equilibrium. Thus the Jacobian matrix of (6) at all points (V,T) is given by

% %
% %

V' =

(14)

Jf1, Flviry =

(ViT)
[NT — kT + g NV — kV (15)
= _Vre+VvV) —m-—mV-v2
| TTa V) T+V)
Evaluating (15) at () we obtain
S(N ~k 0
J[f1s f2le0,s/my = i 0 2)+9 , (16)

—m

which implies the trace is: tr(J[f1, f2](0,s/m))} = Z(N — k) + g —m and the
determinant is det J(f1, f2](0,s/m) = s(k2 ~ N) — mg. Because of the condition
T = (_1?2%-)- < ',f{: det J[fl1f2](0,s/m) > 0 and tr(J[fI:fZ](G,s/m)) < 0. Since
the roots of the characteristic polynomial P(A) = [Z (N —kz)+g—A}(—m—2)),
of (16) are A, and Ag,

A = [%(N—kz)ﬁ-g] <0 and Ay =-m <0

Then Q is a locally asymptotically stable node. Given that the element ayp = 0
in the Jacobian matrix (16), then except for the trajectory approaching Q

through the line spanned by the eigenvector vy = (A1, A2)T, all the trajectories
of (6) tend to @ tangential to the vertical axis. Moreover, in a neighborhood
of (0, the variables T and V are related by the equality

T(V) = aV?2/*

where a is any real number.
Now we evaluate (15) at R = (V*,T*), from which we have

—mn — mV* — V2

tr(JUf1, fol o)) = 0] <0, and
V*Z 2+V*
det J(f1, falve,roy = — ”gj— =3 ) < 0.
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Thus R is a hyperbolic saddle point.
The characteristic polynomial has the following roots:

m(m+mv* _I_V*Z):’:\/(m_}_mv* +V*2)2+49V#2(2+V*)
2(1+ V#) ’

with Ay > 0 and A\ < 0. The eigenvectors corresponding to each eigenvalue
are

}‘1: }\2 =

m= ) )] ad =)y,

where \ ]\
1 2
=2 d -2 ___
m (N — ka)V'* <0 and p» (N — ka)V* >

The local phase portrait of (6) around @ and R is illustrated in Figure 3.

0.

T

o
=

Fig. 3. Local phase portrait of (6) for the Sub-Case 1.a.i with 0 < T™ <

M. Notice that Q is the locally asymptotic stable node and R is the
saddle point.

Now we will determine the global behavior of the trajectories of (6) in
the region of biological interest, namely ). First, note that the vector field
defined by (6) is as in Figure 4(a). Second, note the left unstable manifold
of (6), W*(R), at R leaves this equilibrium below the graph of the nullcline
with slope M*(R) = UV_—I}CJEW_ < 0. Once W*(R) leaves R, the vector field
(6) pushes it towards the shaded region R of Figure 4(b). Again, because
of the vector field, this trajectory never goes outside of the region R as time
increases. Moreover, given that

9 —mV - V2
ofr | Ofr _ (Nsz)T-l-g—m(vlm_i_V)v

v 8T
then, by the Dulac’s Test, the system (6) has no closed trajectory there.
Since the system (6) has an equilibrium in R, thus by the Poincaré-Bendixon
Theorem {3], W*(R) must end at ¢} as time ¢ goes to infinity.

]<o Y (V,T) € R,

This-proof can be now summarized in the following proposition:
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Fig. 4. Global behavior of the trajectories of (6) for the Case 1.a.i: (a)
Vector Field. (b) The trajectory W“(R) approaches Q as t — --co.

Proposition 1.1. For k; = 1 and for each m such that 0 < m < 4 with
HeN < =) the trajectory W*(R) tends to @ ast — +oo.

Case 1l.a.ii.

Here T* = £ = %5 and the system (6) has just one equilibrium: Q@ =
(0, s/m). The Jacobian matrix (15) yields the tr(J[f1, fg](g s/m)) = —m <0
and det J(f1, fol(o,sym) = 0. Thus, the equilibrium @ is a non-hyperbolic
point of co-dimensionone i.e., the Jacobian has eigenvalues A; = 0 and Ay =
—m. The corresponding eigenvectors are v; = (m,0)7 and vy = (0,17,
respectively.

According to the Centre Manifold Theorem [1], the system (6)

i) has a unique one-dimensional invariant stable manifold locally tan-
gent to the eigenvector ?2,

ii) has a one-dimensional invariant center manifold locally tangent to
the eigenvector 731,

iii) except on the stable manifold, all other trajectories tend to the center
manifold.

More detailed qualitative information on the local phase portrait of (6) around
Q can be obtained by calculating an approximation to the center manifold of
(6) at Q. (According with theorems from {1] this approximation of the center
manifold of the normal form of the non-linear approximation of (6) at ¢ can
be obtained with a sufficient degree of accuracy.) For this we need higher order
terms in the Taylor Series, but for our present purpose, we do not need these
technical details. It is enough to say that Q is a saddle-node bifurcation point
and that the trajectories of (6) leaving @ through the center manifold travels
away from @ tending to {Foo,0) as time ¢ increases. This follows from the
vector field of (6). The phase portrait for this Sub-Case is shown in Figure 5.

[ ) T I A D T A TN SUPE 1 AU LS § [P -gu RN, o S U,
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Fig. 5. Case 1.a.ii: The saddle-node bifurcation point. The center
manifold of (6) at @ runs away to (co,0), as t — +oo.

Proposition 1.2. Fork; = 1,0 <m < 4 and £ = E%'N" the system (6)
has a unique equilibrium point of saddle-node bifurcation type. Moreover the
trajectory of (6) leaving Q through the center manifold tends to (+o0,0) as
t — 4-00.

Case 1.a.iii: T > %

Here the system (6) has just one equilibrium: . The Jacobian matrix at Q
yields:

det('][fly f2](0,s/m)) =-m i(N - k?) +g $tr(‘][f1: f2](0,s/m))
m

= %(N-—kz)-i-g—m- (17)

Because of the condition (T{-%Tv_) > =, we have det J{f1, fo](0,5/m) < 0, thus
Q is a saddle point. The eigenvalues are A\; = [Z(N —k3)+g] > 0 and
Az = —m < 0. The stable manifold is on the vertical axis, while the unstable
manifold has (at Q) a tangent vector (A1, A2). Again, because of the vector
field, the unstable manifold of (6) at Q goes away from @ and tends to (4o0, 0)
as t — +o0o. Figure 6 illustrates the phase portrait.

We have proved the following proposition for Case (iii):

Proposition 1.3. Ifk; = 1,0 < m < 4 and @;9_—]\,-)- > £, the system (6)
has only one equilibrium point which is a hyperbolic saddle point. The right
unstable manifold of (6) tends to (+00,0) as t — +oo.
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Fig. 6. Case l.a.iii: The unstable manifold at Q.

Case 1.Lb: m+1—-2y/m <k <1 with0<m < 4.

Here the qualitative behavior of Tyers is illustrated in Figure 7 which also
shows the different locations of T*. There are rich dynamics in this Case.

Let max Tyert(V) be the maximum value of Tyers. There are five Sub-
Cases to be considered:
i) 0 < T* < s/m, the system (6) has two equilibria.
ii) T™ = s/m, here the system (6) has two equilibria.
iil) s/m < T* < maxTypen(V) = ,,e,,t(fil), the system (6) has three

equilibria.

iv) T* = max Tyert(V) = Tyert(V1), here the system (6) has two equilib-
ria.

v) T* > maxTyert(V) = T,,e,.t(f;'l), the system (6) has one equilibrium
point.

Before analyzing each possibility separately, let us write the Jacobian matrix
of (6) for k; # 1. This is

(N—k)T+g (N —k)V

J[fl: f2](V,T) =i T — k]T(l + V)2 D(V) ’ (18)
- (1+V)? 1+

whoere Y'Y e b V2 L oY/ b oam

i
:
at

i

4
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Fig. 7. Case 1.b: This figure shows the relevant portion of the graph
of Ty for m +1—2/m < k1 < 1 with 0 < m < 4 and the different
possibilities for T*.

Case 1.b.i.

The system (6) has two equilibria: @ = (0,s/m) and R. (Actually there
are three, see Figure 8, but one of them is not in 2, the region of biological
interest.)

To obtain the local phase portrait around each equilibrium we evaluate (18)
at ¢, from which we determine

tr(J(f1, f2l(o,s/m)) = [(N — kz)% +g-— m] <0,
det(J(f1, fol(0,0/my) = —m (N = B2 + o] >o0.

Moreover, given that the eigenvalues, A\; and Ag, of (18) are
AL = [(N—kz)}%'*'g] <0 and A =-m<0,

then @ = (0,s/m) is a locally asymptotically stable node. Now we obtain
the abscissa of the points of intersection of the horizontal line T* = (_kE%"m

with the graph of the function Ter;. These are the roots of the quadratic
polynomial

T* Ry V2 4+ (rT* = )V + (T*m — 5) =0,

ie.,

_ * x _ g2 _ * LT -

Ve Vg = (rT* —s) £ \/(TTQT*::)l 4T*k (T*m s). (19)
Following from the condition T* < s/m, we have V}* > 0 and V5’ < 0 as shown
in Figure 8.

Thus, we evaluate (18) at R = (V;*,T™) from which
tr(J{f1, folvrre)) = —“HI?%
Vi'g
(L+V)?

< 0 and

— det(JLf1, folvpr)) = [1— k(L + V)2
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Fig. 8. Case 1.b.i: Here the system (6) has three equilibrium points,
but just two of them (Q and R) are biologically reasonable.

Because of the large number of parameters involved, it is not easy to determine
the sign of det J[f1, f2}(vs,r+)- In order to save work {particularly for the
global analysis), the ideal approach then is the use the parameter values known
in Table 1, to determine the sign of det J{fi, le(Vx' .7+). This would allow us
to discriminate two behavior families: Saddle and non-saddle points.

Case 1.b.ii.

Here the system (6) has two equilibria: Q and R. Because of the condition
T* = s/m, V;* and V5' in (19) reduce to

. _ —k
V¢ =0 and V2*=——(T—€,~;—Ei): (1 1) > 0.
1

Thus Q = (0,s/m) and R = (V5,T*). The graph of Tyer is sketched in
Figure 9.
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The positivity of V3' comes from the condition m + 1 — 2/m < k; < 1. In
order to get the local dynamics of (6) around each equilibria we evaluate the
Jacobian at each.

At @, (18) reduces to

J[fl:fZ](O,a/m) = [g 0} . (21)

{1

Given that tr J{fi, folo,s/m) = —m # 0 and det J[f1, folo,s/m) = 0, @
is a non-hyperbolic point of co-dimension one. Moreover it is a saddle-node
bifurcation point of (6). The eigenvalues are Ay = 0 and Ay = —m and the
corresponding eigenvectors are

vy = 1 and vg = 0
T -k 2T )

Apgain, the Centre Manifold Theorem ensures us the existence of a positive
invariant manifold of (6) containing the point ¢ and whose tangent vector at

Q is vy. All the local dynamics of (6) around @ are given in terms of the
dynamics around the center manifold.

Evaluating (18) at R, we obtain det J[fl,fZ](V;,T-) = Z(k — 1)2(N -
k2) < 0. Therefore R is a saddle point.

The eigenvalues are

2
_ [m + (lrk-’-u) m] + \/[m + («1:,;1‘&) m] — 88k — 1)2(N — ky)
2
with A; > 0 and A2 < 0. The associated eigenvectors are

=[] wm e[,
il P2

Al Ag =

where
n /\1 /\‘2

(N = k) (52) (N = ka){(152)
Let us denote by M(Q) the slope of the path of the center manifold of (6) at
Q ie.,

M <0 and po = > 0.

M(Q) = -;—2(1 — k1) > 0.

Evaluating T, (V) at V = 0, we deduce M(Q) = T%.,.(0).

We address the global analysis of the phase portrait of (6). The left
unstable manifold, W*(R), of (6) at R leaves this point and enters the shaded
region of Figure 9. Once there, the vector field pushes it up towards the graph
of the nullcline T,¢r¢, which it must cross with horizontal tangent vector. As
time increases, W*(R) leaves the graph of Tyert, but again, the vector field
pushes it down toward the center manifold of (6) ending at @, as time goes
to infinity.

The right unstable manifold of R runs away from R. Because of the
vector field this tends to (+oc0,0) as ¢ increases. This global behavior is shown
in Figure 9. The analysis of this Case can be summarized in the following
propositioii-
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Proposition 1.5. Ifm+1-2ym <k <1,0<m<4andT" = Ly =
s/m, then the system (6) has: One non-hyperbolic point () of co-dimension
one and one hyperbolic saddle point (R). Moreover, the left unstable manifold
of (6) at R reaches () through the center manifold of (6) ast — +co and the

right unstable manifold of (6) at R tends to {+oc0,0) ast — +o0.

Case 1.b.iii.

Here we have
s

2\/E -ki+m-—1
with m+1—2ym < k; < 1and 0 < m < 4. In this Case, system (6) has
three equilibria: @ = (0,s/m), R = (V*,T*) and S = (V5*,T*), where V" and
V5 are given by

2t = max Tyers(V)
m

—(rT* — s) £ \/(rT* — )2 — 4T*ky (T*m — s)
2T ky .
Because of the previous conditions, V;* > 0 and V3 > 0 (See Figure 10).

Vl*: %* = (21)

hat] ¥

Fig. 10. Case 1.b.iii: Here, s/m < T < maxTy(V).

The local phase portrait analysis follows as with previous arguments, and @
is a saddle node.

Continuing with our phase portrait analysis in a neighborhood of §, eval-
uating (18) at S yields the Jacobian from which it follows the

D(Vy
tr Jif1, folvy ey = “(_1—“-%"_12/_2% < 0 and
Vs .
det J(fy, falvy ey = m’z‘f%r)g[l — k(1 + V7).

Here the det has three cases for sign: i)k (1+V5)2=1> 0, éi)k, (1+V5)2 -1 =
0 and %)k (1 + V5)? — 1 <.

Using parameter values from Table 1, including conditions above, we find
numerically that Case (iii) is the feasible Case, and hence § is a saddle node.

¥ R PR L PR L WO 3P O
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Case 1.b.iv.
Here we have
s

2vEk +m—ki —1

with m + 1~ 2y/m < k1 <1 and 0 < m < 4. Now the equilibria R and 5 of
the previous possibility collapse into one equllibrmm E. It is easy to verify
that for T* as above, V' = V5 = V= ? — 1. Thus, the pair of equilibria

g —~
TF = el =TV} =
ky — N (V1)

of (6) are given as follows @ = (0,s/m) and E = (\/_I —1,7*), as they are

shown in the Figure 11(a).
Again, the local phase portrait analysis of (6) starts by evaluating the
Jacobian matrix (18) at Q. This gives us

]
tr J{f1, fal(o,s/my = (N = kg)—~ + g —m and (22)

det J{fi, Folofmy = —m [(V = k2) = +9] (23)

The condition £ < T = Ly implies that (N — k2);% +g] > 0. Thus
det J(f1, f2l(0,5/m) < 0. Therefore @ is a saddle point. The eigenvectors of

(23) are
(N —k2) 3 +g+m]
— [ (l—k1)3/m ] — [Oj‘
vy = and wvg = .
] 1

f

1 e

Fig. 11. Case 1.b.iv: The situation for 7% = max Tyert(V). (a) The
system (6) has two equilibria. (b) The local phase portrait of (6)
around Q and E.

The stable manifold of (6) at @ has as tangent vector vy, while the unstable
manifold locally has as tangent vector vi. See Figure 11(a).
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Evaluating (18) at E we get the following

tr J{f1, f2); [k1+1—m—2\/ic.1‘}<0and

Tﬂ“l T') -
det J{fl, le(\_/ﬁ—.l'T‘) = (.
Since the eigénvalues are Ay =0 and Ag = (k1 +1—-m — 2Vk1 }, then the

equilibrium F is a non-hyperbolic point of co-dimension one. The associated
eigenvectors are

(N“kz)(vlk-l-"’l)

Tl;l = [1] and -52 = k1+1—m-2\fl€;
0
1

More precise information on the local dynamics of the system (6) around the
equilibrium can be obtained by using the Centre Manifold Theorem. For our
purposes it is enough to say that F is a saddle-node bifurcation point. The
local behavior of the trajectories of (6) can be seen in Figure 11(b}.

In order to determine the global phase portrait of (6) in the region €,
let us denote by W*(Q) the right unstable manifold of (6} at Q. Let M™(Q)
be the slope of the path of W*(Q) at Q. To compare M™*(Q) with T} .,(0),

M*(Q) _ .
we examine the ratio: T = (N= kz)s /m e By using the condition
L < T* = L5, bence it follows M*(Q) < T},,:(0}). The geometric interpre-

fation of thls inequality implies that the unstable manifold W*(Q) leaves the
equilibrium @ below the graph of Ty.,: as it is shown in Figure 12(a).

Fig. 12. Case l.b.iv: Behavior of the trajectories of T" = maxTy.
(a) W*(Q) leaves @ in this way. (b) The two possible behaviors of
WH(@Q).

Once W*(Q) leaves @, because of the vector field (6), W*(Q) initially will
have two types of behavior as time t goes to infinity (Figure 12b):
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i) W*(Q) ends at E. The unique way in which W*(Q) can reach E is
through that part of the center manifold of (6) allocated in the nodal
sector of F.

if) W*(Q) tends to (+c0,0). Once W*(Q) reaches the graph of T,
(which must be at some point (Vp, Tp) with Vo > V and Ty < T*) the
vector field pushes it down in such a way that as the time increases

W*(Q) — (+00,0).

In what follows, we will determine which set of parameters such that,
in addition to satisfy the conditions of this Sub-Case, the above Cases could
occur. For this, we consider the line which connects the points Q and E, i.e.,
that line whose equation is

T(V) = (T—-—v—sﬁ) V+s/m, (24)

with 0 < V < V. Let Tous De the normal vector of the above line pointing
outward from the shaded region of Figure 12(b). Thus

Hout‘ = (T* - S/m, "“'f})-
Now, we restrict the vector field (6) to the line (24). The resulting system is

V =(NV - kV) KI—*—:{;&E) V+s/m} + gV,
Tzs—m{(f;;ﬁf) V+s/m] + 1J‘:V [(T* Zs/m>V+s/m]

74
T —s
-k {(M%ﬁ) V+S/m] . (25)

Given that on the graph of Ty, for 0 < V < V the vector field points towards
the shaded region of Figure 12(b), then for the set of parameters for which

[(V,T) mow] <0 VVeio,V], (26)

where (V,T) is given in (25), we have proved that such a region is a positive
invariant set of (6). Thus the unstable manifold W*(Q) ends at E as time ¢
goes to infinity. Conversely, if for certain sets of parameters, we have

(V,T)-mow] >0  VVe(0,V), (27)

for (V,T) as in the system (25), then the shaded region of Figure 12(b) is not
a positively invariant set of (6), resulting in W*(Q) crossing the graph of Teps
as shown in Case 1.b.ii. Now note that in that region of the first quadrant
contained below the graphs of 7= T* and Tyert; both V and T are positive.
In other words, L

— (V:T) * ;{out = (T* - s/m)V - VT
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The inequality (26) implies
(T* - s/m)V) < VT; (28)

however, (27) yields:
[(T* — s/m)V] > VT. (29)
To verify which situation is biologically feasible, we again turn to a numerical

analysis using conditions of Case 1.b.iv and values from Table 1. We find that
(29) holds true, and hence the shaded region is not a positively invariant of

(6).
Case 1.b.v.

Here, T* > maxTyer:(V). In this Case, the system (6) has only one equilib-
rium: @, which, according with previous analysis, is a hyperbolic saddle point.
The right unstable manifold W*(Q) of (6) at @ crosses the graph of Tyert at
the point (Vp,Tp) with Vo > V and Ty < maxTyers. The vector field then
pushes it down towards (40c0,0) as time ¢ goes to infinity (Figure 13).

Fig. 13. Case 1.b.v: This is the global phase portrait of (6) for
T* > max Tv(V)

Case 1.c.

Here I71 and ‘[72 both are negative. The graph of Tyert is illustrated in Fig-
ure 14.
Again, depending on the value of T we have the following possibilities:

i) 0 < T* < s/m, the system (6) has two equilibria: R and ). Note that
there is a third equilibrium, but this not in the region of biological
interest, hence, we leave it.

ii) T* = s/m, the system (6) has just one equilibrinm: Q.

iii) T* > s/m, again here the system (6) has only one equilibrium.
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Fig. 14. Case 1.c: This figure shows the graph of T, for 1 < &1 <
m+ 1+ 2y/m with 0 < m < 4 and the different possibilities for 7.

Case 1.c.l.

Here, 1 < k1 < m + 2y/m + 1,0 < m < 4. The system (6) has two equi-
libria: @ = (0,s/m) and R = (V{*,T*), where V{* is given in (21). For the
local behavior of the trajectories of {6) we evaluate (18) at (. By using some
straightforward calculations one easily concludes that @ is a locally asymptot-
ically stable node. The local analysis around R is not immediate. Numerically,
we find it is a saddle node.

Case 1.c.ii.

System (6) has just one equilibrium @ = (s/m,0). The Jacobian matrix (18)
at Q yields eigenvalues A; = 0 and Ay = —m, with det J[f1, f2](s/m,0) = O
and tr J{f1, f2l(s/m,0) = —m # 0. The equilibrium @ is thus a saddle-node
bifurcation point of (6). The corresponding eigenvectors are

_ -1 - 0
,Ul — [S(likl):' and 1)2 = [1] .

Given the conditions on k; in this Sub-Case, we have (1 — k;) < 0. Thus the
trajectory of (6) which leaves @ through the center manifold of (6) tends to
(400, 0) as time goes to infinity (Figure 15).

Case 1.c.iii: Q is a hyperbolic saddle point.

The right unstable manifold W*(Q) leaves @ and the vector field pushes it
down towards (+oc0,0) where it ends as time ¢ tends to +co.

This completes the main Case 1.
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Fig. 15. Case l.c.ii: Global phase portrait of (6). See the text for
details.

3.2. Phase Portrait Analysis in Case 2:
d=[(m—k)?—2(m+k)+1]=0.

Here the denominator D{V) = V2 + (k1 +m — 1)V + m of the vertical
nulicline (9) has just one real root V*. In the mk;-plane this occurs on the
graph of the functions

kim)=m+1—2ym and ky(m)=m+1+2Vm,

as it is shown in Figure 1.

Again, the dynamics of (6) depend on both the profile of the vertical
nullcline and the relative position of the horizontal null-cline (7) and (8). The
first depends on which of the branches of the parabola in Figure 1 is under
consideration. We analyze each Case separately.

Case 2.a: k) =m+1—2y/m.
Because of the condition d = 0, this implies that the root of D is

# _ \/ﬁ—m
Vim) = Ty

(30)

from which one can verify the following properties of V*: 1) V*(0) =0, ii) V* >
0 & me (0,1),i) V* <0& m>1iv) Vi — tooasm — 17 and
v) V* — —00 as m — 11. The graph of V* as a function of m, is shown in
Figure 16.

Since D is a second order polynomial and V* is its unique root, it can be
written as D(V) = A(V —V*)?, where A = 2. Then the vertical nullcline
(7) takes the form

V*? (s +sV

Toert(V) = — (SV — V*%Z'

(31)
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Fig. 16. Case 2.a: Behavior of V* as a function of m.

‘The graph of this function is sketched in Figure 17 for different parameter
ranges. If we compare the qualitative behavior of the graphs in Figures 17(a)-
(c) on the region {1, one can see that the above profiles of T',¢,; coincide with
those given in Figures 14, 2 and 7, respectively. Thus, for dynamical purposes
of the system (6), the behavior is essentially the same.

Figure 17(d) is the new Case. Thus, we will focus on analyzing the phase
portrait of (6) for each one of the possibilities illustrated in Figure 18. To do
this, we first compute the abscissas of the intersections of T* with the graph
of Tyers. Thus, we seek the values of V such that

. V2 (s+5V) . g
Tvert(V) =T" < = (V — V*)2 = = m
These are roots of the quadratic polynomial
mI"V2 — QV*mT* + sV*2)W + mV*2T* — V*25 =, (32)

or

v yr _ CVI'MT* + sV*) £ V*/AV*5mT* + s2V*2 + dmT"3
Vl 1V2 = . 3
2mT
where V* is given by the equality (30), with m (0,1). Now we begin the
phase portrait analysis for each of the three Cases depicted in Figure 18.

(33)

Case 2.a.i: 0 < T* < s/m.

In the region of biological interest {2, the system (6) has two equilibria: Q =
(0,s/m) and R = (V;*, T*), where Vi is the positive root of (32) (Figure 18).
A similar analysis can be used in this case to verify Figure 19 is indeed the
behavior of the phase portrait. The following proposition summarizes that
analysis. o
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(O]

Fig. 17. Case 2.a: Behavior of Tyers for different values of m (i.e of
ki1 =m+1—2ym) (a) for m > 4 (i.e. for k3 > 1). (b) m =4 and
k1 = 1. (c) For m € (1,4) {i.e. 0 < k1 < 1). (d) For m € (0,1).

Proposition 2.1. Ifk; = m + 1 — 2./m with m € (0,1), then for each T*
such that T* = g/(k2 — N) < s/m, the system (6) has two equilibria: One
locally asymptotically stable node (Q) and a saddle point (R). Moreover, the
left unstable manifold W*(R) of (6) at R ends at @ ast — +oo0, i.e, W*(R)
is a saddle (R)-node (Q) heteroclinic trajectory of (6).

Case 2.a.ii: T* = s/m.

From the equality (33), we have V* = V*(2 + V*) and V5 = 0. Here, the
system (6) has two equilibria: Q = (0,s/m) and R = (V*(2+ V*),s/m). As
in the Case 2.a.1, we can prove the behavior shown in Figure 20. The result
is summarized in the following proposition.

Proposition 2.2. If ky = m + 1 — 2/m with m € (0,1), then for each
T* = g/(ka — N) = s/m, the system (6) has two equilibria: A saddle-node bi-
furcation point (Q) and a hyperbolic saddle point. Moreover, the left unstable
manifold of Q connects the equilibria R and Q.
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Fig. 18. Case 2.a: This figure shows the graph of T}, for k1 = m+ 1~
2+/m with m € (0,1) and the different possibilities for T™.

o

Fig. 19. Case 2.a.i: Dynamics of (6) for ky = m + 1 — 2/m with
0 < T" < M. (a) Local phase portrait. (b) Global phase portrait.

Case 2.a.iii.

Figure 18 shows the three equilibrium points of system {6) in Q: @ = (0,s/m),
R=(V{#,T*) and S = (V3,T*), where V7" and V5' are given in (33) with V7
and V3 both positive and V* > V5.

The Jacobian matrix at @ is written as follows

(N —ka)Z +g 0
JUf1, Felo,sym)y = , such that
—5+ % —m

tr J(f1, fal(s/m.0) = [(N - kz)% +g— m] and
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Fig. 20. Case 2.a.ii: Dynamics of the system (6) for (a) Local behav-

ior of the trajectories (b) Global dynamics in the region of biological
interest.

The inequality (—k-ﬁ—m > 2 implies det J[f1, fo}(s/m,0) < 0, therefore (J is a
hyperbolic saddle point. The eigenvalues are A\ = [(N —kg) =+ g] > 0 and

A2 = —m < 0. The corresponding eigenvectors are
(N ~kz} 2 4g+m
— —S+%g= — I:O]
Ul = m and wvg = .
i 1

The analysis of R and .S are similar to Case 1.b.ii. Thus R is a saddle and
S is a locally asymptotically stable node. This is also verified numerically.

Case 2.b: ky =m+1+2/m.

Here the real root of D can be written as follows

pre__YMEM oy,

m+1+2y/m
and V* = 0 for m = 0. From the above expression for V* is straightforward
to conclude that —1 < V* < 0. Thus, the graph of the vertical nullcline is as
in Figure 21.

If we observe Figure 21(a) we note that the tail of the graph of Tyer in
the region ) has the same features as that part of the graph of Te; in the
same region in Figure 14. For this reason the results given in Case 1l.c.i and
ii hold here.

In Figure 21(b) we have an extreme situation whose main feature is that
the equilibrium of (6) which comes from the intersection of the graph of Tyer;
with the vertical axis runs away to (0,4o00). Thus, for finite values of the
variables V and T, whatever the value of T* is, the system (6) has just one
equilibrium.
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i»-:-z’:

Fig. 21. Case 2.b: Qualitative behavior of T, for ky = m + 1 + 2\/m
and for different values of m. (a) m > 0. (b) m =0.
3.3 Phase Portrait Analysis in Case 3:
d={(m—k1)>—2(m+k)+1] > 0.

Here the denominator D(V') = k; V% + (k1 +m — 1)V +m has two real roots,
V1 and V5. Hence D can be written as D(V) = A(V — Vi)V — W2), where
A = m/V1V,. The vertical nullcline takes the form

ViVas(1 + V)
(V-Wi)(V-Vy)

Tvert (V) =

For k; > 0 and m > 0, neither V; or V3 is zero. Depending on the sign of
(m + k1 — 1) we have different Cases.

Fig. 22. Case 3.a: The qualitative behavior of 7).
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Case 3.a.

If (m+k; — 1) < 0, both V; and V; are positive. The qualitative behavior of
Tyert is shown in Figure 22.

Again, depending on T* = =L we have three Sub-Cases:

Sub-Case 3.a.i: 0 < T* < s/m.

Here system (6) has two equilibria in the region Q: Q@ = (0,s/m), and R =
(V", T*), where V* is given by the equality (19). By using the linear approxi-
mation of (6) around () one conclude that this equilibrium is an asymptotically
stable node.

Although the local phase portrait analysis of (6) around R must be ana-
lyzed, our numerical simulations suggest that R is a hyperbolic saddle point.
The local phase portrait is shown in Figure 23(a).

/
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Fig. 23. Case 3.a.i: The local phase portrait of (6) around Q and R
(a). The direction field plot for (6) (b).

For the global analysis we note that the vector field defined by (6) is
shown in Figure 23 (b). Hence, once the left unstable manifold, W*(R) leaves
R the vector field pushes it up towards the equilibrium Q where it ends as
¢t — +oco. The left stable manifold, W*(R), of R comes from some point on

the vertical and reaches R for t + co. In Figure 24 we have done a numerical
simulation to illustrate this.

Sub-Case 3.a.ii: T* = s/m.

Here the system (6) has two equilibria in the region Q: @ = (0,s/m) and
R=(V} s/m).

The linear analysis of (6) around @ implies that this point is a nonhy-
perbolic equilibrium of saddle-node type and R is a saddle hyperbolic point.
The global analysis follows the same reasoning as that given in the previous
Sub-Case. Thus one conclude that W*(R) tends to Q as ¢ increases. The way

I vl tal TATUI Y oo b o oyt e wqa e
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Fig. 25. Case 3.a.ii: Numerical simulations.

Sub-Case 3a.iii.: T* > s/m.

Here, in addition to @ = (0,s/m) and R = (V}*,T*), a third equilibrium point
S = (V3,T*) of (6), emerges.

The local analysis of (6) around @ tells us that this equilibrium is a saddle
node. The numerical phase portrait lends insights on the dynamics associated
with the system in the region . In particular note the damped oscillatory
behavior of the trajectories of (6) around the equilibrium S, which leads to
the left unstable manifold, W*(R), tending to S as ¢ goes to infinity as is
shown in Figure 26.

In Figure 27 we can see a closer picture of the phase portrait of (6) around
§ and the oscillations are illustrated.
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Fig. 27. Case 3.a.iii: Numerical simulations close-up.

Case 3.b.

If (m + k; — 1) = 0, the roots V}* and V4 of the denominator D have opposite

signs. The qualitative behavior of the vertical nullcline is as is shown in
Figure 28.

Case 3.c.

If (m+k; —1) > 0, both V7" and V; are negative, hence the vertical asymptotes
of the function D are shown in Figure 29.

Given that in the region of biological interest we have the same qualitative
behavior as that in the Sub-Case 2.b which, in turn, corresponds to that in
Fieure 14- thue we avoid the detailed analveic hare of these twe (laces
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Fig. 28. Case 3.b: The qualitative behavior of the vertical nuil-cline.

Fig. 29. Case 3.c: The qualitative behavior of the vertical null-cline.

§4. Discussion

We have presented a very simple model of HIV and the immune system. The
model accounts for many of the key dynamical behavior seen in the clini-
cal investigations of HIV infection. In particular, the possibility of multiple
steady states which are feasible by this model can allow for a wide range of
clinical outcomes. In examining these steady states, we can directly tie the
mathematical results to the observed biological phenomena, as follows.

The fixed point @ = (0,T) represents an uninfected individual. We first
want the model to make biological sense in the absence of HIV. This steady
state accounts for this, i.e. and uninfected steady state. Secondly, the model
should encompass the possible scenario that HIV can be cleared after intro-
duction int® a host. This may happen due to a low initial innoculum, in
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which case HIV may get cleared by a natural immune response. Or, whether
by drug therapy or enhanced immune environment, the potential for clearance
should be possible. There are a few documented cases of this which are mostly
pediatric infections, since vertical transmission can be monitored. However,
since most initial infection in adults are not traceable to the moment of HIV
transferral, (except maybe via blood transfusions), these data are difficult to
gather.

This steady state would be expected to be stable up to a certain point
(this point could be based on a number of individual features) at which time
it would loose stability to one of the infected steady states.

There are two main non-zero steady states (referred to as R and §). These
are the infected steady states. What is of key interest here is that both of these
steady states have the same ordinate i.e. in that the horizontal nullcline T
(which is a straight line) crosses the vertical nullcline (which is parabolic
shaped in that region) twice. Hence, for a given value of the T steady state,
there are two possibilities for the viral load value. We distinguish R = (V4,T)
and S = (V,,T) by the fact that V2 > V;.

In the analysis, every case points to R as an unstable node, and S as a
stable node. The idea then is as follows. When only R is present with @, ¢ is
the stable steady state and R is unstable. This would imply that a small viral
load can be cleared. When both infected steady states are present, namely R
and S, then @ and R are unstable and S is the stable node. The question
then arises, why would the infected steady state with the higher viral load be
the stable one? There is now clinical evidence to suggest that the viral loads
are very high during latency Ho et al. [2], Wei et al. [16]. There is a high
turnover rate for both T cells and virus during the period which traditionally
was viewed as a “latent” period. In actuality, there is much taking place during
this time. Hence, a higher viral load would make sense in this long infected
steady state. We also know there is much antigenic variation within HIV
within a given individual. Many strains may comprise the total V' population,
and since they may be in competition, this may drive the viral population to
higher levels. These ideas may explain how the heteroclinic orbit leaving R
and going to S is achieved.

Finally, there is a third outcome for the model which was only indirectly
addressed in the steady state analysis. It is the Progression to AIDS state.
This is characterized by the collapse of the CD4* T cell populations, and the
large numbers of virus. Although this is not a steady state, it is a behavior
of this system. When all the steady states become unstable, then it is this
“state” which is the “stable” one; and hence all the trajectories are drawn to
(V = o00,T = 0).

It should be noted here that in the dynamics of HIV and other diseases,
such as cancer, disease progression states are not states of stabilization, but
states where there is a rapid physical collapse of the system. In these models,
the infected steady staté {latency period) is a state of stabilization; however
the progression to AIDS is not, since the viral population will eventually, in
all infection cases, grow without bound.
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TABLE 1

Variables and Parameters

Dependent Variables

T(t) = CD4* T cell population
V(t) = Infectious virus population (HIV}

Parameters and Constants

o = gource of new CD4TT cells
U = death rate of CD4% T cell population
Kvr rate CD4t+ T cells becomes infected by free virus

Kry = rate HIV is cleared
p = maximal proliferation of the CD41 T cells
N = production # of virus
C = half saturation constant of the proliferation process
Gv = growth rate of external viral source
Twez = Maximal population of T cells
— a

3 = Trnex P
m =&

?&'v K
ky ==5=
N s NEv T Troax
kz S I'l"r.vg"m“

= Gy
g P

Values

1000 mm—3
1.0 x 10~ *mm™3

Values

10471

0.024d™!

2.4 x 10™° mm? d—*
74 x 107* mm® 4!
0.01 41

10

100 mm™3

247!

1500 mm™
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TABLE 2.A
Phase Portrait Analysis in Case 1

193

The following are defined for this case: Ty.p =

CASE It
Restriction: d = [(m = k1}? — 2(m + &) + 1} < 0 where d is the discriminant of the roots of the denominator of Tyepy.

4+ sy L . —
EVIqrV+m’ vert = g /B ~ky +m—
s
max Tyers = H:M.md Thor =T =

a

T for Case L.a,

ko~ N
SUB-CASE SUB-SUEB CASE | Steady States | Stability of 5.5. Figure Refrences
(8.8.)
Ia. Fig. 1
Ml w2 <k < MF 142y
Ey=landd<mdd
Iai. 1.g=(00% 1. locally asymptati- § Figs. 2-4
0<T <M 2.R=(V", E{—N} caliy stable node
3. P = negative root | 2 hyperbolic saddle
point
3. hiologically infeasi-
ble, therefore not im-
portant
Iaii. 1. Q=(0,= 1. saddle-node bifur- | Fig. 5
T™=M cation point
Iaiii, 1.Q=(0% 1. saddle-node bifur- | Fig. £
T >M cation point
Ib. Fig. 7
m+l~2/mak <1
d<mad
Ibi. L. O=0102%) llocally asympteti- | Fig. B
G<T <M 2.R = (VT cally stable node
2. saddle node
Iba. 1. 0=(02 l.non-hyperbaolic Fig. 9
T =M 2LR={T) point of co-dimension
ane
2. saddle node
Thiii, 1.g=(0,2) 1. saddie point node | Fig. 10
M < T <|2R=(WT" 2. saddle point node
max Toert 3.5 ={v;, 7%} 3. tocally asymptot-
ically stable node
Ibiv. 1L.Q=(0% 1. saddle point node | Figs. 11,12
T* = mazTyr 2.E = (V‘F‘-,T‘) 2. saddle-ncde bifur-
cation point
Tov. LQR=(0% 1. saddle point node | Fig. 13
T* > mazlyen
Ic. Pig. 14
1<k <m+2/M+1
d<m<4
Idi. 1. Q=(0,%) 1. locally asymptoti-
0<T <M 2. R= (VT cally stable node
2. paddis node
Tcii. 1L @=(0,%} 1. saddle-node bifur- | Fig. 15
T =M cation
Tcili. LQ=(0%) 1. hyperbolic saddle
T > M point
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TABLE 2.B
Phase Portrait Anelysis in Case 2
Restrictions: d = [{m — &) — 2(m + k) + 1)] = 0.

V*23(s + au
maxTyere = 'H“R“‘}LT.)?‘
. _ g
= kB-N
M= =
Cm
. m—m
Ve e m+1_2\/.ﬁ_;for(}aseﬂ.a
. _ __yEtm
Ve = —m(ﬂvrﬂ)ﬂfmcweﬂ.b.
ff SUB-CASE SUB-SUB CASE | Steady Staten | Stability of 5.5. Figure Referencen
{8.5.)
TTa. Figs, 16,17
fhi=m+1-2ym There are 4 graphs
v()=20 drawn and a-¢ show
¥V >0emed ) the same type of be-
V' e<leam>1 havior as previously
V' -+ +oonasm=—1- analiyzed, hence, they
V" = —coagm - 17 will be ignored and
we'll focus on the d
1lat. 1L.2=(0,2) 1. locally asymptoti- { Figs. 18,19
0T <M 2. R= (W, T cally stable zode :
2. hyperbolic saddle
pt.
ITaik. LQ={0,%} 1. saddle-node bifur- | Figs. 18,20
T =M 2. R = (V*(2 + | cation point
v, &) 2. hyperbolic saddie
pt.
ITaiii. LQ=(02% 1. hyperbolic saddle | Fig. 18
> M % R= (VT pt.
3. S5=0,T 2. saddle node
3. locally asymptot-
ically stable node
TG, Fig. 21
bh=m+1+2/m
Iibi. LQ=(0% 1. locally ssymptoti- { Fig. 21a
m>0 2. R={(1",T") cally stable node
Q<cT* < M 2. saddle point
Hhii. L.@={0% L. saddle poict Fig. 21a
m >0
T =M
Hbiii L. Q=023 saddle point Fig. 21a
m >0
T >M
IThiv L. R={V,T%) 1. saddle point Fig. 21b
m={
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TABLE 2.C
Phase Portrait Analysis in Case 3
Restrictions: d =l{m —k,)* ~ 2{fm + k) +1] >0

SUB-CASE SUB-SUB CASE | ?tendy States | Stability of 5.5. Figure References
$.5.)
[HES i
me+k—-1<0 Fig22
Mla.i 1. g=(0,%) 1. asymptotically | Figs. 23,24
0<T* < & 2. R={1. T stable node
2. hyperbolic saddle
point
Ol 1L.Q={0,%) 1. Non-hyperbolic | Fig. 25
T*=£ 2. R=(, %) saddle node
2, hyperbolic saddle
point
II1.a.ii 1. @=(,%) 1. saddle node Figs, 26,27
T > & 2. R={\, T} 2. saddle node
3 5= (VT 3. locally asymptot-
ically stable node
IILh. Tig. 28
m+k—-1=0
ifL.c. Fig. 29
mtk—-1>0
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