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Reconstructing Microbial Pathogenesis

Mathematic models can simulate the complex dynamics between host
and pathogen during various phases of infection

Denise Kirschner

fter decades of focusing on infected
patients and experimental animals,
modern research in microbial
pathogenesis shifted its main focus
to cellular and biochemical mecha-
nisms governing host-parasite interactions. Un-
doubtedly, studies at multiple scales are needed,
but how can we better use knowledge from this
research to improve our understanding of host-
pathogen relationships?

During an infection, key elements interact in
dozens, if not hundreds, of ways. This complex-
ity imposes enormous challenges for researchers
who follow standard experimental
approaches in trying to under-
stand these interactions. Thus,

neously. In addition, in silico analysis allows
investigators to generate large volumes of data
that simulate events that occur over very long
time scales (on the order of months, years, or
decades) and thus can extend intuitions about
the behavior of key elements within biological
systems. This capacity to extrapolate over ex-
tended time scales is particularly useful when
analyzing latent infections.

Mathematical models of host-pathogen dy-
namics are built on specific assumptions regard-
ing interactions among system components. In
the same way that an experimental animal
model can be so important in un-
derstanding a human biological
system, a mathematical model can

mathematical modeling becomes
an important additional tool for
them, much as it has been for
studying many other complex sys-
tems in disciplines such as quan-
tum physics, astronomy, and mac-
roeconomics, as well as elsewhere
in biology, including gene regula-
tion, receptor-ligand interactions,
microbial population dynamics,
and epidemiology.

The use of “in silico” methods
to analyze infectious disease mech-
anisms enhances understandings

Unlike statistical
methods that
rely solely on
the analysis of
empirical data,
mathematical

models provide
both qualitative
and guantitative
descriptions of
the system
under
investigation

provide valuable insights into
complex interactions and reveal
key governing parameters. Unlike
statistical methods that rely solely
on the analysis of empirical data,
mathematical models provide
both qualitative and quantitative
descriptions of the system under
investigation. These descriptions,
in turn, enable the modeler to use
mathematics to manipulate spe-
cific elements and then to deter-
mine the effects of such manipula-
tions on overall behavior of the

that come from both in vitro and
in vivo research. As with in vitro
research using biochemical and
cell biological models, in silico analysis enables
investigators to consider the host-pathogen rela-
tionship in a defined way and to study its com-
ponents individually. Moreover, as with in vivo
research using animal models, those relation-
ships can be explored in all their complexity,
while monitoring multiple components simulta-

system. In addition, once a host-
pathogen system can be reliably
described with a mathematical
model, investigators can explore elements of the
system that are problematic, or even impossible,
to address experimentally.

Modeling Principles
In applying mathematical modeling to study the
interplay among specific factors during infec-
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Modeling Pathogens with Math: Interdisciplinary to the Max

“I think I was destined to like
math and to be involved in it my
whole life,” says computational
biologist Denise Kirschner. It
wasn’t that she planned a math
career, even though she grew up
doted upon by two aunts who
were both math teachers and she
knew the multiplication tables by
heart at age four. “I was always
very good at math, and I got lots
of honors and awards in school,”
she recalls. “But I never once,
ever, at any time [when I was
younger] considered being a math
major or that I would become a
math teacher. I was always going
to go to medical school.”
Kirschner managed to pull to-
gether the best of her early math-
ematics and biology interests into
her chosen career path— develop-
ing algorithms to build computer
models of microbial pathogenesis.
Although she nearly attended
medical school, she deferred en-
rollment to study at the Center for
Nonlinear Studies at Los Alamos
National Laboratory. That sup-
posedly brief stint turned full
time, led her to do doctoral re-
search there, and steered her clear

of a career in medicine. Ironically,
she now serves on the medical
school faculty at the University of
Michigan (UM) in Ann Arbor. “I
ended up in a medical school,
which is where I wanted to be
since day one, except that 'm us-
ing the mathematical tools that
I'm naturally good at to address
biological questions,” she says.

Kirschner adjusted her course
to UM at several critical turning
points, and she credits influential
mentors for their guidance along
that somewhat roundabout path.
Some key advice came during a
conversation with a mathematics
professor who took her aside in
her senior year in college and said,
““You know, Denise, we’re really
disappointed that you’re going to
medical school,”” she recalls. “He
said, ‘not too many people can get
a Ph.D. in math, and we think that
you can.’” The idea of pursuing a
doctorate in math had simply not
occurred to Kirschner until that
moment. After all, she had never
met a female mathematician with
an advanced degree.

Infectious disease expert Marty
Blaser, then at Vanderbilt Uni-

versity (VU),
provided an-
other dose of
guidance
while she was
doing post-
doctoral work
in the VU math

department.
Blaser knew of her work mod-
eling HIV immunology and epide-
miology. “He got me interested in
Helicobacter pylori,” she says, re-
ferring to the ulcer-causing mi-
crobe. “He had this vision that we
could use computer modeling to
understand the host-pathogen
dynamics. I remember thinking,
‘Wow, this is it.” ” Four years
later, Kirschner was attracted to
the Department of Microbiology
and Immunology at Michigan
when it opened a search for a
computational biologist studying
host-pathogen interactions. Ap-
plication of mathematics to mi-
crobiolical questions has had a
long tradition at Michigan. Its
current chair, Michael Savageau,
provided critical mentoring that
helped her establish a new research

focus in microbial pathogenesis.
; Continued
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tions, good models use parameters that repre-
sent defined biological features, such as growth
rates and nutrient uptake, rather than derived
values that merely align a model with experi-
mental data. Models also can include relevant
dynamic information revealed by experiments,
such as the presence or absence of specific fac-
tors or their relative temporal and spatial ex-
pressions.

A key strength of modeling is that it identifies
sensitivities to parameters and initial conditions,
indicating which processes and interactions are
dominant in the dynamics. For example, the
outcome of an infection initiated with an inocu-

lum of 10 bacteria might be qualitatively differ-
ent from one initiated with 10* bacteria, thus
illustrating sensitivity to this particular parameter.

As with conventional experiments, in silico
research relies on iterative refinements, incorpo-
rating additional details as they become avail-
able. Although a mathematical model might not
fully answer questions about a system, a success-
ful model still should enable investigators to
pose questions about that system and to suggest
experiments that could provide useful insights.

Testing and validation are important ele-
ments of the modeling process. A standard ap-
proach is to compare output from the model
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Today, Kirschner’s lab contin-
ues to study HIV and H. pylori,
but her personal focus recently
shifted to Mycobacterium tuber-
culosis. “1 wanted to develop a
pathogen model on my own, one
that no one had worked on yet,”
she says. That meant spending
much of her first six months as a
faculty member at UM in Ann
Arbor reading voraciously about
tuberculosis while also sitting in
on immunology and microbiol-
ogy courses to learn about key
subjects that were not part of her
mathematics curriculum in gradu-
ate school or her subsequent re-
search as a postdoc.

Recently, she and her col-
leagues submitted reports on a
computer model that accurately
can predict the effects of a protec-
tive host factor on the community
prevalence of tuberculosis. She is
also working to add a spatial
component to the temporal model
of tuberculosis infection that her
lab developed. “We hope this will
become a powerful tool that ex-
perimentalists can use to ask lots
of questions,” she says.

Doing interdisciplinary research
can be both exciting and trying,
and being one among only a

handful of specialized mathemati-
cians who focus on microbial
pathogens further raises the ante.
“There are very, very few of us
who seriously model bugs,”
Kirschner says. “I can count 10 pa-
pers where people have actually
tried to model the pathogenesis of
bacterial infections, and we’ve
done three of those. It’s just a very
young area.” On one side of this
interdisciplinary spectrum, some
mathematicians do not regard
computational biology as serious
mathematics. At the other, clus-
ters of skeptical biologists also tend
to disregard her work, according to
Kirschner. “I've had a few biolo-
gists tell me that they’re offended
by my use of the word ‘experiment’
to describe what I do,” she says.
“They’re skeptical, one, because I
don’t think they understand what
we do. I think that society has
done a good job at making people
math phobic. And two, because
they’re a little fearful about the
methods, that they wouldn’t be
able to evaluate them. I don’t
want people to think that we’re
doing anything different than
what they’re doing in a wet lab.
We’re thinking about things in the
same way. We’re setting up exper-

iments in the same way; it’s just
that we’re doing them on the com-
puter.

Kirschner calls her similarly in-
terdisciplinary-minded husband,
Russ Butler, a vital “soul mate,”
who helps her withstand such un-
appreciative skeptics. “He uses
geography, ecology, and ornithol-
ogy for his science, and I'm mix-
ing mathematics and immunology
and microbiology in my world,”
she explains. “Sometimes we
serve as the sole person to say to
one another, ‘No, you’re not
crazy. It’s ok to be mixing all these
different disciplines.” Because we
are moving science forward— or
at least we’re trying to.

“The way science has typically
moved forward in the past is
when different disciplines have
come together,” she continues.
“And when that happened, it
pushed both disciplines forward. I
believe that’s the case with com-
putational biology from both the
mathematical and the biological
perspectives.”

Christine Stencel
Christine Stencel is a
communications manager and

science writer at ASM.
!

with experimental or clinical data to determine
if the assumptions about the interactions of sys-
tem elements used to build the model accurately
capture actual dynamics. If so, the investigator
can be confident in the model and the insights
that it can generate.

Developing a Model To Describe Bacterial
Growth Dynamics: a Simple Example

Some of the earliest mathematical modeling of
population dynamics was done during the first
part of the 19th century by the English econo-
mist Thomas Malthus. For instance, to describe
population growth, he assumed that the popu-

lation grows exponentially. In mathematical
terms, this model implies that the rate of change
of a population at time ¢, namely P(2), is propor-
tional to the size of the population: dP(t)/dt =
k*P(t), where k is the growth-rate constant of
that change. The mathematical solution to this
differential equation, where P, represents the
initial population size, is P(t)=P,*¢*’. When
represented on a logarithmic scale, this function
is linear (Fig. 1A).

Although Malthus focused on how growth in
the human population and food production
might affect one another, his basic proportion-
ality assumption can readily be applied to other
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(A) Simple model of exponential growth-phase depicted on a log
scale. (B) Classic “complete” growth curve for bacteria. (C) Model
of exponential and stationary phases of bacterial growth.
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populations, such as those of bacteria. Of course
for any population, the exponential growth
model does not hold true over an extended time
frame—in part, explaining why his doomsday
prediction that the exponentially expanding hu-
man population would shortly exceed the food
supply was never realized.

Over a shorter period, the same mathematics
and similar graphics are useful for describing the
growth pattern of a typical bacterial population
(Fig. 1B). This simple model then can be ex-
panded to deal with greater complexity of the

system and to better describe its known dynam-
ics—thus exemplifying the iterative refinement
process that is integral to successful modeling.
In this example of bacterial population
growth, for instance, we can add the concept of
population-carrying capacity, called K. This
general term may encompass various conditions
affecting the growth of bacteria in culture.
Growth of the bacterial population is limited by,
among other things, the volume of the culture,
which could moderate toxic effects, as well as
the availability of nutrients in the media, which
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could affect competition among bacteria. The
parameter K is a measure of these elements in a
particular experimental system. To introduce
these ideas mathematically, we multiply the ex-
isting model by the term (1-(P/K)) as follows:

dP()/dt = k*P(t)(1-(P(t)/K) )= k*P(t)-k*P(t)*/K.

Notice that the growth term remains the same
as before, k*P, but now the carrying capacity,
K, and interaction among bacteria, P?, both
effectively impose limits to overall growth (re-
flected by the minus sign). The solution to the
differential equation in this model is more com-
plex than that of the first model because the P?
term renders the equation nonlinear. Nonethe-
less, computer simulation enables us to graph a
solution (Fig. 1C) that accurately
describes both the growth and sta-
tionary phases of the well-known
bacterial growth curve.

To capture all the stages in the
bacterial population growth cycle,
including the initial lag phase and
late-stage die-off (Fig. 1B), we
again need to modify the model.
While the expanded equations can
accurately describe the bacterial
growth curve, they do not yet con-
stitute a useful model to under-
stand specific conditions that con-
trol growth because the functions
k and K do not represent basic
biological mechanisms. The model
could be improved by expressing k
as a function of conditions such as
nutrient concentration, temperature, and rates
of nutrient uptake, and K as a function of other
conditions affecting growth, including accumu-
lation of toxic metabolites and changes in oxy-
gen concentration.

Applying Modeling Principles to Agents of
Infectious Disease

We are far from fully understanding how many
infectious diseases progress. This gap in under-
standing is particularly striking for a wide range
of latent or persistent infections that are difficult
to study experimentally. My lab group has fo-
cused on three such infectious agents—HIV-1,
Helicobacter pylori, and Mycobacterium tuber-
culosis. For each of these pathogens, the major

In cases where
the biological
system is
experimentally
intractable, a
representative

mathematical
model may
offer the sole
means to
address certain
questions

question that we are trying to address is why
various members among a group of infected
individuals experience very different disease
outcomes.

H. pylori colonizes the human stomach, a
niche that is inhospitable to many other micro-
organisms. Colonization can persist for decades
with extremely different outcomes, including no
symptoms, ulcers, or even cancer. Both host and
microbial factors likely interact to affect the
outcome. However, difficulties in working with
this pathogen in culture and in studying its be-
havior over protracted periods led us to address
some of those presumed interactions through
modeling.

Thus, we developed a model of H. pylori
infection based on a regulatory feedback system
that includes several of the bacte-
rial and host features that enable
this bacterium to colonize the
stomach. Some elements of the
model arise from an analogy with
how populations behave during
epidemics. For instance, the model
predicts the existence of a small
subpopulation of adherent bacte-
ria that serve as a core to feed the
“epidemic,” which in this case
is colonization. Moreover, the
model reflects a generalized host
response indicating that, in some
cases, the bacterial pathogens will
be cleared but, in others, they per-
sist. The model is currently being
refined to include specific elements
that will help to explore the mechanisms of
clearance or persistence.

In Silico Model of Infection with M.
tuberculosis

Tuberculosis (TB) is a leading cause of death
worldwide, responsible for an estimated 3.1 mil-
lion deaths per year. M. tuberculosis is not only
one of our oldest microbial enemies, it remains
one of the most formidable: perhaps one-third
of the entire world population has latent TB.
Thus, there is a great need to elucidate the mech-
anisms of TB disease progression and to devise
ways of controlling those infections. A key issue
is to understand why infected individuals expe-
rience such different clinical outcomes - latency,
primary, or reactive TB.
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IL-10 depletion experiments. Solid lines are IL-10 depletion results, dashed lines are double depletion (both IL-107/IL-12). both cases are
shown for activated macrophages (Panel A) and bacterial load (Panel B). Simulations begin in latency, and depletion occurs on day 1000.

Janis Wigginton and I developed a model that
qualitatively and quantitatively characterizes
the cellular and cytokine control network oper-
ating during TB infection of humans. Our sys-
tem captures host-pathogen dynamics at the
infection site by monitoring bronchoalveolar la-
vage (BAL) fluid in the lung. During the early
stages of developing the model, we identified
several elements that help to regulate the host
response, including CD8+ T cells that play a
key role in controlling such infections. Natalya
Serbina and JoAnne Flynn at the University of
Pittsburgh, Pittsburgh, Pa., experimentally con-
firmed the importance of CD8+ T cells. The
model also indicates that the role of interleu-
kin-10 (IL-10) likely is more important than was
thought.

Our model tracks mycobacteria and various
host cell populations, including THO, THI,
and TH2 cells; resting, activated, and infected
macrophages; and four cytokines, interferon
(IFN)-y, interleukin-12, interleukin-10, and in-
terleukin-4. This model then captures more than
100 interactions among these elements, en-
abling us to monitor them both individually and
collectively, again highlighting the value of this

mathematical approach. The model can be ex-
panded by adding in other cells, cytokines, che-
mokines, or interactions to determine how they
might influence system dynamics.

Once the mathematical expressions were de-
veloped representing the interactions among the
eight cell populations and four cytokines, we
needed to determine the values of the rate con-
stants governing each of these interactions. To
do so, we estimated values for most rate param-
eters from published experimental data, with
weight given to results obtained from monitor-
ing patients or measuring human cells; we also
favored M. tuberculosis-specific data over re-
sults based on other mycobacterial species such
as Mycobacterium bovis BCG. Moreover, esti-
mates obtained from multiple studies are pre-
sented as a range of values. On those parameters
for which we have a range, or those for which no
experimental data are available, we performed
sensitivity analyses to obtain order-of-magni-
tude estimates that could be used in the model.

An example of parameter estimation comes
from how we established the decay rate of IL-
10. Various studies estimated the range of half-
life values to be 2.3-4.5 hours. The decay rate
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can be estimated from half-life given by the
standard formula r = In 2 / half-life. Thus, the
decay rate of IL-10 lies in the range (3.69/day <
u,o < 7.23/day), where u,, represents the decay
rate of IL-10 in our model. Once each of the
parameter values is estimated, we solve the
mathematical systems using an appropriate nu-
merical method on the computer.

Some Results of Our Model of
Human TB Infection

With this model, we simulate M. tuberculosis
infections of humans. We begin with an unin-
fected individual, in whom no M. tuberculosis is
present, resting macrophages are at equilibrium
(3 x 10°/ml), and other pertinent immune sys-
tem cell populations and cytokines remain at
zero. We then adjust the model to replicate
initial exposure to a bacterial inoculum fol-
lowed by near-immediate clearance with no
immunologic memory of that response. Other
outcomes for this simulation include latency,
primary disease, and reactivation. Model-based
simulations allow us to determine which elements
of the dynamic system govern each outcome.

Parameter values that control the rates and
behavior of interactions in the model may
change from individual to individual, and even
within an individual over time. The virtual ex-
periments reveal that changes in only certain
parameters lead to very different disease out-
comes— either latency or active disease. For in-
stance, to simulate reactivation, one or more
critical parameters needs to undergo a time-
dependent change.

One key finding is that cells included in the
model cannot produce as much IFN-vy as those
measured in BAL fluid from patients with TB.
This finding suggests that cells other than CD4+
T cells are producing IFN-y as part of the host
response to M. tuberculosis. A second important
finding is that infected macrophages do not kill
enough M. tuberculosis cells to suppress the
infection under many situations. Taken to-
gether, these results imply that cytotoxic T cells,
which produce IFN-y, are key factors in the
immune response to M. tuberculosis, a conclu-
sion that Serbina and Flynn confirmed experi-
mentally. Therefore, modeling helped lead us to
recognize independently that a critical element
was missing from our understanding of how the

immune system responds to TB, again highlight-
ing one of the strengths of the modeling ap-
proach.

Virtual Deletion and Depletion
Experiments

The model we have developed can be manipu-
lated in a variety of ways to ask questions about
interactions of components and rates of those
interactions within various systems, allowing us
to explore outcomes that are difficult or costly
to analyze with other approaches. For example,
we can perform both virtual deletion and deple-
tion experiments in the in silico model. Deletion
simulations mimic gene knockout (disruption)
experiments by removing an element at day 0,
before any infection is imposed. Meanwhile,
depletion simulations mimic what happens, for
example, if an antibody is added to neutralize
most of a particular cytokine that otherwise
would be active within the system. These simu-
lations are performed by setting a given param-
eter to zero after the system has achieved la-
tency. These analyses allow us to determine
what elements are needed to achieve and main-
tain latency.

For instance, we used the model to simulate
IL-10 depletion under two different conditions
(Fig. 2). When IL-10 is depleted after latency is
achieved, there is an abrupt increase in macro-
phage activation and IFN-y production, leading
to other events that suppress bacterial numbers
to one-third of those observed during latency
(Fig. 2, solid lines). Once the bacterial load
drops, the imrPune response returns to equilib-
rium by 100 'days, with levels ranging from
one-half to one-third of previous latency values.
This equilibrium appears to be driven by a three-
fold increase in IL-4, presumably compensating
for the depleted IL-10.

Our IL-10 depletion simulations do not indi-
cate that IFN-vy production increases. Hence, we
were surprised to see an increase in IFN-y and in
activated macrophages when IL-10 is depleted.
Because IL-12 regulates IL-10 production, we
simultaneously depleted IL-10 and IL-12 and
thus abrogated IFN-y production, and hence the
level of activated macrophages (Fig. 2, dashed
lines). This same effect is seen in vitro using
peripheral blood mononuclear cells from TB
patients.

Both the experimental and model results high-
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light the complexity of immune regulation in
patients with TB. Deleting IL-10 before infec-
tion may actually facilitate the clearance of sub-
sequently added bacteria at the cost of tissue
damage. Depleting IL-10 after latency throws
the system out of equilibrium. Thus, the model
suggests IL-10 helps to maintain latency.

In both humans and mice, infection with M.
tuberculosis results in IL-10 production primar-
ily by macrophages and, to a lesser extent, by
TH2 lymphocytes. In humans, unlike in the
mouse, IL-10 is also produced by TH0 and TH1
lymphocytes This difference in IL-10 produc-
tion is an important example of how studying
TB in mice may not accurately predict the im-
mune response to this infection in humans.
However, we can include this feature in our
simulation model. Several hypotheses regarding
the role of IL-10 in TB are currently being tested
in the labs of our collaborators John Chan at
the Albert Einstein School of Medicine, Bronx,
N.Y., and JoAnne Flynn.

As more and more data accumulate on TB
and other infectious diseases, we need better
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means to integrate this information. Mathemat-
ical modeling offers one method for doing so.
Sometimes such models may appear merely to
confirm what experimental scientists already
surmise about a system. Properly understood,
the model is only a starting point for designing
crucial experiments to test hypotheses. In cases
where the biological system is experimentally
intractable, a representative mathematical
model may offer the sole means to address cer-
tain questions. Additionally, a model may illu-
minate testable aspects of the system that had
not occurred to the experimentalist.

Ideally, those doing modeling can collaborate
closely with experimentalists who are generat-
ing data while asking pertinent biological ques-
tions. Just as genetics and computer science have
spawned bioinformatics as a powerful means to

explore genetics, so microbial pathogenesis and

mathematics can be brought together to vastly
increase our understanding of infectious dis-
eases. A new breed of scientists needs to be
trained to communicate across disciplinary
boundaries if this potential is to be realized.
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