Thrombi Produced in Stagnation Point Flows Have a Core–Shell Structure 515
Bradley A. Herbig and Scott L. Diamond

Applying Optimization Algorithms to Tuberculosis Antibiotic Treatment Regimens 523
Joseph M. Cicchese, Elsje Pienaar, Denise E. Kirschner, and Jennifer J. Linderman

Cellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging 537
Mona Ahmed, Barbara Cervoni, Anton Razaviasl, Johan Harmark, Gaito Paradossi, Kenneth Caidahl, and Björn Gustafsson

The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells 549
Monika Mareždiak, Daniel Lewandowski, Krzysztof A. Tomaszewski, Krzysztof Kubia k, and Krzysztof Marycz

Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation 563
Nabiollah Kamyabi, Zeina S. Khan, and Siva A. Vanapalli

Erratum to: Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm 577
Zachary I. Imam, Laura E. Kenyon, Grant Ashby, Fatema Nagib, Morgan Mendicino, Chi Zhao, Avinash K. Gadok, and Jeanne C. Stachowiak

Cellular and Molecular Bioengineering is abstracted or indexed in Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), EMBASE, Expanded Academic, Google Scholar, Journal Citation Reports/Science Edition, OCLC, Science Citation Index Expanded (SciSearch), SCOPUS, Summon by Serial Solutions

Cover Photo: Infection with Mycobacterium tuberculosis elicits the formation of a cellular lesion called a granuloma in lung tissue. Granulomas provide a way to contain the infection, but also present a physiological barrier to antibiotic diffusion. Computational modeling can capture both the dynamics and cellular composition of a granuloma (left) and how it influences local antibiotic concentration (right) so that optimal antibiotic regimens can be predicted. From the paper by Joseph M. Cicchese et al., DOI: 10.1007/s12195-017-0507-6, pp. 523–535.