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GranSim parameter values 
 
GranSim (is calibrated to NHP data (1-4) and validated by predicting granuloma level 
outcomes of TNFa, IL10 and IFN knockouts (5-11). Host parameter values for 
GranSim are given in Table S1 (see Table 3 in the main text for bacterial growth 
parameters specific to this work). 
 
Table S1: GranSim parameters 

Parameter Unit* Baseline 
Value 

Number of host cell deaths causing caseation   10 

Time to heal caseation Days 2298 

TNF threshold for causing apoptosis Molecules 2050 

Rate of TNF induced apoptosis s-1 1.3x10-6 

Minimum chemokine concentration allowing 
chemotaxis 

Molecules 1 

Maximum chemokine concentration allowing 
chemotaxis 

Molecules 400 

Initial macrophage density Fraction of grid 
comp. 

0.0105 

Time steps before a resting macrophage can 
move 

Timesteps 2 

Time steps before an activated macrophage can 
move 

Timesteps 14 

Time steps before an infected macrophage can 
move 

Timesteps 144 



TNF threshold for activating NFkB Molecules 95 

Rate of TNF induced NFkB activation s-1 1x10-5 

Number of bacteria resting macrophage can 
phagocytose 

Bacteria 1 

Probability of resting macrophage killing bacteria   0.25 

Adjustment for killing probability of resting 
macrophages with NFkB activated 

  0.4 

Number of extracellular bacteria that can activate 
NFkB 

Bacteria 200 

Threshold for intracellular bacteria causing 
chronically infected macrophages 

Bacteria 10 

Threshold for intracellular bacteria causing 
macrophage to burst 

Bacteria 15 

Number of bacteria activated macrophage can 
phagocytose 

Bacteria 5 

Probability of an activated macrophage healing a 
caseated compartment in its Moore neighborhood 

  0.014 

Probability of a T-cell moving to the same 
compartment as a macrophage 

  0.07 

IFN γ -producing T-cell probability of inducing 
Fas/FasL mediated apoptosis 

  0.02 

IFN γ -producing T-cell probability of producing 
TNF 

  0.07 

IFN γ -producing T-cell probability of producing 
IFN 

  0.35 

Cytotoxic T-cell probability of killing a macrophage   0.01 

Cytotoxic T-cell probability of killing a macrophage 
and all of its intracellular bacteria 

  0.75 

Cytotoxic T-cell probability of producing TNF   0.07 

Regulatory T-cell probability of deactivating 
activated macrophage 

  0.015 

Time before maximum recruitment rates are 
reached 

Timesteps* 720 

Macrophage maximal recruitment probability   0.2 



Macrophage chemokine recruitment threshold Molecules 0.151 

Macrophage TNF recruitment threshold Molecules 0.05 

Macrophage half sat for TNF recruitment Molecules 0.55 

Macrophage half sat for chemokine recruitment Molecules 5 

IFN γ -producing T-cell maximal recruitment 
probability 

  0.096 

IFN γ -producing T-cell chemokine recruitment 
threshold 

Molecules 0.151 

IFN γ -producing T-cell TNF recruitment threshold Molecules 0.1 

IFN γ -producing T-cell half sat for TNF 
recruitment 

Molecules 0.4 

IFN γ -producing T-cell half sat for chemokine 
recruitment 

Molecules 1.5 

Cytotoxic T-cell maximal recruitment probability   0.08 

Cytotoxic T-cell chemokine recruitment threshold Molecules 0.3775 

Cytotoxic T-cell TNF recruitment threshold Molecules 0.1 

Cytotoxic T-cell half sat for TNF recruitment Molecules 0.4 

Cytotoxic T-cell half sat for chemokine recruitment Molecules 1.5 

Regulatory T-cell maximal recruitment probability   0.024 

Regulatory T-cell chemokine recruitment threshold Molecules 0.0755 

Regulatory T-cell TNF recruitment threshold Molecules 0.1 

Regulatory T-cell half sat for TNF recruitment Molecules 0.4 

Regulatory T-cell half sat for chemokine 
recruitment 

Molecules 1.5 

*Conversion factor: 10 min/timestep. 

 
 

  



Qualitative comparison between GSMN-TB with sMtb  
To determine the robustness of our results with respect to our choice of bacterial 
metabolic model we compare GSMN-TB with sMtb, which merges the metabolic models 
GSMN-TB(12), iNJ661(13), and MAP (14). To measure the agreement between the 
models we focus on the reduction in growth rate due to bacterial gene knockouts with 
different carbon sources (glucose only, lipid only, and glucose + lipid) and with or 
without hypoxia (defined as a 90% reduction in the permitted oxygen use rate). For both 
models we use the same rate parameters and nutrient availabilities as were used in 
GranSim-CBM. There are 759 genes associated with reactions in GSMN-TB, 915 genes 
in sMtb, and 737 in the intersection. We compute the growth rates predicted by both 
models, with and without the reactions corresponding to each gene in the intersection 
(single KOs only). The Pearson correlation coefficient for the KO growth rates predicted 
by sMtb and GSMN-TB ranged from .750 to .797 under the 6 different nutrient 
conditions we tested. Cross-tabulations of mutants with full growth (defined as >99% of 
WT), slow growth (0.1% to 99% of WT), and no growth (<0.1% of WT) in each model 
are provided (Table S2).  
  



 
Table S2: Cross-tabulations of mutants in GSMN-TB vs sMtb. 
Lipid-­‐only_hypoxic	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   383	
   6	
   26	
  
GSMN-­‐slow	
  growth	
   4	
   6	
   24	
  
GSMN-­‐no	
  growth	
   43	
   6	
   239	
  

	
   	
   	
   	
  Glucose-­‐only_hypoxic	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   381	
   7	
   26	
  
GSMN-­‐slow	
  growth	
   12	
   18	
   10	
  
GSMN-­‐no	
  growth	
   36	
   15	
   232	
  

	
   	
   	
   	
  Rich_hypoxic	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   381	
   7	
   26	
  
GSMN-­‐slow	
  growth	
   12	
   21	
   10	
  
GSMN-­‐no	
  growth	
   36	
   12	
   232	
  

	
   	
   	
   	
  Lipid-­‐only_High	
  O2	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   378	
   6	
   22	
  
GSMN-­‐slow	
  growth	
   8	
   2	
   24	
  
GSMN-­‐no	
  growth	
   46	
   5	
   246	
  

	
   	
   	
   	
  Glucose-­‐only_High	
  O2	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   383	
   5	
   22	
  
GSMN-­‐slow	
  growth	
   12	
   18	
   10	
  
GSMN-­‐no	
  growth	
   36	
   15	
   236	
  

	
   	
   	
   	
  Rich_High	
  O2	
   sMtb-­‐full	
  growth	
   sMtb-­‐slow	
  growth	
   sMtb-­‐no	
  growth	
  
GSMN-­‐full	
  growth	
   383	
   5	
   22	
  
GSMN-­‐slow	
  growth	
   12	
   21	
   10	
  
GSMN-­‐no	
  growth	
   36	
   12	
   236	
  
   



Mechanics of bacterial agents in GranSim-FBM 
 
A description of the mechanics of bacterial agents in GranSim-FBM is shown in Figure 
S1 and is summarized as follows: 

1) Based on current concentrations of extracellular nutrients and mass of internal lipid 
deposits, compute upper bounds for constrained reactions. Scale the upper bounds by 
the current mass of the bacterium. 

2) Solve the linear programming problem. 
3) Using certain elements of v (the growth rate and the lipid inclusion accumulation and 

use rates) update the cumulative biomass and lipid inclusion levels. 
4) Subtract utilized nutrients from the local extracellular nutrients. 
5) Check if lipid inclusion levels exceed limit, if so then reduce levels to maximum. 
6) If biomass exceeds 2 then divide, if less than .5 remove the agent. 
7) Repeat for each bacterium. 

 
 

 
   

Figure S1: Schematic showing the computation of bacterial growth and response to 
environmental nutrients. 

  



In silico knockouts of TNFα , IL-10 and IFNγ in GranSim 
 

 
Figure S2: Representative outcomes of GranSim 150 days post infection when TNFα , 
IL-10 or IFNγ are removed from the onset of infection. Outcomes correspond to tissue 
scale outcomes of TNFα (poor granuloma structure, high bacterial loads), IL-10 (lower 
bacterial loads, increased inflammation) and IFNγ knockouts (high bacterial loads, 
tissue damage (caseation)) in mice and NHPs (5-11). 
 

  



Bacterial growth phenotypes in granulomas are dynamic and heterogeneous 
 

 
Figure S3: Despite a trend toward slower bacterial growth, the majority of bacteria 
remain in the faster growth phenotype. (A) Each point represents one granuloma. The 
y-axis shows the median generation time for each granuloma. Significance: *: p< 0.01, 
****: p< 0.00001 for paired one way ANOVA with Holm-Sidak correction for multiple 
comparisons. (B) Total area under two peaks in Figure 4B of the main text. Peak 1 
represents slow growing Mtb with growth rates < 0.0015 hr-1. Peak 2 represent faster 
growing Mtb with growth rates ~0.033 hr-1. 
 

  



Growth phenotype changes reflect granuloma size and bacterial loads 
 

 
Figure S4: Bacterial growth phenotype changes with time and reflects bacterial load. 

Two representative granulomas generated by stochastic variation using the same 
parameters as in Figure 6A in the main text. Proportions of bacteria in each growth 

cluster (7 clusters identified in Figure 5 of the main text) are quantified every 20 days 
over the course of infection (right y-axis) and plotted with total CFU (left y-axis). 

  



Definition of attenuated mutants

 
 

Figure S5: Defining attenuated knockout mutants. (A) Histogram showing the 
distribution of average predicted bacterial loads 400 dpi for WT simulations. The “null” 
distribution was generated from 4000 bootstrapped samples from 100 ABM-CBM 
simulations. Red line indicates threshold below which we define an attenuated mutant. 
The threshold was determined by controlling expected false discoveries. We set alpha 
such that the expected number of false discoveries from the 191 mutants we tested was 
less than 1 assuming each mutant followed the null distribution.  (B) Histogram showing 
the distribution of average predicted bacterial loads 400 dpi for 191 Mtb knockouts. Red 
line indicates the boundary below which we can define attenuated mutants. 41 
knockouts fall into this category. 



List of attenuated mutants 
 
Table S3. 
Mutants attenuated for growth as identified by hypothesis testing using the output from GranSim-FBM. Note that Table 5 
is the same list but the mutants unable to grow with lipids as the only carbon source have been removed for clarity. All of 
the mutants unable to grow in lipid only conditions were identified as attenuated by hypothesis testing on the GranSim-
FBM output. 
 

Gene removed from the reaction set in each KO mutant  

Import rates during 
optimal growth 

(fmol/h-BU) 

Name Enzymatic Activity Reaction catalyzed 

Optimal rate 
of biomass 
production 

(1/h) TAG Oxygen 
WT N/A NA 0.034 0.003 0.272 

tpi/Rv1438 
triose-phosphate 
isomerase DHAP  <=> G3P 0.023 0.005 0.272 

sdhC/Rv3316, 
sdhB/Rv3319, 
sdhD/Rv3317, 
sdhA/Rv3318 

succinate 
dehydrogenase, 
sdhABCD 

MK + SUCC  <=> 
MKH2 + FUM 0 NA NA 

pgk/Rv1437 
phosphoglycerate 
kinase 

ADP + 13PDG  <=> 
ATP + 3PG 0.013 0.007 0.272 

pgi/Rv0946c 

glucose-6-
phosphate 
isomerase, glucose-
6-phosphate 
isomerase-pgi 

G6P  <=> bDG6P , 
G6P  <=> F6P 0 NA NA 

otsB2/Rv3372 
trehalose-
phosphatase otsB2 TRE6P  -> PI + TRE 0 NA NA 



nuoA/Rv3145, 
nuoB/Rv3146, 
nuoD/Rv3148, 
nuoE/Rv3149, 
nuoF/Rv3150, 
nuoG/Rv3151, 
nuoH/Rv3152, 
nuoI/Rv3153, 
nuoJ/Rv3154, 
nuoK/Rv3155, 
nuoL/Rv3156, 
nuoM/Rv3157, 
nuoN/Rv3158 

type I NADH 
dehydrogenase, 
nuoA-N 

MK + NADH  -> 
MKH2 + NAD + 4 H 0.025 0.003 0.272 

mdh/Rv1240 
malate 
dehydrogenase 

NAD + MAL  <=> 
NADH + OA 0 NA NA 

lipY/Rv3097c 

Probable 
Triacylglycerol 
Lipase 

TAGcat  -> 0.2 
HEXADECANOATE 

+ 0.1 
OCTADECANOATE 

+ 0.1 9-
OCTADECENOATE 

+ 0.1 
EICOSANOATE + 

0.1 
TETRACOSANOAT

E + 0.1 
HEXACOSANOATE 

+ 0.1 
PENTADECANOAT

E + 0.1 
NONADECANOATE 

+ DAG 0 NA NA 
glpX/Rv1099c fructose- FDP  -> F6P + PI 0 NA NA 



bisphosphatase 

glpK/Rv3696c Glycerol kinase glpK 
GL + ATP  -> ADP + 

GL3P 0 NA NA 

glcB/Rv1837c malate synthase 
ACCOA + GLX  -> 

COA + MAL 0.010 0.007 0.272 

gap/Rv1436 

glyceraldehyde-3-
phosphate 
dehydrogenase 

NAD + PI + G3P  
<=> NADH + 

13PDG 0.013 0.007 0.272 
fum/Rv1098c fumarate hydratase FUM  <=> MAL 0 NA NA 

fba/Rv0363c 

fructose-
bisphosphate 
aldolase-fba, 
fructose-
bisphosphate 
aldolas 

F1P  -> DHAP + T3 
, FDP  <=> DHAP + 

G3P 0 NA NA 

eno/Rv1023 
phosphopyruvate 
hydratase 2PG  <=> PEP 0.010 0.007 0.272 

ctaB/Rv1451, 
Rv1456c, 
ctaE/Rv2193, 
qcrC/Rv2194, 
qcrA/Rv2195, 
qcrB/Rv2196, 
ctaC/Rv2200c, 
fixB/Rv3028c, 
fixA/Rv3029c, 
ctaD/Rv3043c 

aa3-type 
cytochrome c 
oxidase, ctaCDE 
AND cytochrome 
bc1 

0.5 O2 + 2 HEME-
FE2  -> 6 H + 2 

HEME-FE3 0.019 0.002 0.272 

aglA/Rv2471 alpha-glucosidase 
MLT  -> 2 GLC , 

SUC  -> GLC + FRU 0 NA NA 



 

 
Figure S6: The bypass metabolic network when enolase (eno) is knocked out. This suggests that the knockout compensates for loss 

of eno by restoring flux to 3PG (3-phosphoglycerate) using the forced positive reaction network on the left. The role of the 
disconnected network on the right is not clear from this diagram. The analysis of further reactions downstream and upstream of the 

listed metabolites may be helpful in clarifying this. 
 

 
Figure S7: Bypass network for ctaB. Also featured in Fig.10A, shown here for completeness. 

 



Figure S8: Bypass network for gap. 
 

 
Figure S9: Bypass network for nuoA. 



 
Figure S10: Bypass network for tpi. 



 
Figure S11: Bypass network for pgk. 

 



 
Figure S12: Bypass network  for glcB. 



 

 
Figure S13: Displayed is a merge of the seven bypass networks featured above. A node is displayed in black if the gene was knocked 

out in one of the seven networks. A node is grey if it was never a knockout and it was forced to zero in at least one of the seven 
networks. A node is green if it was required to have positive flux in at least one of the seven mutants and never was knocked out or 

forced to zero.
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