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Summary. The immune response occurs over multiple temporal and spatial scales. 
Events at the genetic level can influence events at the cellular level and finally 
manifest at the population scale. Through the example of the human pathogen 
Mycobacterim tuberculosis we explore immune response events over multiple scales 
and how bridging these scales may ultimately lead to the greatest picture of how 
this complex system works. 

13.1 Introduction 

When a pathogen invades a host, the host mounts a response that occurs at several 
levels of biological organization including genetic, molecular, cellular, tissue and sys­
tem level. A number of host cells are called into action including antigen presenting 
cells (APCs) and T cells. At the body's peripheral sites, populations of resident 
APCs are maintained consisting primarily of macrophage and dendritic cells (DCs). 
These cells are among the first to encounter pathogens that breach host barriers. 
Foremost among their responsibilities is the presentation of peptide antigens from 
pathogens that are taken up at the site of infection in the form of peptide-MHC 
(pMHC) complexes on their cell surface. Some APCs, namely DCs, migrate to the 
nearest lymph node (LN) where they activate naYve T cells. Other APCs, namely 
macrophages, remain at the site of the infection and respond to an influx of activated 
CD4'^ T cells by increasing their presentation and microbicidal activity. 

While most of these events occur at the cellular level, they are embedded in the con­
text of multiple biological levels. The initial APC-T cell interaction occurs mainly in 
the specialized structured environment of the LN. The lymphatic system serves as a 
conduit for immune cells between tissues, LNs and organs. While the blood supplies 
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immune cells to the LNs, the lymphatics drain the tissues, acting as the key source 
of antigens and DCs in most infections. Hence, both tissue- and system-level events 
play a role in response efficacy. At the same time, APCs may vary in their ability to 
perform antigen presentation due to events occurring at the molecular and genetic 
levels. The APC-T cell interaction depends on stable expression of pMHC complexes 
on the APC surface that in turn depends on pMHC binding affinity. A high degree of 
variability exists in the peptide-binding region of MHC throughout the human pop­
ulation, resulting in considerable APC heterogeneity, both within a single individual 
and between individuals. Antigen presentation therefore lies at the crux of the im­
mune response, between the larger scales (tissue- and system-level) that determine 
its context and the small scales (genetic- and molecular-levels) that determine its 
constituents. In fact, susceptibility and resistance to some diseases have been linked 
directly to the basic genetic components underlying antigen presentation. 

Certainly there has been a wealth of basic science performed at the molecular and 
cellular levels attempting to elucidate immunity. However, given its complexity, the 
multi-scale system is presently impossible to study in an experimental setting. Thus, 
mathematical and computational models bridging the multiple scales that encom­
pass the immune response are necessary to help uncover mechanisms underlying the 
dynamics of this complex system. 

Mathematical models of the host-pathogen interaction have mainly been restricted 
to the study of host-viral interactions. Relatively few models have explored bacterial-
host interactions [Freter et al. 1983, Kirschner & Blaser 1995, Asachenkov 1994, 
Gordon & Riley 1992, Lipsitch & Levin 1997]. Regardless, most have focused on the 
single-scale of cellular-level dynamics. 

We have made attempts to explore the complex system of immunity by studying 
the immune response to a specific pathogen. We have studied the interaction of 
the immune system with the intracellular pathogen Mycobacterium tuberculosis at 
a number of biological and spatial scales. Here we highlight both the biology we are 
addressing and the mathematical approach taken as a means for beginning to un­
derstand the integrated, multi-scale complex system know as the immune response. 

13.2 M. tuberculosis 

Tuberculosis (TB) has been a leading cause of death in the world for centuries. 
Today it remains the number one cause of death by infectious disease world wide 
- 2 million deaths per year. TB is not only one of our oldest microbial enemies, 
but it remains one of the most formidable: An estimated one third of the world 
population has latent TB—2 billion people. Thus, there is a great need to elucidate 
the mechanisms of TB disease progression. There are 2 major infection outcomes for 
TB-latency and active disease; the ability to clear TB has not been demonstrated, 
although only a subset (~30%) become initially infected upon exposure [Styblo et 
al. 1969] suggesting some (perhaps most) are able to clear upon initial infection. 
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Reactivation can occur in latent infection, although we do not discuss this here 
for brevity (see [Singer &; Kirschner 2004] for more information). Key issues are to 
understand immune mechanisms involved in controlling infection leading to latency. 
To this end, elaborating the primary immune response against the causative agent, 
M. tuberculosis (Mtb), is essential to understanding the functional immune response 
that leads to latency. 

Primary infection usually develops in the alveoli of the lung after inhaling droplets 
containing Mtb. The bacteria are then ingested by resident alveolar macrophages and 
begin to multiply [Canetti 1955]. These macrophages are poor at destroying their 
occupants in part because Mtb can prevent phagosome-lysosome fusion in resting 
macrophages [Myrvik et al. 1984, McDonough et al. 1993]. Infected macrophages 
may burst due to the large number of multiplying bacteria within. Infected dendritic 
cells or macrophages circulate out through the lymphatic ducts to the draining 
lymph nodes where the specific immune response is initiated. Here, CD4+ T cells 
are stimulated to become effector cells, most likely of the Thl type. These and 
other effector cells such as CD8+ T cells and monocytes must then be recruited and 
migrate to the site of infection, interact with cells at the site, where they participate 
in the formation and function of a unique immunological structure known as a 
granuloma. 

Granuloma formation is dependent on a number of factors, including chemokines, 
cytokines, cell adhesion molecules and immune effector cells. There exists a large 
body of literature regarding these individual elements in the immune response in 
TB; however, little is known about the interaction among these elements that leads 
to granuloma formation and function. Characterization of the immunologic factors 
operating during granuloma formation is likely to shed light on our understanding 
of host defense and pathogenetic mechanisms involved in TB. This is a daunting 
task as infection with Mtb triggers production of a complex set of immunologic 
factors, including potent pro- and anti-inflammatory cytokines and chemokines that 
are capable of interacting with and cross-regulating one another. These analyses 
are further complicated by the fact that many of the participating members of 
the tuberculosis immune network possess pleiotropic and often opposing functions. 
Mathematical models provide a framework for integration of large amounts of data 
into a complex system that can then be analyzed, and thus is currently the only 
integrative approach for studying complex biological systems. 

13.2.1 Immune cells participating in the immune response to M, 
tuberculosis 

Macrophages are the preferred host cell for mycobacteria. These phagocytic cells 
take up M. tuberculosis and are unable to clear it as they normal do most other bac­
teria. However, if the macrophage receives appropriate cellular and cytokine signals 
(such as IFN-7) within an efficient amount of time, then these macrophages can be­
come activated and clear their intracellular load [Nathan et al 1983, Flesch & Kauf-
mann 1990]. Otherwise, macrophages become chronically infected and will not only 
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never be able to clear their intracellular bacteria [Armstrong &: Hart 1971, Sturgill-
Koszycki et al. 1994], but will eventually burst due to increasing bacterial numbers 
or be killed by cytotoxic T cells [Lewinsohn et al. 1998, Tan et al. 1997]. 

It is well established that cell-mediated immunity is essential for controlling initial as 
well as latent Mtb infection both in humans and murine models. CD4+ and CD8+ 
T cells are beheved to be important in this response [Chan &; Kaufmann 1995]. 
Support for the importance of CD4+ T cells comes from the extreme susceptibility 
of HIV4- subjects to acute and reactive TB. Mice deficient in CD4+ T cells succumb 
to fatal TB [Leveton et al. 1989, Muller et al. 1987, Tascon et al. 1998, Caruso 
et al. 1999]. CD4+ T cells produce cytokines, such as IFN-7, and thus activate 
macrophages to eliminate intracellular Mtb [Caruso et al. 1999, Silver et al. 1998]. 
This is partially mediated, in mice and possibly in humans, by the production of 
reactive nitrogen intermediates, such as nitric oxide, produced by inducible nitric 
oxide synthase (N0S2) within macrophages [Chan 1993]. Mice deficient in CD8+ T 
cells are more susceptible to Mtb than are wild type mice [Flynn et al. 1992]. CD8-I-
T cells in the lungs of infected mice can produce cytokines and act as cytotoxic T cells 
(CTL) for infected macrophages [Dolin et al. 1994, Serbina & Flynn 1999, Serbina et 
al. 2000]. Mtb-specific human CD8+ T cells from tuberculosis patients have recently 
been reported (reviewed in [Flynn &; Ernst 2000]. 

13.2.2 Cytokines Involved in the Response to M, tuberculosis 

An essential cytokine in control of infection is IFN-7; mice deficient in this gene 
are extremely susceptible to acute TB [Flynn et al. 1993, Cooper et al. 1993]. A 
consequence of the absence of IFN-7 is the lack of macrophage activation, including 
N0S2 production [Flynn et al. 1993, Cooper et al. 1993, Dalton et al. 1993]. IL-12 
is also required for control of acute TB [Cooper et al. 1997b, Cooper et al. 1997a]. 
Human studies have demonstrated that mutations in genes for IFN-7 and IL-12 
receptors increase susceptibility to mycobacterial infections [Ottenhoff et al. 1998]. 
TNF is also essential to control of both acute and chronic Mtb infection [Flynn 1995, 
Adams et al. 1995, Mohan et al. 2001, Bean et al. 1999]. This cytokine has effects on 
chemokine and adhesion molecule expression and therefore is an apparent key player 
in granuloma formation [Flynn 1995, Bean et al. 1999, Kindler 1989, Mohan et al. 
2001]. Recently, TNF has shown to be an important cytokine in human studies (with 
anti-TNF treatment for arthritis), which have induced reactivation of TB [Ehlers 
2003, van Deventer 2001, van Deventer 2002], as well as in mouse systems were TNF 
knock-out mice were highly susceptible to active TB [Mohan et al. 2001, Botha & 
Ryffel2003]. 

13.2.3 Chemokines Involved in the Response to M, tuberculosis 

A successful host inflammatory response to invading microbes requires precise co­
ordination of myriad immunologic elements. An important first step is to recruit 
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intravascular immune cells to the proximity of the extravascular location of infec­
tion, preparing them for the process of extravasation. This is controlled by adhe­
sion molecules and chemokines. The field of chemokine research is expanding at 
a rapid rate. These molecules induce migration of various cells, including mono­
cytes/macrophages, dendritic cells, neutrophils and leukocytes [Baggiolini 1998]. 
The migration of cells occurs as a result of the integration of various chemokine sig­
nals and their receptors [Foxman et al. 1997]. There is evidence that cytokines play 
both direct and indirect roles in modulating this process [Lane et al 1999, Czermak 
et al. 1999, Crippen et al. 1998, Koyama et al. 1999]. Chemokines in Mtb infection 
have been investigated to a limited extent [Orme 1999a, Orme & Cooper 1999, Orme 
1999b, Orme 1999c]. We begin to elucidate the role of chemokines in our models of 
the immune response to Mtb. 

13.3 In Silico Models at Different Biological Scales 

Our goal is to illustrate the application of mathematical modeling at different bi­
ological scales towards better understanding the immune response to Mtb. To this 
end, we present 4 distinct models. First, we study the role of antigen presentation 
at the intracellular level exploring processing and genetic events that are interfered 
with by M. tuberculosis to its favor. Second, we bridge two distinct biological scales: 
genetic level, immune system events that impact the epidemiology of TB. Next, we 
explore the immune response to M. tuberculosis using a two-pronged approach. We 
developed a temporal model tracking a spatially homogenous population of cells and 
cytokines in the lungs. This model was designed with ordinary differential equations. 
And lastly, we then narrowed the spatial scale to a single granuloma forming and 
accounted for the heterogeneous spatialization and behavior of cells on an individual 
level using an agent-based model. 

13.3.1 Antigen Presentation and its role in M. tuberculosis 
Infection 

Antigen presentation is critical to triggering an appropriate immune response. It 
is the process whereby peptide fragments of proteins derived from pathogens are 
presented on an immune cell surface signaling the presence of infection. This process 
occurs via two pathways. All cells of the body (except red blood cells) have the ability 
to process and present antigens that are derived from the cytosol. This allows for 
cells to signal they are infected to the immune response for clearance. This process 
occurs via the MHC class I presentation pathway. Other cells, termed professional 
antigen presenting cells, or APCs, present antigen to immune cells for activation via 
the MHC class II pathway. It is this route of presentation that we focus on here. 

Briefly, specialized APCs, dendritic cells and macrophages, take up pathogens 
or other factors produced by pathogens at the site of infection. Once taken up, 
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pathogens are sequestered into vacuoles and their proteins are processed into pep­
tides. These peptides are bound by MHC class II (MHC II) molecules, named for 
the region of the genome in which they are encoded, the major histocompatibility 
complex. Within this region lie the most polymorphic genes in the human genome, 
giving rise to MHC molecules with different peptide-binding specificities. Peptide-
MHC complexes (pMHC) are displayed on the surface of the APC and are recognized 
by the T cell receptor on T helper cells that become activated and proliferate in re­
sponse For a complete treatment of T cell receptors, see Chapter 4 by Lee and 
Perelson in this book. 

13.3.2 A Model for MHC class II Antigen Presentation During 
Infection with M, tuberculosis 

While MHC II polymorphism may be the strongest genetic determinant of an anti­
gen presentation outcome due to its effect on pMHC binding, this is by no means 
the only regulated step. Several critical cellular processes contribute to successful 
antigen presentation by APCs. These processes occur in the time frame of minutes 
to hours and can be stated briefly as: (1) uptake of antigen from the extracellu­
lar environment and degradation of antigen within endosomal compartments into 
peptides, (2) synthesis of MHC II molecules, (3) peptide-MHC II binding to form 
pMHC complexes, and (4) display of pMHC complexes on the APC surface. We 
review these briefly below, but for a full treatment we refer the reader to a recent 
review [Bryant & Ploegh 2004]. 

Exogenous antigens, constituting the bulk source of peptides for MHC II-mediated 
antigen presentation, generally have three routes of entry to the APC: fluid-phase 
pinocytosis, receptor-mediated endocytosis, and phagocytosis [Lanzavecchia 1996]. 
Pinocytosis is a common mode of entry and is our focus. Once taken up, antigens 
move through a series of increasingly acidified endosomal compartments and are 
either processed into peptides capable of binding MHC II molecules or degraded. 
Low pH-activated proteases degrade antigen as it traffics through the endocytic 
pathway, yielding peptides suitable for binding MHC II [Honey & Rudensky 2003]. 

MHC II expression is normally low in resident populations of APC that have not 
been exposed to antigen. However, a number of environmental cues can alter MHC 
II expression including chemical signals (cytokines) secreted by neighboring cells 
and direct contact with certain molecules native to pathogens. Such signals trigger 
a signal transduction cascade in the APC resulting in the up-regulation (or, in 
a few cases, down-regulation) of MHC II expression. For example, macrophages 
are often incubated with IFN-7 for in vitro studies; in the in vivo situation, this 
would come from T cells or natural killer cells. IFN-7 binds to receptors on the 
macrophage surface, increasing the expression of class II transactivator (CIITA), a 
master regulator of MHC II transcription, over a period of hours, leading after a time 
delay to increased MHC II expression and presumably increased ability to present 
antigen. Describing the eff"ects of IFN-7 requires consideration of the degradation 
of IFN-7 in solution and the uptake of IFN-7 by macrophages [Celada & Schreiber 
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1997]. Shortly after appearing in the endoplasmic reticulum, a nascent MHC II 
molecule is coupled to invariant chain (li) which possesses a cytosolic domain capable 
of directing the molecule to the endosomal pathway and an extracytosolic domain 
capable of binding and protecting the MHC II binding groove. 

The MHC II molecule arrives in the endosomal pathway with its binding groove 
still loaded with a remnant of li, the class II invariant chain-derived peptide (CLIP). 
Removal of CLIP occurs in an endosomal compartment, the MHC, that also contains 
antigenic peptides and is catalyzed by the MHC-related enzyme HLA-DM [Denzin 
&; Cresswell 195]. Self peptides derived from the body's own proteins are also present 
within the MHC and compete with antigenic peptides for binding to MHC II [Adorini 
et al. 1988]. Indeed, in the absence of exogenous antigen self peptides may bind 80% 
or more of the available MHC II molecules [Chicz et al. 1993]. Once a pMHC complex 
is formed, whether it involves antigenic or self peptide, it is transported to the cell 
surface where it can be recognized by CD4"^ T cells for a period of time until it is 
either degraded or internalized. These processes appear largely unaffected by IFN-7 
in contrast to MHC II expression [Boehm et al. 1997]. 

DCs and macrophages represent two types of so-called professional APCs, i.e. APC 
that express not only MHC II molecules but also co-stimulatory and adhesion 
molecules necessary to engage T cells.While DCs take up antigen at the site of in­
fection and migrate to LNs to present antigen, macrophages primarily perform their 
function as APC at the infection site [Reinhardt et al. 2001] Thus, in examining the 
lung in M. tuberculosis infection, we focus our attention on the macrophage. 

13.3.3 Many Pathogens Regularly Interfere with the Antigen 
Presentation Process. 

Not surprisingly, since pathogens meet APCs continually as a first line of defense, 
many have evolved ways in which to inhibit antigen presentation, including both 
viral and bacterial pathogens. Cytomegalovirus is a viral pathogen that has been 
shown to inhibit antigen presentation, interrupting the MHC II expression pathway 
[Miller et al. 1998]. An example of one such bacterial pathogen is M. tuberculosis. 
Upon entering the lungs, M. tuberculosis is taken up by resident macrophages or 
DCs, adapts to the intraphagosomal environment, and survives or slowly replicates 
[Fenton 1998]. To evade immune surveillance, M. tuberculosis is known to inhibit 
antigen presentation via both class I and class II pathways in chronically infected 
macrophages [Grotzke & Lewinsohn 2005, Brookes 2003, Chang et al. 2005]. The 
mechanisms by which M. tuberculosis achieves inhibition of presentation via the class 
II pathway have not been completely elucidated, though several hypotheses have 
been proposed [Moreno et al. 1998, Hmama et al. 1998, Noss et al. 2000]. Without 
a detailed model of the molecular and cellular events of antigen presentation, it is 
difficult to assess the impact of various mechanisms of inhibition on the display of 
antigen and ultimately on the immune response. Early models by Linderman et al 
presented a first look at the dynamics of antigen presentation at the cellular level and 
demonstrated that the rates of endocytosis could be related to the display of antigen 
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[Singer &; Linderman 1990, Singer &; Linderman 1991, Petrovsky & Brusic 2004]. 
However, these models did not account for the more recently understood dynamics 
of antigen presentation and the role of IFN-7 in increasing MHC II expression. We 
developed a next-generation model of the molecular and cellular events required for 
display of antigen on the surface of the APC and describe how it might be used to 
elucidate the mechanisms pathogens use to interfere with the process [Chang et al. 
2005]. We use the number of pMHC complexes on the APC surface with respect to 
time as our output variable and our measure of antigen presentation unless otherwise 
stated. 

Our model uses ordinary differential equations (ODEs) to describe the time-
dependent processes essential to antigen processing and presentation [Chang et 
al. 2005]. A previous model of the class I presentation pathway applied a method 
known as nueral networks [Petrovsky & Brusic 2004]. As detailed earlier, these pro­
cesses include uptake of protein antigen from the extracellular environment, degrada­
tion of antigen within endosomal compartments into peptides, synthesis of MHC II 
molecules, peptide-MHC II binding to form pMHC complexes, and display of pMHC 
complexes on the APC surface. ODEs are well suited for modeling dynamical sys­
tems when species are well mixed and present in numbers large enough that they 
can be considered continuous. Both of these conditions are met in the case of MHC 
Il-mediated antigen presentation by macrophages. We represent MHC II molecules 
using six variables to distinguish between intracellular and surface localizations as 
well as free, self peptide-bound, and exogenous peptide-bound forms. The portions 
of our model dealing with exogenous antigen and MHC class II peptide loading will 
be similar to the simpler model developed by [Singer & Linderman 1990]. 

Key assumptions made in our model development included the following: (1) Both 
antigen uptake and processing can be represented as single-step reactions. (2) Events 
leading up to MHC II expression require long periods of time relative to other 
events, e.g. peptide-MHC binding, and therefore should be included in our model. 
Long-lived intermediates of these events, mainly mRNA and protein species, will be 
represented explicitly, while shorter-lived intermediates such as second messengers 
will not. (3) Events bridging the appearance of MHC II molecules in the ER and 
removal of CLIP occur constitutively and therefore can be represented as one event. 
(4) All forms of MHC class II molecules are capable of being transported to and 
from the plasma membrane, including peptide-free ("empty") MHC II [Germain & 
Hendrix 1991, Santambrogio et al. 1999]. (5) The reaction scheme MHC + peptide 
<^ pMHC is sufficiently accurate on the timescales of the experimental conditions we 
wish to simulate to allow us to forego more complicated models of this process (e.g. 
in [Beeson Sz McConnell 1995]). Indeed, our calculations with peptides for which 
we have pMHC association and dissociation rate constants indicate that we can 
assume equilibrium binding in the endosome in the presence of the enzyme HLA-
DM. (6) Different self peptides bind to MHC II molecules with similar kinetics, 
despite being derived from various endogenous proteins, and can be represented as 
a single population. These self peptides will be available for MHC II binding or will 
be transported to lysosomes and degraded. 
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Parameters for the model were estimated from published experimental data; many 
parameters are similar to earlier models [Singer & Linderman 1990, Singer & Linder-
man 1991, Agrawal & Linderman 1996]. The model was validated under a number 
of control scenarios. For example, macrophage CIITA, MHC II mRNA, and MHC II 
protein levels have been reported at various time points by [Pai 2002] and [Cullell-
Young et al. 2001]; these data were used to verify the MHC expression portions of 
our model. Other simulations were compared to time courses of antigen presentation 
in the presence and absence of IFN-7 from the data of [Delvig et al. 2002]. In each 
case we matched both qualitative and quantitatively to the known experimental 
data (see [Chang et al. 2005] for full details of the negative and positive control 
simulations). 

Simulations were run using several ODE solvers to ensure consistency, including the 
NDSolve feature of Mathematica v4.2 (Wolfram Research, Inc.) and our own solver 
coded in C and run on Sun UNIX machines. We also performed a detailed sensitivity 
analysis integrated into the numerical solver. 

Using the model described above, we simulated several time courses of antigen pre­
sentation. As net pMHC binding affinity was increased in the model (base + / - 25% 
is shown), the average number of pMHC complexes appearing on the surface over 
the first six hours of antigen exposure also increased (Figure 13.1). Depending on 
other conditions in the model, such as extracellular antigen level and level of MHC 
II expression, this number sometimes dipped below a threshold required to elicit 
T cell responses, approximately 200 pMHC complexes [Kimachi et al. 1997]. These 
results suggest that some variants of MHC II may hinder the development of adap­
tive immunity, and that binding affinity is a key parameter a successful immune 
response. 

Fig. 13 .1 . Simulated time courses of surface pMHC levels following exposure to 
antigen as net pMHC affinity is increased. 
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13.3.4 M, tuberculosis Inhibits Antigen Presentation at Multiple 
Times using Multiple Mechanisms 

Inhibiting antigen presentation at some level is a strategy that many pathogens need 
to employ to evade immune killing. Because the many processes that constitute anti­
gen presentation are complex and difficult to study individually, many mechanisms 
have been proposed to explain how pathogens may interrupt one or more of these 
processes. That M. tuberculosis inhibits antigen presentation in macrophages is now 
well established. Multiple studies have provided a number of hypotheses regarding 
the mechanism used by M. tuberculosis to inhibit antigen presentation, reviewed in 
[Harding et al. 2003], including (Hi) inhibition of antigen processing [Hmama et 
al. 1998, Singer &; Linderman 1990] (H2) of MHC II protein maturation (including 
delivery of MHC II proteins to the MHC and li processing), (H3) of MHC II pep­
tide loading [Hmama et al. 1998] or (H4) of transcription of MHC II genes [Noss 
et al. 2000]. Our model addresses why multiple mechanisms have been observed, 
whether previous experimental protocols favored the detection of some mechanisms 
over others, and whether alternative mechanisms may exist. 

We included into our model of antigen presentation those processes hypothesized 
to be inhibited by M. tuberculosis: antigen processing, MHC class II maturation, 
MHC class II peptide-loading, and MHC class II transcription. Parameter values 
were estimated from the literature, mostly in vitro studies on mouse cells, and ma­
jor features of the output, typically surface peptide-MHC levels, were compared to 
other experimental data. We then used the model to simulate experimental protocols 
from studies proposing hypotheses and found that some were biased to detecting 
mechanisms targeting MHC class II expression (Figure 13.2). We also found that 
mechanisms differed by the timescales on which they were effective (either less than 
or greater than 10 hours) and therefore might be used in combination by M. tubercu­
losis to ensure continuous inhibition of antigen presentation. Finally, by analyzing 
the sensitivity of the model to variations in parameter values, we also identified 
other intracellular processes that may significantly affect antigen presentation (such 
as self-peptide synthesis) and be targeted by M. tuberculosis or other pathogens as 
a result. 

13.4 Genetic Epidemiology of TB- a further look at the 
impact of antigen presentation in a broader context 

One important application of a mathematical modeling approach can be to bridge 
gaps between biological scales of interest. Clearly, what manifests at the epidemio­
logical level is a result of events that occur at many host-level scales. To illustrate 
one approach, we explore a link between effects occurring at the level of antigen 
presentation to effects manifesting at the population level during tuberculosis epi­
demics. 
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Fig. 13.2. Simulation of one experimental protocol showing that detection of MHC 
class II expression-targeting mechanisms is favored 

Several studies have found that genetic factors influence susceptibility and resistance 
to M. tuberculosis infection [Kramnik et al. 2000, Bothamley et al. 1993, Goldfeld et 
al 1998, Selvaraj et al 1998, Bellamy k, Hill 1998, Bellamy et al 1998, Wilkinson et 
al 1999, Hill 1998]. These studies employ a variety of methods including large-scale 
association-based population case/control studies of candidate genes, family-based 
linkage analysis, investigation of rare individuals with exceptional mycobacteria sus­
ceptibility, and comparison with murine models of disease. Such studies enable iden­
tification of particular host genes that influence susceptibility to TB disease. 

The major components of susceptibility and resistance to TB appear to be linked 
directly to the immune response, and in particular to MHC class II molecules. Hu­
man MHC molecules are termed human leukocyte antigen (HLA) molecules (but the 
terms tend to be used interchangeably). Increased susceptibility and resistance to 
more than 500 diseases has been shown to be associated with various HLA antigens, 
alleles, or haplotypes (sets of genes that are typically inherited as a unit) [Zachary et 
al 1996]. In some diseases, HLA expression may influence the balance and strength 
of the immune response [Pile 1999]. The level and type of immune response to a 
particular pathogen may vary among populations that have different distributions 
of HLA molecules. 

Many HLA genotypes are implicated in susceptibility to M. tuberculosis infection 
[Bothamley et al 1993, Goldfeld et al 1998, Selvaraj et al 1998, Meyer et al 1998]. 
Variable binding of mycobacterial antigens to the various HLA molecules may aff̂ ect 
the intensity of the adaptive immune response and thus influence susceptibility to TB 
[Lim 2000, Vordermeier 1995]. Expression of HLA-DR2 is strongly and consistently 
linked to pulmonary TB and the severe multibacillary form of TB in India [Selvaraj 
et al 1998, Singh et al 1983, Bothamley et al 1989, Brahmajothi 1991, Rajalingam 
et al 1996]. HLA-DR2 correlates with increased levels of serum antibody levels 
[Bothamley et al 1993, Bellamy & Hill 1998, Bothamley et al 1989], indicating an 
elevated humoral immune response, associated with active disease. The presence of 
the HLA-DR2 allele may induce tolerance to M. tuberculosis^ leading to uncontrolled 
growth of the bacilli [Rajahngam et al 1996]. In addition, HLA-DR2 correlates with 
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decreased production of key proteins that play crucial roles in granuloma formation 
and subsequent containment of bacteria [Tracey 1997, Flynn 8z Chan 2001a, Flynn 
& Chan 2001b]. 

13.5 Modeling Epidemic T B 

Our goal was to develop a mathematical model of epidemic TB that allowed us to in­
vestigate different demographic populations with inherent susceptibility to infection 
by M. tuberculosis. To illustrate our approach, we highlight results related to India 
where the frequency of the HLA-DR2 allelle is high and prevalence and incidence 
levels of TB are significantly higher as compared with the rest of the world. We were 
motivated by previous work from our group which presented a first model of HIV 
infection within a genetically heterogeneous population, [Sullivan et al. 2001]. 

We have developed a model of epidemic TB using a modified Susceptible-Infected-
Removed (SIR) model with mutually-exclusive groups of individuals who are unin­
fected, latently infected (those infected with M. tuberculosis but not infectious), or 
actively infected with M. tuberculosis (those infected AND infectious) [Murphy et al. 
2002, Murphy et al. 2003]. As our goal was to study the effects of a genetically sus­
ceptible subpopulation on the dynamics of epidemic TB at the population level, we 
further subdivide each of these three groups to include individuals carrying a suscep­
tibility allele for MHC II (DR2 in this case), resulting in the six mutually-exclusive 
populations. Due to extensive diversity in the HLA genetic system, we examine 
disease relationships based upon the presence of susceptibility with no distinction 
between homozygotes and heterozygotes. For full details of the model equations and 
assumptions, [Murphy et al. 2002, Murphy et al. 2003]. 

13.5.1 How to include the effects of genetic susceptibility 

Two things are important to consider regarding including effects of a susceptibility 
gene into this model. First, we divided individuals entering uninfected classes into 
a cohort that was neutral with respect to effects of a gene and a cohort that was 
susceptible because of the gene. To allow for births into the population, we defined 
a parameter that represents the fraction of the general population exhibiting a sus­
ceptible phenotype. If we consider a specific genotype underlying this phenotype, 
then this value must be derived from the allelic frequency according to dominance 
patterns for that allele. In the model implementation, we considered this value to 
be constant. This could certainly be extended to include a time varying allelic fre­
quency, as we did in [Sullivan et al. 2001], to examine selection processes. 

Second, based on the observed significant correlations of HLA-DR2 with active TB, 
we proposed three possible ways that the HLA-DR2 susceptibility allele may affect 
the susceptible cohort: 
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1. HLA-DR24- individuals have an increased probability of direct progression to 
active TB upon initial infection 

2. HLA-DR24- individuals exhibit an increased reactivation rate from latent to 
active TB 

3. HLA-DR2+ individuals are more likely to transmit and/or receive M. tubercu­
losis. 

To account for these potential processes within the modeling framework, we intro­
duced a parameter to describe the possible influence (s) of genetic susceptibility from 
our 3 hypotheses on baseline (i.e. genetically neutral) parameters. We do not pre­
dict specific values for this parameter as none have been identified; rather we use 
this parameter to indicate where we included influences from hypotheses of genetic 
susceptibility and studied a wide range of effects. To observe the effects of this vari­
ation, we predict 95% confidence intervals on our output measures (prevalence and 
incidence) based on large variations in this parameter. 

Parameter values and initial conditions reflect demographics of India (derived from 
the WHO and other data [World Health Organization 2001], as this is the popula­
tion with the highest frequency of the HLA-DR2 allele. For this simple model we 
also assumed no treatment or therapy, as may be the case for many of the devel­
oping countries with the highest burden of TB. Worldwide, the average (baseline) 
prevalence of TB is approximately 33%, and the average incidence is 135/lOOK/yr 
[Bleed et al. 2001, Chakraborty 1993]. Figure 13.2 (dashed curves) shows basefine 
simulations (worldwide) prevalence and incidence simulations together with a 95% 
confidence interval on the mean derived from an uncertainty and sensitivity analysis, 
see [Murphy et al. 2002, Murphy et al. 2003] for all details). 

Our goal was to determine what effects to the epidemiological system would likely 
have to occur to bring prevalence and incidence in line with the significantly higher 
level known to exist in India (where prevalence of TB is almost 50% and incidence is 
between 200-400/lOOK/yr) [World Health Organization 2001]. The model predicted 
that the scenario when HLA-DR2 affected all 3 hypotheses (listed above) simultane­
ously yields results most closely in line with current outcomes for India (Figure 13.3, 
solid curves). The combined effects yield increased values for incidence and preva­
lence closer to levels that are observed in India where HLA-DR2 is most prevalent. 
While the combined effects are more representative of current TB burden, they may 
be too high in some cases. One explanation is that the presence of known resistance 
alleles may balance these effects. 

While the role of genetic susceptibility is not well defined, it is clearly important 
to understanding the dynamics of infectious diseases. This is a first attempt to 
show how effects occurring at the immune system scale can impact dynamics in a 
significant way at the population scale. Further detailed studies along these lines 
can likely lead to suggested strategies for intervention and control. 
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Fig. 13.3. Shown are simulations of the epidemic model for susceptibility to TB 
over a 300 year period. Panel A indicates the Prevalence, and Panel B shows inci­
dence cases per 100,000/year. The horizontal dashed curves indicate the worldwide 
(baseline) prevalence and incidence levels with 95% confidence intervals, while the 
horizontal solid curves indicate the simulated outcomes when all 3 hypotheses are 
altered indicating the effects of the susceptibility allele (also shown with 95% confi­
dence intervals for variations of parameter values) 

13.6 A Temporal Model Tracking the Immune Response 
to M. tuberculosis in the Lung 

When a CD4+ T cell encounters an APC, and its T cell receptor (TCR) recognizes 
the specific pMHC being displayed on the surface of the APC, a series of events 
follows leading to T cell activation. This interaction between cells bridges to the 
next biological scale - that of cellular level events. As a first attempt to understand 
the cellular immune response to infection with M. tuberculosis, we have developed a 
temporal model that qualitatively and quantitatively characterizes the cellular and 
cytokine control network operational during TB infection in the whole lung [Wig-
ginton & Kirschner 2001]. Using this model we made a first attempt at identifying 
key regulatory elements in the host response. 

This first model was developed to capture infection with M. tuberculosis at the site 
of infection in the lung. Our 'reference space' is the entire lung tissue; however 
since no data are available in humans, we consider that the simulations take place 
in bronchoalveolar lavage (BAL) fluid, and we measure all cells and cytokines in 
units per ml of BAL, as data is available in humans and non-human primates. 
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While it is likely that the quantitative response differs between the airspace and the 
interstitium, we relied on the acceptance of BAL as a qualitative predictor of lung 
environment [Ainslie et al. 1992, Moodley et al. 2000]. 

We developed a mathematical system based on the interactions of a number of 
key cells and cytokines known to be important in TB infection. We tracked both 
extracellular and intracelluar mycobacteria, the cell populations: ThO, Th l and Th2 
cells, resting, activated and infected macrophages, and four cytokines: IFN-7, IL-12, 
IL-10, and IL-4. Our first goal was to develop a model that represents the basic 
processes of the immune response to Mtb. This model serves as a template on which 
to add other cells, cytokines, chemokines and interactions as new data warrants to 
determine how their presence augments or abrogates the system dynamics. 

Mathematical expressions were developed representing the interactions between the 
8 cell populations and 4 cytokines and parameter values for the rates and rate con­
stants governing each of the interactions were determined (for complete details, see 
[Wigginton k, Kirschner 2001]. Values for most rate parameters were estimated from 
published experimental data, with weight given to results obtained from humans or 
human cells and Mtb-specific data over results based on BCG or other mycobacterial 
species. We outline below how we incorporate these data into the model. Estimates 
obtained from multiple studies are presented as a range of values. On those pa­
rameters for which we have a range, or those for which no experimental data are 
available, we performed uncertainty and sensitivity analyses to obtain order of mag­
nitude estimates (see the methods outlined above). As an example, we indicate how 
we estimate the decay rate of IL-10. When IL-10 was administered intravenously to 
human volunteers, one study estimated its half-life to be 2.3-3.7 hours [Huhn et al. 
1996]. A similar study estimated this quantity to be 2.7-4.5 hours [Huhn et al. 1997]. 
Therefore, we estimate a range for the half-life from 2.3 to 4.5 hours. The decay rate 
can be estimated from half-life given by the standard formula r = ln2/half-life. Thus, 
the decay rate of IL-10 lies in the range [3.69, 7.23] /day. Once the parameters values 
are estimated, we then simulate the model by solving the differential equations using 
an appropriate numerical method. Our lab utilizes both packaged software (such as 
Mathematica and MATLAB) as well as algorithms we coded in C/C"^"^ to directly 
compare results of these different platforms for accuracy. 

13.6.1 Simulating Infection Outcomes with M. tuberculosis 

The negative control, if there are no Mtb present in the system, yields a results 
with resting macrophages at equilibrium (3 10^ ml of BAL) and all other popu­
lations and cytokines at zero (which agrees with estimates for resting macrophage 
populations in the lung in healthy individuals). The model also indicates that it 
is possible to be exposed to an initial bacterial inoculum and then clear infection 
with no memory of that response (i.e. PPD negative). This outcome is plausible, 
as it is thought that only 30% of individuals exposed to Mtb become infected (i.e. 
PPD positive) [Comstock 1982]. The other outcomes for the model are: latency and 
primary disease. Figure 13.4 presents representative simulations for two given sets 
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of parameter values - one leading to latency and the other leading to active disease. 
The different outcomes predicted by the model begs the question: "Which elements 
of the dynamical system that describes the host response to M. tuberculosis govern 
the different disease outcomes observed?". 

Parameter values that govern the rates and behavior of interactions in the model may 
change from individual to individual and over time within an individual. The virtual 
experiments reveal that changes in only certain parameters lead to the different 
disease outcomes - either latency or active disease. Our primary finding is that the 
rate of T cell killing (via cytotoxic or apoptotic mechanisms) of chronically infected 
macrophages governs infection outcome. High efficiency of T-cell killing of infected 
cells, and consequently bacteria, acts to maintain latency, while lower efficiencies lead 
to active disease. Further, a trade-off exists between the rate of activated macrophage 
killing of bacteria and T cell cytotoxicity; if macrophage function is compromised, 
the T cell response must be more potent in order to control infection. However, 
when the rate of activated macrophage killing of bacteria is considerably increased 
(beyond values estimated from experimental data), latency is consistently achieved, 
even for severely compromised T cell function. 

13.6.2 Virtual Deletion and Depletion Experiments 

The power of the models we develop is that they can be manipulated in a variety 
of ways to ask questions about interactions and rates within the system. By doing 
so, we can explore experimental outcomes on a scale that would be difficult, if not 
presently impossible, to analyze with other approaches. For example, we can per­
form both virtual deletion and depletion experiments in this virtual human model for 
comparison with known experimental results in mice as well as to perform new ex­
periments. Deletion experiments mimic knockout (disruption) experiments whereby 
we remove an element from the system at day 0, before any infection is imposed 
into the system. This type of analysis allows us to elaborate which system elements 
control the establishment of latency. Second, we can simulate depletion experiments 
by setting the relevant parameters to zero after the system has already achieved 
latency. These depletion experiments mimic, for example, the addition of antibody 
that can, to a significant level, neutralize most of a cytokine of one type. This analy­
sis allowed us to determine what elements control maintenance of latency (data not 
shown- see [Wigginton & Kirschner 2001] for details). 

A limitation of this model is that it only tracks temporal dynamics while any spatial 
aspects are considered homogenous. Moving from a temporal-only model to a spatio-
temporal model allows us to elaborate the immune response seen in tissues- that of 
granuloma formation. 
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Fig. 13.4. Simulations of latency and active disease. The top two panels indicate 
the bacteria load during latency (left) and disease (right). Shown are the distinct 
intracellular bacteria (BI) and extracellular (BE) levels over a 500 day time-course. 
The bottom two panels indicate the macrophage populations over 500 days dur­
ing latency (left) and disease (right). Shown are resting (MR), infected (MI) and 
activated (MA) macrophages. 
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13.7 A Model of Granuloma Formation- the Localized 
Immune Response to M. tuberculosis 

The process of granuloma formation leads to a core of dead and infected macrophages 
together with a centralized necrotic region. These are encircled by activated and rest­
ing macrophages as well as CD44- and CD8+ T cells. Infected macrophages that 
have not been activated have bacteria growing within them can be killed by ac-
tiviated CD44- and CD8+ T cells, which both can act by cytotoxic and apoptotic 
pathways [Kaleab et al. 1990, Kaufmann 1988, Kaufmann 1993, Lewinsohn et al. 
1998]. Bacteria released are ingested and killed by other activated macrophages. 
These processes are mediated by a host of elements that must operate in concert 
to achieve successful granuloma formation. Cells are the key players, but their roles 
are orchestrated by a number of factors, including chemokines, cytokines, adhesion 
molecules and their corresponding receptors. Therefore, understanding the dynamic 
interplay between these immune elements during the time course of granuloma for­
mation and maintenance will provide insight into the mechanisms that control this 
process. This should distinguish differences between proper functioning granulomas 
(leading to latency) from those that are unable to contain the bacteria (active dis­
ease). A clinical study by [Emile et al. 1997] examined granulomas from 14 patients 
with BCG-induced infection (from receiving the TB vaccine!) . In these cases, it is 
likely some immune defect (potentially genetically linked) contributed to suscepti­
bility to BCG-induced disease. However, some children suppressed infection while 
others suffered acute disease. Interestingly, granulomas formed by these two groups 
of patients were distinct and uniform throughout a given patient. Patients with 
well-circumscribed, well-differentiated, solid granulomas with activated macrophages 
and infected macrophages surrounded by lymphocytes containing few bacteria, sup­
pressed infection. Patients with ill-defined, poorly differentiated granulomas with 
few giant cells and lymphocytes containing a plethora of macrophages filled with 
bacteria, suffered disseminated disease. Thus, the structure of the granuloma likely 
determines function which in turn determines whether the host suppresses infection 
or progresses to active disease. Therefore, understanding granuloma formation will 
aid in our understanding of the elements that contribute to success or failure of the 
immune response towards achieving latency in TB. 

The importance of the spatial aspect of the immune response to M. tuberculosis via 
granuloma formation has not yet been determined. Likely, the structure plays at 
least two important roles [Saunders & Cooper 2000]: first is to wall off the bacteria 
not allowing spread of an infection which cannot be cleared, but second is to facilitate 
communication between the immune cells affording an optimal, quorum sensing-like 
interaction [Bonecini-Almeida 1998]. The temporal model developed above is not 
able to capture this spatial behavior, so new models had to be developed. 

To determine the appropriate mathematical tool with which to study the formation 
and function of granuloma, we developed a series of mathematical models each using 
a different application, and then performed a formal comparison of each method (see 
[Gammack et al. 2005] for details). Here, we will focus solely on the approach where 
we used a computational system known as an agent-based model. This allows us to 
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capture the most discrete and stochastic representation of the forming granuloma. 
This approach also allows for heterogeneity in space and time. 

13.8 The Agent-based Model 

We have developed the first model of this type applied in the context of the immune 
response to a pathogen [Segovia-Juarez et at. 2004]. To develop an agent-based model 
4 things are necessary: a description on the agents, the rules that govern their 
behavior, the environment on which they reside and the parameters that govern 
their interactions. The environment is a key feature of ABMs; important details 
about modeling environments in general can be found in Chapter 12 by Stepney in 
this book. The environment is a 2-dimensional lattice representing 2mm x 2mm of 
lung tissue. The lattice is comprised of grids where the size of each grid can hold the 
largest cell-type, the macrophage. A single macrophage can reside is a grid with other 
smaller cell types (such as T cells) and large amounts of effector molecules, such as 
cytokines and chemokines. The agents are a mix of discrete and continuous entities: 
immune cells such as macrophages and T cells are discretely tracked, while the 
bacterial populations and effectors such as cytokine and chemokine are continuously 
tracked variables. Cells can take on one of several states. A macrophage can be 
resting, infected or activated, while T cells can take on resting or activated status. 
There are a complex set of rules that govern the individual behavior of each agent, 
as well as rules that govern their interactions. These are based on well-documented 
data. For example, if a macrophage takes up mycobacteria, there is a window of 
opportunity where a T cell can move into the same grid space occupied by the 
infected macrophage and activate it via direct cell signaling together with secretion of 
the cytokine IFN-7, allowing macrophages to clear the load of intracellular bacteria 
[Nathan et al 1983, Flesch & Kaufmann 1990, Armstrong & Hart 1971, Sturgill-
Koszycki et al. 1994]. This is one of the many rules coded into the model (see Figure 
13.5). 

Many of the parameter values are not known in this setting as they are probabilities 
and these are difficult to estimate in a wetlab. This makes the use of a detailed 
uncertainty and sensitivity analyses important in this context. We were the first 
to apply this analysis to study agent-based models [Segovia-Juarez et al. 2004]. 
For many of the other parameters, we could borrow from what we had estimated 
previously. For full details please see [Segovia-Juarez et al. 2004]. 

13.8.1 Simulating Granuloma Formation 

The behaviors that emerge from this model are complex and of three consistent 
types. First, a small solid granuloma forms showing containment of bacteria with 
little to no necrosis forming (Figure 13.6, Panels A, C). Second, we can also generate 
a larger, more necrotic granuloma that is consistent with dissemination (Figure 13.6, 
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Fig. 13.5. An example of a rule for the agent-based model. If an infected 
macrophage (M/) has taken up bacteria (small circles) a T cell can activate it with 
some probability p, which allows the macrophage to become activated (MA) and 
also to clear its intracellular bacterial load. 

Panels B, D). Third, we can simulate clearance of all bacteria with no trace of a 
granuloma (not shown). This last outcome is interesting as it predicts that under 
certain circumstances the immune response is efficient at clearance. This is suspected 
as only 30% of individuals exposed to M. tuberculosis become infected, however it 
has not been strictly documented. 

The top panels of Figure 13.6 show early time points (2 weeks) in the development 
of the granuloma under two sets of parameter choices: on the left T cells arrive to 
the site of infection on day 2 as compared with the right panel where they arrive on 
day 14. Also, the initial number of macrophages is higher on the right panel than 
on the left. Within 14 days, it is clear that already the granuloma on the left is 
more solid and contained than the one on the right which shows more diffusivity. 
By 6 months (bottom panels) the amount of necrotic tissue (shown in brown) is 
much greater and the granuloma on the right is much larger as compared with the 
granuloma forming on the left. Based on the study of [Emile et al. 1997] this would 
indicate that granulomas forming similar to those in the left panels would be able 
to contain infection, while those on the right would lead to disseminated infection. 

The benefit of mathematical modeling here lies in predicting what mechanisms de­
termine these different granuloma outcomes. The sensitivity analysis we employ is 
based on a partial rank correlation and can identify (with statistical significance) 
the parameters in the model that when varied correlate to different outcomes. In 
the simulations shown in Figure 13.6, the timing of effector T cell entry onto the 
grid (from lymph node homing) is what was determinative. Interestingly, all of the 
parameters that relate to early numbers of resting macrophages present on the lat­
tice positively correlate with bacteria load. This likely follows since they serve as 
the primary host for mycobacteria and their presence serves to propagate infection. 
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Parameter 

Chemokine diffusion rate 

Prob. T cell recruitment 

Prob. T cell movement 

Prob. T cell activates a macrophage 

Initial number of macrophages 

Prob. a macrophage is recruited 

Speed of activated macrophage 

30 days 

0.18 

-0.36 

-0.65 

-0.24 

0.40 

0.56 

0.31 

60 Days 

0.13 

-0.27 

-0.54 

-0.16 

0.54 

0.61 

0.61 

500 days| 

0.13 

-0.31 

-0.57 

-0.15 

n.s. 

0.75 

n.s. 

Table 13.1. Time-dependent partial rank correlations for the 7 parameters in the 
model (out of 27) that behave as bifurcation parameters driving the system toward 
containment or dissemination as they are varied. Correlations are shown for total 
bacteria load as the outcome variable of interest. Similarly, the size of the granuloma 
or amount of necrosis could be used as outcomes (p < .001 in all cases, unless not 
significant (n.s.)). 

Thus, reducing early inflammation (less than 60 days post infection via the influx 
of too many cells) could be beneficial towards halting infection or tipping the scales 
in favor of containment. Table 13.8.1 shows all 7 key host parameters with their 
correlation coeflScients over time. 

The agent-based approach has its strengths and weaknesses. The strength here is 
that individual cells can be tracked and at any moment in time all interactions and 
cell levels can be observed. Weaknesses include an inability for complete mathe­
matical analysis. Regardless, this method uncovers some important features of the 
host pathogen interaction that we were unable to identify previously with any other 
approach. 

13.9 Discussion 

Despite a wealth of information in the biological literature regarding elements of 
the immune response over genetic, molecular, tissue and system levels, no single 
representation synthesizing this information into a model of the overall immune 
response currents exists. In this paper we present approaches for capturing each of 
these levels to address one specific case: the immune response to M. tuberculosis. The 
next goal is to combine information over the relevant biological and temporal scales 
to generate a single, integrated multi-scale representation. Such multi-scale models 
should be developed so that they are sufficiently general that they can be applied 
to answer a wide range of questions regarding immunity but adaptable enough to 
answer specific questions regarding, for example, pathogen invasion, tumors, vaccines 
or auto-immunity. One step towards achieve this goal will be to develop hybrid 
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models (such as multiple compartment, agent-based models) that include various 
biological scales. Here we have presented a number of models that each include 
representations of multiple biological scales, but none are a complete picture of the 
entire immune response to M. tuberculosis and its manifestations at the epidemic 
level. 

Once we can develop multi-scale models, we can apply them towards the generation 
of hypotheses regarding features of the roles of specific processes in immunity, such 
as antigen presentation. It is crucial to work under a hypothesis that events occurring 
at each level (genetic, molecular, cellular, and tissue) of the immune system affect 
the development of the overall immune response. 

For example, the efficacy of vaccines are in part determined by activation of CD4H-
T cells. A multi-scale model should enable testing the roles that various factors play 
in that activation. What is the relationship between antigen dose in the vaccine and 
the number of mature DCs appearing in a lymph node? Further, what aspects of 
the antigen presentation process should be targeted to optimize vaccine efficacy? 
Can our insights help to explain why BCG, the vaccine against TB used for the last 
80 years, has failed to control the TB scourge? As theoretical immunologists we are 
poised to make a strong contribution in this area through hypothesis generation and 
testing using multi-scale models. 




