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Abstract. The use of different mathematical tools to study biological processes is necessary
to capture effects occurring at different scales. Here we study as an example the immune response
to infection with the bacteria Mycobacterium tuberculosis, the causative agent of tuberculosis (TB).
Immune responses are both global (lymph nodes, blood, and spleen) as well as local (site of infection)
in nature. Interestingly, the immune response in TB at the site of infection results in the formation
of spherical structures comprised of cells, bacteria, and effector molecules known as granulomas. In
this work, we use four different mathematical tools to explore both the global immune response as
well as the more local one (granuloma formation) and compare and contrast results obtained using
these methods. Applying a range of approaches from continuous deterministic models to discrete
stochastic ones allows us to make predictions and suggest hypotheses about the underlying biology
that might otherwise go unnoticed. The tools developed and applied here are also applicable in other
settings such as tumor modeling.
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1. Introduction. Tuberculosis (TB) has been a leading cause of death in the
world for centuries. Today it remains the number one cause of death by infectious
disease worldwide—3.1 million deaths per year [77]. TB is not only one of our oldest
microbial enemies, but it also remains one of the most formidable. An estimated one-
third of the world population has been infected but does not show signs of TB disease
(termed latent infection). Thus, there is a great need to elucidate the mechanisms
of TB disease progression. Key issues are to understand the immune mechanisms
involved in containing bacteria leading to control (latency). Interestingly, whether
complete clearance of bacteria occurs is not known. Some data imply that upon ex-
posure there is only a 30% chance of developing infection [10]. Whether the other
70% of individuals whom were inoculated either cleared infection or infection never
took hold (or both) is not well understood. To this end, elaborating the primary im-
mune response against M. tuberculosis (Mtb) is essential to understanding functional
aspects leading to latency.

Primary infection usually develops in the alveoli of the lung after inhaling droplets
containing Mtb. These are then ingested by resident scavenger cells called macro-
phages and begin to multiply [6] (this initiates the local response). These macrophages
are poor at destroying Mtb, despite the fact that they readily eliminate other bacte-
ria [47, 50]. Macrophages may burst due to the large number of bacteria multiplying
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within them [78]. Infected macrophages and other scavenger cells, termed dendritic
cells, circulate out of the lung to the draining lymph nodes where the specific im-
mune response is initiated (which begins the global response) [34]. Here, the main
immune controlling cells, known as CD4+ T cells, are stimulated to become effector
cells. These and other effector cells must then be recruited and migrate back to the
site of infection where they interact with other cells at the site to form a functional
granuloma.

Granuloma formation refers to the development of a roughly spherical structure
comprised of cells, bacteria, and effector molecules in response to TB infection. The
goal of a granuloma response is thought to be to “wall-off” bacteria and prevent
spread in cases where bacteria cannot be cleared. Close proximity of cells to each
other in this tightly packed structure may also facilitate cell-cell communication to
enhance the host response. It is known that small, solid granulomas contain bacterial
growth and spread while large, necrotic ones are not successful at containing bacteria
and also result in severe tissue damage in the lung [59]. It is likely that whether
an individual controls initial infection resulting in latency, or fails to control it and
suffers active pulmonary TB, depends directly on granuloma formation and hence its
function.

It is important to note that the local dynamics occurring within the lung regard-
ing one granuloma and its formation may differ from the total lung response and
finally from a more systemic response involving lymph nodes and other organs. Thus,
considering the biological scale at which dynamics are acting is of key importance.
For example, whether the success of one granuloma at controlling bacteria can be
extrapolated to the entire lung and then to the body remains to be determined. Our
hope is that this work will help begin to address this question.

Both the global and the localized immune responses are dependent on a number
of factors including chemokines (chemotactic molecules secreted by immune cells),
cytokines (pro- and antiinflammatory molecules secreted by immune cells), and im-
mune effector cells. There exists a large body of experimental literature regarding
these individual elements in the immune response in TB infection; however, little is
known about the interaction among these elements that leads to distinct infection
outcomes, namely latency or active disease. Our goal is to build computational mod-
els to elaborate the immune process with the ultimate goal of uncovering the role of
the granuloma in achieving latency. There are multiple processes and different spatial
and biological scales occurring during these dynamics, and our goal is to examine
them using different mathematical methods.

To study the process of granuloma formation, we have developed several mathe-
matical models based on different methods. We have applied these approaches over a
range of biological scales. The processes described above can be studied at a single-cell
scale [8, 62] to a scale of populations of cells [21, 45, 76]. Further, some of our studies
focus on host-bacterial interactions at the local site of infection (cf. [76] and [22])
versus a more global system-wide involvement [46]. In each case, the mathematical
tools required are different; thus, examining these processes over multiple scales can
provide insights unattainable from any single approach.

Our goal in this work is to perform cross-comparisons between multiple mathe-
matical models over different biological scales that we have developed to study the
immune response to TB. Identifying features that are consistent over the various
models may suggest key controlling factors that can be further studied experimen-
tally. Identifying when the behavior of the discrete models results in the predicted
mean behavior of the more deterministic ones (and when does it not) is an important
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mathematical question that may have larger implications. Further, identifying fea-
tures that are unique to particular models may suggest that elements operating at
different scales are also important. Results obtained from this work can inform a
larger set of both biological and mathematical systems.

2. Different models, different scales. To understand the immune response
to infection with Mtb, we have developed a series of mathematical models, each using
a different mathematical approach. Each of the models will be described below, but
here we briefly outline the different approaches.

The first model used a system of nonlinear ODEs to describe the temporal dynam-
ics occurring at the site of infection (the lung) [76]. Because our model was developed
to model human infection, and no information is available describing infection dy-
namics in human lung tissue, we used as our reference space bronchoalveolar lavage
(BAL) fluid. This is obtained via a process of washing the lungs with fluid that is then
retrieved and cells and cytokines are measured. This gives a measure of the overall
lung environment and thus is a more global indicator of infection status. These data
are available from limited human studies and animal models, and it allowed us to
compare our model results to data. Lessons learned from this detailed ODE model
were applied in each of the other settings described below.

We then developed a model describing a more global picture of the immune re-
sponse not limited to dynamics within the lung. Although bacteria initially enter into
the lung and infection/disease manifests there, immune priming and activation occurs
in the closest lymph node to the lungs, known as the draining lymph node. Traffick-
ing between these physiological compartments is likely relevant, and so we expanded
the ODE lung model into a two-compartment ODE model, tracking cell migration
between the site of infection and the lymph node [45, 46].

Because our ultimate goal was to simulate granuloma formation, our next goal was
to begin to capture spatial aspects of the immune response at the more local site of
infection within the lung. To take advantage of the models we had already developed
while making a first attempt at capturing spatial characteristics of the response, we
applied a technique known as metapopulation modeling [22], which is a coarse-grid
discrete spatial formulation of the system. This is the first step in moving the model
from representing a virtual human model of TB infection based solely on temporal
lung fluid measurements to representing spatial formation of a granuloma in human
lung tissue. The original differential equation model [76] provided insight into key
elements of the immune system responsible for containment of initial TB infection.
That model assumes approximately a homogeneous distribution of cells and cytokines
within lung fluid. To model granuloma formation, greater biological realism allowing
for more detailed spatial heterogeneity was introduced into the model by accounting
for movement of each of the cell populations within a discrete spatialization. Note that
up until this point, direct inclusion of chemotactic signals, namely chemokines, was
not included. A metapopulation approach works by creating a lattice that represents
an area of lung tissue and then discretizing it into n × n grids. Within each grid we
allowed a simplified version of the ODE model described above [76] to operate; then
we defined new terms to account for migration or diffusion across the grids and at the
boundaries. This increases the number of ODE systems by a factor of (n × n) – 1.
The details are described further below and have been submitted [22].

In another approach, we developed a PDE model [21]. Here our goal was to
model only the innate response of macrophages before any adaptive immune response
developed. This allowed us to predict if the system was progressing to active disease
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or resolution (based on the boundary of the developing granuloma). To this end, we
borrowed concepts from physics describing internal states for each of our macrophages,
defined by their number of intracellular bacteria. We also now track forces acting on
cells in the granuloma and monitor an internal velocity that made allowances for cells
moving into or out of the site. Because we had no adaptive immune response present
(i.e., no T cells or their effectors) this system could never achieve latency. This is
expected as the stalemate achieved after infection with Mtb can only occur when an
adaptive immune response is present.

Finally, rather than examining populations of cells at work in the infection site, we
focused on the cells as individual agents by developing an agent-based model [62]. At
this spatial scale, we could track the role of individual cells in the model and predict
effects of actions on the forming granuloma. In this setting we were also able to track
tissue damage (necrosis) as well as the more stochastic elements occurring within the
lung during infection. This model is likely the most realistic in terms of the biology it
describes, yet the rules established that govern its elements (cells, cytokines, bacteria,
etc.) are basic.

An overriding approach that was applied in all of the model systems is the use of
detailed uncertainty and sensitivity analyses. Uncertainty analysis allows for testing
how variations in parameter space can affect outcome variable(s) of interest in the
system. To this end an N-dimensional hypercube is created based on both ranges
and distributions for all N parameters in the given model. This method is known
as Latin hypercube sampling (LHS) [48]. The widest, biologically relevant range
possible is used for all parameters. When applied correctly, this method identifies
all relevant and distinct stable numerical solutions for the range of parameters given.
Once variations in outcome variable(s) are identified, a partial rank correlation (PRC)
is performed to identify which of the N parameters are most correlated with outcome
values. Each PRC value generates a P-value that determines the significance; thus,
even small correlations may be significant. This method was first applied in the
context of differential equation models in [5]. We are the first to apply it in the
context of agent-based modeling [62].

2.1. Model abstractions and assumptions. For each of the cell types we
included, there are a series of assumptions we made based on known biological data
that are consistent across all of the models. Additional assumptions are listed within
each of the model subsections as relevant. The mathematical expressions are preserved
between models whenever possible. Collective cell dynamics for all of the models are
represented schematically in Figure 2.1. Effector molecules and their activities are not
shown but are discussed for each model individually. Each of the models are a subset
of this largest possible model. We provide a generalized mathematical description for
this model in section 3.1.1. In section 3 we describe the specific differences.

1. Macrophages: In all of our models the most consistent element is that of mac-
rophages. All the models account for resting and infected macrophages. All of the
models also have activated macrophages, except the PDE model, as it focuses only
on innate immunity, and this PDE model does not have T cells that are required to
activate macrophages. The rules governing macrophage dynamics within each class
are consistent from model to model: resting macrophages have a natural turnover at
the infection site [71]; they become either infected (take up bacteria) or activated (via
either cytokine effectors or T cells) [16, 52, 68]; infected macrophages either burst
due to intracellular bacteria load or are killed by T cells [67, 78]. One feature of the
agent-based model that we are not able to capture with any other model is a specific
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Fig. 2.1. Cellular dynamics for global lung immunity to Mtb. Effector molecules and their
activities are not shown but are discussed for each model individually. MR are resting macrophages,
MI are infected macrophages, MA are activated macrophages, BE are extracellular bacteria, BI are
intracellular bacteria, MDC are mature dendritic cells, and IDC are immature dendritic cells. All
models are a subset of this larger model.

class of macrophages that have taken up bacteria but are not classified as either acti-
vated or chronically infected. There exists a short window of time during which they
may either be activated or converted to chronically infected status. Because we track
individual cells and their states in the agent based model we are able to capture this
transitional class.

2. T cells: All of the models include a class of effector T cells, except for the
PDE model that lacks adaptive immunity. The two global-scale ODE models distin-
guish between different subclasses of T cells (Th0, Th1, and Th2 cells), while all the
granuloma models consider one aggregate class. In fact, results from the ODE mod-
els indicate that information gained from distinguishing these subclasses is minimal,
and so we collapsed them into one class for the more mathematically complex mod-
els. All T cells have a natural turnover and play two important roles: activation of
resting macrophages and killing of infected macrophages. They also produce effector
molecules.

3. Effectors: There are two classes of effector molecules that participate in adap-
tive immunity: cytokines (proteins that either up- or down-regulate cells to perform
their functions) and chemokines (cytokines that have chemotactic properties). How
we represent effectors is a key distinction between the different models. In the ODE
models, we track specific cytokines and their known properties (IFN-γ, IL-10, IL-4,
and IL-12) relevant to TB infection [17]. One feature adopted by the more complex
models of granuloma formation was to simplify the model (and number of equations)
by using the cells that secrete the cytokines as a surrogate for the effector molecules
they produce. This is reasonable since there likely exists a proportionality between
the two.

Since we do not track cell movement on a local level in the ODE models, chemo-
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kines are not considered, and we have only a generic recruitment term. In contrast, all
of the granuloma models track a value for chemokine that recruits cells to the infec-
tion site. Chemokine represents an aggregate of chemokines known to be involved in
TB immunity and secreted by subclasses of macrophages and have a natural half-life
(based on known chemokine values) [17].

4. Bacteria: In all of the models bacteria are tracked as both intracellular and
extracellular [67]. In the ODE-based models these subsets are tracked as collective
populations of cells, where as in the PDE and agent-based models we are able to track
individual numbers within cells. In the PDE model, because it captures only innate
immunity, we count the number of bacteria within each macrophage and classify the
macrophages based on their internal state (load) of bacteria.

Bacteria grow logistically with respect to their environment and are either phago-
cytosed by macrophages or remain extracellular [66]. This is in fact a unique feature
of the mathematical models: in a given tissue sample in the experimental setting it is
not possible to track which bacteria are trapped within macrophages and which are
present in tissue. Once intracellular they have two fates: they can either be killed
along with their host macrophage when it is killed, or they can be released upon death
of the host macrophage (becoming extracellular).

5. Environment : In the first ODE model, we track total immune dynamics in the
lung, whereas in the two-compartmental model we track the dynamics occurring both
within the lung and the closest lymph node as well as the trafficking between these
compartments. Thus, these two models examine global immune dynamics during TB
infection. In the last three models where we model granuloma formation, we consider
only a small section of lung tissue as the environment and model dynamics occurring
on the more local scale.

6. General outcomes from all models: We expect to see three general outcomes in
all the models: clearance, where both extracellular and intracellular bacterial loads are
zero; latency for global models or containment for granuloma models where bacterial
load is stable and mostly intracellular; and disease for global models or dissemination
for granuloma models, where bacterial load continues to grow and is dominated by
extracellular bacteria, which is not in a steady state. Recall the PDE model does not
exhibit containment, as this state is achieved only via adaptive immunity. To follow
in section 3, we present details for each of the five modeling approaches that we
used. We present the models, their baseline results, and dynamic model information.
We highlight differences between each model as well as focus on key spatial factors
affecting infection outcomes. The details for most of the models are omitted for
brevity; instead we refer readers to the original papers. In section 4 we compare and
contrast results for each of the models on both biological and mathematical scales,
and in section 5 we conclude.

3. Model descriptions.

3.1. First approach: ODEs. To better understand the temporal dynamics of
TB infection and immunity, we developed a virtual human model that qualitatively
and quantitatively characterizes the cellular and cytokine control network operational
in the total lung during TB infection [76]. Using this model we identified key regula-
tory elements in the host response.

3.1.1. The baseline ODE model. We modeled human TB infection in the lung
using nonlinear ODEs. We developed a mathematical system based on the interactions
of a number of key cells and cytokines known to be important in TB infection. Based
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on their known and hypothesized interactions, we tracked both extracellular (BE) and
intracellular (BI) bacteria and the following cell populations: lymphocytes (T0, T1,
and T2 cells), macrophages (resting-MR, activated-MA, and infected-MI), and four
cytokines (IFN-γ, IL-12, IL-10, and IL-4). Note that for this first modeling attempt
we did not include every cell potentially involved (i.e., CD8+ T cells, cytotoxic T cells,
NK cells, eosinophils, etc.) or every relevant cytokine (i.e., IL-2, TGF-β, TNF-α, etc.).

Generalized equations for the baseline model shown in Figure 2.1 are given below.
A complete biological description for the baseline model can be found in [76]. To
facilitate comparisons, we use the same parameter symbols and values of [76] and the
following simplifying notation (for readability we have suppressed the (t) notation in
all equations):

f (x, a) =
(

x
x+a

)
,(3.1)

g (x, y, a, b) =
(

x
x+ay+b

)
,(3.2)

h (x, a,m) =
(

xm

xm+am

)
.(3.3)

Macrophage equations.

d

dt
MR = sMR

+ α4 (MA + wMI) + f (s3, Iγ) f (c8, BT )µdaMR

+ f (BT , c28)α21MR + f (I10, s8) k4MA

− f (BE , c9) k2MR − f (Iγ , s3) f (BT , c8) k3MR

− µRMR,

(3.4)

d

dt
MA = f (Iγ , s3) f (BT , c8) k3MR − f (I10, s8) k4MA

− f (s3, Iγ) f (c8, BT )µdaMR − µAMA,

(3.5)

d

dt
MI = f (BE , c9) k2MR + h (BI , NMI , 2) k17MI

− f
(

TT

MI
, c4

) (
1 − f (BI , NMI) p

)
k14MI − µIMI .

(3.6)

Cytokine equations.

d

dt
Iγ = sgf (I12, s7) f (BT , c10) + f (MA, c14)α5T1

+ g (I12, I10, f4, s4)α7T0 − µIγ Iγ ,

(3.7)

d

dt
I12 = α8Ma + α22MI + g (Iγ , I10, f5, s5)α10MR − µI12I12,(3.8)

d

dt
I10 =

(
f (BT , c12)α13MR + α14MA

)
g (s6, Iγ , I10)

+ α16T1 + α17T2 + α18f (I12, s9)T0 − µI10I10,

(3.9)

d

dt
I4 = α11T0 + α12T2 − µI4I4.(3.10)
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Lymphocyte equations.

d

dt
T0 = α1 (MA + wMI) + f (MA, c15)α2T0 − g (Iγ , I4, f1, s1) k6I12T0

− g (I4, Iγ , f2, s2) k7T0 − µT0T0,

(3.11)

d

dt
T1 = α3 (MA + wMI) + g (Iγ , I4, f1, s1) I12k6T0 − µT1T1,(3.12)

d

dt
T2 = α3 (MA + wMI) + g (I4, Iγ , f2, s2) k7T0 − µT2T2.(3.13)

Bacteria equations.

d

dt
BE = α20BE − k15MABE − k18MRBE

+ µIBI + h (BI , NMI , 2) k17NMI − k2

(
N
2

)
f (BE , c9)MR,

(3.14)

d

dt
BI = α19BI

(
1 − h (BI , NMI , 2)

)
− h (BI , NMI , 2) k17NMI

+ f (BE , c9) k2

(
N
2

)
MR − µIBI

− f
(

TT

MI
, c4

) (
1 − pf (BI , NMI)

)
k14NMI .

(3.15)

Our first goal was to develop a model that represents the basic processes of the
immune response to TB, including key players that had been identified in the litera-
ture. This original model has since been extended to include more mechanistic terms
that had originally been included only phenomenologically [69]. A diagram indicating
the interactions is given in Figure 2.1 if one considers only the lung compartment and
no dendritic cells (which are relevant when we consider trafficking).

3.1.2. Parameter estimates. Once mathematical expressions were developed
representing the interactions between the 8 cell populations and 4 cytokines, it was
necessary to determine the values of the rate constants governing each of the interac-
tions. Values for most rate parameters were estimated from published experimental
data, with weight given to results obtained from humans or human cells and Mtb-
specific data over results based on other bacterial species. Estimates obtained from
multiple studies are represented as a range of values. For parameters that have a range
and those for which no experimental data are available, we performed uncertainty and
sensitivity analyses to obtain order-of-magnitude estimates as described above. We
refer the reader to [76] for full details of our parameter estimation methods. Finally,
we simulated the model by solving the differential equations using an appropriate nu-
merical method. Our lab utilizes both packaged software (such as Mathematica and
MATLAB) as well as a stiff solver algorithm based on Rosenbroch and Story that we
coded in C/C++ to directly compare results of these different platforms for accuracy.

3.1.3. Results. The resulting model is a temporal simulation of infection after
inoculum with Mtb in humans. The negative control, with no Mtb present in the
system yields a result with resting macrophages at equilibrium (3 × 105/ml of lung
fluid) and all other populations and cytokines at zero. The model also indicates that it
is possible to be exposed to an initial bacterial inoculum and then clear infection with
no memory of that response (i.e., skin-test negative). This outcome is plausible, as it
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is thought that only 30% of individuals exposed to Mtb become infected (i.e., skin-
test positive) [10]. The other outcomes for this more global dynamic model should be
latency, primary disease, and reactivation. (Note the model can simulate reactivation,
but, for brevity, we omit this discussion. See [76] for details.)

Figure 3.1 presents representative simulations of the virtual model for two given
sets of parameter values, one leading to latency (Figure 3.1 A panels) and the other
leading to active disease (Figure 3.1 B panels). Results are shown here only for
bacterial and macrophage populations.
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Fig. 3.1. Model simulation results for the baseline ODE model. Results of bacteria load (left
panel) and macrophage populations (right panel) per ml of lung fluid (BAL). Two simulations are
shown for each, one leading to latency (A panels) and the other leading to active disease (B panels).
The parameters that govern these different outcomes are shown in Table 3.1. All parameter values
used are given in [76]. Differences between panels A and B are obtained by varying the parameter
governing T cell killing of infected macrophages.

Parameter values that govern the rates and behavior of interactions in the model
may change from individual to individual and over time within an individual. Our
analyses revealed that only a small number (only 6) of the 99 model parameters lead
to different infection outcomes when varied—either latency or active disease (see [76]).
A summary of these parameters is given in Table 3.1. Note that in this model, the
role of macrophages (and their activation by INF-γ) and the importance of T cells
both take on key roles in determining infection outcome. Finally, note that no spatial
aspects are relevant here; even the included cellular recruitment terms do not govern
infection outcome. This is in stark contrast to the remainder of the models discussed.

Table 3.1

Parameters that yield disease from latency in the ODE model. MR are resting macrophages,
MI are infected macrophages, MA are activated macrophages, and BE are extracellular bacteria.
Note that disease occurs if parameter value is either increased or decreased from baseline latency
value.

Description Disease occurs Latency Units
when value is value

Chronic macrophage infection rate increased .9 /day
MR activation rate decreased .04 /day
Maximal T cell killing of MI decreased 1.65 /day
Max. killing of BE by MA decreased 5x10−7 /MA/day
Rate of INF-γ prod. by CD8+ T cells decreased .4 pg/ml/day
IL-4 production by Th0 cells increased .03 pg/cell/day

3.2. Second approach: Multiple compartment ODE model. To capture
global dynamics of Mtb infection and immunity, we developed a two-compartmental
mathematical model that qualitatively and quantitatively examines important pro-
cesses of cellular priming and activation [45]. These processes occur between the site
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of infection (lung) and the nearest draining lymph node. The key cells mediating this
process are the dendritic cells. During infection, macrophages are the prime target
cells for Mtb, while after their activation they both kill intracellular bacteria and par-
ticipate in a protective T cell mediated (Th1) response. Dendritic cells play a major
role in establishing an effective immune response. Immature or resting dendritic cells
are present in high numbers at sites of infection (such as the lung) [28, 31, 32, 63, 72]
at the onset of the inflammatory response; they are specialized for antigen uptake and
processing [3, 4, 26]. After bacterial uptake, immature dendritic cells differentiate into
the mature phenotype (mature dendritic cell): they reduce their phagocytic capability
and begin expressing molecules for immune presentation and adhesion molecules for
migration. The maturation-migration process of dendritic cells is enhanced during
Mtb infection, while in contrast infected macrophages show little phenotypic change
[12, 17, 23, 29].

As maturation occurs, dendritic cells migrate through lymphatic vessels and enter
the T cell area of the draining lymph node, where they are performers of two main
functions: facilitators of naive T cell recruitment and participants in antigen presen-
tation. Once presentation occurs, naive T cells experience stages of differentiation,
from naive to effector T cell. The first step from naive to precursor T cells takes
place in the draining lymph node [42]. This phenotypic and functional change allows
primed T cells to proliferate and then migrate through the efferent lymphatic vessels
into the blood, eventually to the site of infection [73].

Thus, our two-compartment model extends the previous model (from section 3.1)
by including relevant migration patterns between the draining lymph node and the
lung as well as important processes performed by dendritic cells of antigen presenta-
tion and cellular activation. To this end, we added one physiological compartment
(the lymph node) and five new variables (and consequently five equations) to the
previous temporal model: one in the lung (immature dendritic cell-IDC) and four in
the draining lymph node compartment (mature dendritic cell-MDC , naive T cells-T ,
Th0 cells-TLN

0 , and the cytokine IL-12-ILN
12 ). Lung model equations were slightly

modified in order to account for these new variables (see [45]) for the equations). Be-
low we show only the equations that have been added to the baseline model described
in section 3.1.1, and we retain the abbreviated notation for f , g, and h. See Figure 2.1
for the complete model.

IL-12 equation.

d

dt
ILN
12 = δ1MDC − µILN

12
ILN
12 .(3.16)

Naive T-cell equation.

d

dt
T = sT + δ2MDC − λT − µTT − δ4MDCT.(3.17)

Th0 equation.

d

dt
TLN

0 = δ4MDCT − δ5T
LN
0

(
1 − TLN

0

ρ

)
− ξTLN

0 .(3.18)

Mature dendritic cell equation.

d

dt
MDC = f (BE , δ11)φδ10IDC − µMDC

MDC .(3.19)
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Immature dendritic cell equation.

d

dt
IDC = sIDC

− f (BE , δ11) δ10IDC + f (BE , δ9) δ8IDC − µIDC
IDC .(3.20)

3.2.1. Parameter estimates. In order to scale lung and lymph node compart-
mental cell trafficking, we use volumetric measure units, namely cells per cm3 of tissue
(both in the lung and in the lymph node). We calibrate initial conditions of our virtual
model to match estimates of cell distributions in the two compartments. To guide our
study a nonhuman primate animal system of TB was studied concurrently for data
comparison [7, 18]. This nonhuman primate system has provided data for parameter
estimation as well as data for validation of our virtual model simulations (see [45] for
details about parameter estimation and nonhuman primate data comparison). Ex-
periments in the nonhuman primate model are now being performed to test some of
our predictions.

3.2.2. Results. The results of the two-compartmental model are in line with
the previous temporal lung model simulations (cf. section 3.1 and [76]). In fact, in
our virtual latent infection scenario (see Figure 3.2), the majority of bacteria are
intracellular, and levels of extracellular bacteria are below the level of detection of
current assays. This confirms experimental results where no bacteria were found in
the lung of latently infected mice and in nonhuman primates [7].
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Fig. 3.2. Model simulation results for the 2-compartment model. Results of bacteria load (left
panel: log scale, extracellular-BE , and intracellular-BI) and macrophage populations (right panel:
log scale, resting-MR, infected-MI , and activated-MA) per cm3 of tissue. Two simulations are
shown for each, one leading to latency (A panels, 1000 days) and the other leading to active TB
(B panels, 700 days). The parameters that govern these different outcomes are shown in Table 3.2.
All parameter values used are given in [45]. Differences between panels A and B are obtained by
varying a set of parameters; see [45].

Our model also predicts that during latency lymphocyte populations at the site
of infection are mainly of Th0 type, with very low levels of effector T cells (Th1 and
Th2, results not shown). In fact, during peak infection, comparing latency to primary
TB, a faster migration of Th precursor cells from the draining lymph nodes to the
lung may explain the host ability to contain bacteria in the latency outcome (see [45]).

Our two-compartmental model simulations highlight the role of phagocytic cells
(macrophages and dendritic cells) in initiating and directing adaptive T cell immu-
nity, in particular the key action of dendritic cells in establishing and maintaining
latency. Dendritic cells have multiple roles: they participate in innate immunity by
internalizing bacteria at the site of infection and represent the main link between
innate and adaptive immunity via trafficking from the lung to the lymph node. This
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model suggests how increasing the rate of bacterial uptake by resident immature den-
dritic cells could be advantageous both in terms of a stronger innate response and as
a more efficient link to an effective adaptive response.

Results from our sensitivity analysis (summarized in Table 3.2) again indicate that
the role of T cell killing of macrophages is still important (as shown in the previous
model—see Table 3.1), but we are now able to keep track of other processes early
stages, such as T cell differentiation, dendritic cell migration, and Th0 trafficking.

Table 3.2

Parameters that yield disease from latency in the two compartment ODE model. Parameters
above the line are nonspatial, while those below govern spatial dynamics. DC are dendritic cells,
MA are activated macrophages, and BE are extracellular bacteria. Comparison with Table 3.1
reveals a number of new parameters are significant for this model.

Parameter description Disease occurs Latency Units
when value is value

Chronic macrophage infection rate increased 0.4 /day
Growth rate, BE increased 5e-3 /day
MA deactivation rate increased 0.36 /day
IFN-γ extra source decreased 700 (pg/ml)/day
IL-12 production rate by mature DC decreased 3.5e-3 pg/(day*mature DC)
Mature DC deactivation rate increased 0.02 /day
Max. Th1 differentiation (from Th0) decreased 0.1 (ml/pg)/day
Max. Th2 differentiation (from Th0) increased 0.05 /day
Mature DC-T cell interaction decreased 1e-4 ml/(day*mature DC)
Max. rate of apoptosis/T cell action decreased 0.5 /day
% of Th0 migrating out of the
draining lymph node into the blood decreased 0.9 /day

Immature DC baseline turnover decreased 500 (immature DC/ml)/day
Max. Immature DC migration decreased 0.2 /day

In fact, the main result of our two-compartmental model is that a delay in either
dendritic cell migration to the draining lymph node or T cell trafficking to the site of
infection can alter the outcome of Mtb infection or define a progression from latency
to active TB or a possible reactivation scenario (see Table 3.2 and [45] for details).
Delayed dendritic cell migration can be simulated by decreasing immature dendritic
cell turnover rates or immature dendritic cell migration rates from the site of infec-
tion to the draining lymph node. T cell trafficking can be altered by decreasing the
percentage of precursor T helper cells migrating out of the draining lymph node. We
can also modulate the intensity and duration of antigen presentation in the draining
lymph node by changing the mature dendritic cell-Naive T cell interaction term or
mature dendritic cell half-life. These delays are due in part to specific spatial issues
that will be addressed in more detail in the next sections (metapopulation, PDE,
and agent-based models), with particular emphasis on the site of infection (the lung)
where granuloma formations occurs locally.

Our results are in line with the idea that a fast dendritic cell turnover at the site
of infection as well as strong activation by dendritic cells leading to maximal antigen
presentation and production of key cytokines (inducing the most protective T cell
response) could represent a viable strategy for the development of a new generation
of treatments against Mtb [23, 33].

3.3. Third approach: Metapopulation model. One approach we pursued to
extend the temporal model presented above to a spatio-temporal model is a metapop-
ulation framework. In this section we describe our metapopulation model of the adap-
tive immune response to Mtb infection. Further details are presented in the appendix.
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A metapopulation approach means that the spatial domain is partitioned into
a number of distinct sites, each containing subpopulations. Dynamics of these sub-
populations are locally coupled, reflecting migration of subpopulations between sites.
The metapopulation approach has been applied widely as a method of incorporating
spatial heterogeneity into population models. Most of this work has been done for
ecological or epidemiological models, such as [24, 35, 36, 37, 38, 56, 57]. We applied
the metapopulation framework at the cellular level, in order to study spatial aspects
of the immune response to Mtb infection.

The spatial domain for this model, and for the subsequent spatio-temporal mod-
els described below (the PDE and agent-based models), is a two-dimensional cross-
section of alveolar lung tissue. For the metapopulation approach this spatial domain
is discretized into an n×n lattice of compartments. Each compartment contains sub-
populations of various cell types. As described in section 2.1, we made the simplifying
assumptions of removing all cytokine variables (instead representing their effects by
the cells that secrete them) and collapsing the three T cell subpopulations of the tem-
poral ODE model into a single T cell population. We introduced a new variable to
represent chemokine concentrations. Thus, the model includes the following types of
populations: extracellular bacteria (BE), intracellular bacteria (BI), resting macro-
phages (MR), infected macrophages (MI), activated macrophages (MA), T cells (T ),
and a chemotactic effector molecule that we include for the first time, chemokine (C).

Hence the model consists of 7n2 variables: BE (i,j), BI (i,j), MR (i,j), MI (i,j),
MA (i,j), T(i,j), and C(i,j) for 0 ≤ i, j < n. Here (i, j) are the indices of the n × n
lattice of compartments (see Figure 3.3). Nonlinear ODEs govern the dynamics of
these subpopulations. The terms in these ODEs represent (1) local interactions be-
tween subpopulations within each compartment and (2) movement of subpopulations
between compartments. The local within-compartment dynamics of this model are
based on the dynamics of the temporal model described in section 3.1 and are por-
trayed in the lung compartment of Figure 2.1 (not including dendritic cells). The
equations representing these dynamics are given in the appendix.

i

j (i,j)
W   (t)

Fig. 3.3. A depiction of the spatial environment of the metapopulation model, which consists
of an n × n lattice of compartments. W(i,j)(t) represents the subpopulation of a generic variable
type, W in compartment (i, j) at time t. If W is one of the cell types, and it is allowed to move,
W(i,j)(t) migrates to the four adjacent compartments, as indicated.

In addition to the local interactions, the ODEs for subpopulations in adjacent
compartments are locally coupled via terms that represent movement of subpopu-
lations. In this model, resting macrophages, activated macrophages, T cells, and
chemokine are allowed to move. Hence, the ODEs for MR (i,j)(t), MA (i,j)(t), T(i,j)(t),
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and C(i,j)(t) include movement terms. The key feature of the movement terms are
a set of “movement coefficients” for cell type w in compartment (i, j): αw

i,j,S , αw
i,j,R,

αw
i,j,L, αw

i,j,U , and αw
i,j,D.

These five movement coefficients represent, respectively, the proportion of cells
that move right (R), left (L), up (U), and down (D) out of the compartment, and
that remain stationary (S) within the compartment. To capture chemotaxis, these
coefficients are calculated as a function of the chemokine gradients between the com-
partment and its neighbors. Further details are given in the appendix. The movement
coefficients are recalculated at each step, as a function of the changing chemokine en-
vironment. Hence, the system of 7n2 ODEs in fact evolves over the course of the
simulation.

3.3.1. Parameter estimates. For parameter estimates, we relied on the work
of [76] in surveying the biological literature for estimates of the kinetic parameters (i.e.,
those related to local, within-compartment dynamics). The new parameters intro-
duced in this model were related to chemokine production and diffusion, chemokine-
driven recruitment of immune cells, and movement of immune cells. Estimates for
chemokine production parameters were obtained from experimental data found in the
literature. Recruitment and movement parameters were varied over a wide range to
study their effects on infection outcome. To solve this metapopulation system, we
used standard numerical solvers for ODEs coded into the C programming language.
These solvers were modified so that the movement coefficients were also recalculated
at each step as a function of C(i,j)(t), as described above.

We studied simulations using a metapopulation model with the spatial domain
consisting of a 5 × 5 lattice of compartments. Initial conditions consisted of a back-
ground level of resting macrophages distributed across the lattice and an initial infec-
tion of 25 extracellular bacteria in the center compartment (i.e., compartment (2, 2)).
Note that since neither extracellular bacteria nor infected macrophage subpopulations
were allowed to migrate between compartments in this model, infection was restricted
to the center compartment. This allowed us to focus on the processes of recruitment
and migration in the local neighborhood of a forming granuloma contained within the
center compartment.

To determine the spatial dimensions, we chose to make each compartment (and in
particular the center compartment) large enough to contain a single granuloma. There
is evidence that poorly formed granulomas may have radii of 2 mm or larger [7, 13].
To ensure that the center compartment of the lattice was large enough to contain such
a granuloma, we assumed that each compartment corresponded to 5 mm × 5 mm of
alveolar lung tissue, making the dimensions of the entire lattice 25 mm × 25 mm.

3.3.2. Results. Across a wide range of parameter values, we observed two dis-
tinct classes of outcomes. We believe these outcomes can be characterized as cor-
responding to distinct local outcomes of infection: (1) containment and control of
bacterial growth and (2) uncontrolled bacterial growth. These outcomes were dis-
tinguished according to extracellular bacterial levels within the center compartment.
In that sense, our criteria and results are qualitatively similar to the results of the
temporal ODE models, as presented in sections 3.1 and 3.2. However, results of the
metapopulation model represent a spatially local immune response to a single focal
point of infection, since the spatial domain of the model represents a small portion of
lung tissue and an initial infection therein. Unlike the temporal ODE model, results
of the metapopulation model are not interpreted as corresponding to global infection
outcomes for the individual, such as active disease or latency.
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Figure 3.4 shows results for bacterial and macrophage subpopulations in the cen-
ter compartment from two simulations. Panels A show results from a simulation
leading to control of bacterial growth. All subpopulations—including extracellular
bacteria—achieve steady-state equilibria.1 Panels B, on the other hand, show results
corresponding to uncontrolled growth of extracellular bacteria, as can be seen clearly
in the bacterial population plot.
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Fig. 3.4. Simulations of the metapopulation model. Results corresponding to control of bacte-
rial growth (A panels) and uncontrolled bacterial growth (B panels), respectively. Shown are bacte-
rial (left panels: extracellular-BE and intracellular-BI) and macrophage (right panels: resting-MR,
infected-MI , and activated-MA) populations in the center compartment of a 5 × 5 lattice. All pa-
rameter values used are given in [22]. Differences between panels A and B are obtained by varying
the parameter governing the rate of killing of bacteria (BE) by activated macrophages.

Beyond temporal dynamics like those shown Figure 3.4, the metapopulation
model allowed us to examine spatial distributions of immune cells, as well as study
the effects of various spatial parameters on infection outcome. One technique for vi-
sualizing this spatial result is surface plotting. The domain of such surface plots is the
two-dimensional lattice of compartments. A surface plot for population W at time t
is formed by plotting W(i,j)(t) as the height of the surface over compartment (i, j).

Figure 3.5 depicts the spatial distributions of various subpopulations (from top
to bottom: extracellular bacteria (BE), resting macrophages (MR), infected macro-
phages (MI), activated macrophages (MA), T cells (T ), and chemokine (C)) over
the course of a simulation leading to uncontrolled bacterial growth. Each column
shows the spatial distributions of these populations at a different time point. Un-
controlled growth of extracellular bacteria can be seen in the first row. The second
and fifth rows show the development of steady-state spatial distributions of resting
macrophages and T cells during uncontrolled bacterial growth. Resting macrophages
and T cells are recruited into the boundary compartments by chemokine and then
move chemotactically towards the center compartment, due to the spatial chemokine
pattern shown in the bottom row of Figure 3.5. T cells maintain a maximum level
at the center compartment, whereas resting macrophages initially concentrate in the
center compartment (at time 150 days, for example), but this resting macrophage
peak collapses as there is a turnover of resting macrophages to infected and activated
macrophages in the center compartment (due to the presence of extracellular bacteria
and T cells, respectively). This demonstrates continuous recruitment of immune cells
during the process of granuloma formation, even though the immune response process
is unsuccessful in controlling bacterial growth.

1Note that bacterial population in panel A is plotted over a longer time course than the other
plots, in order to show that extracellular bacteria approach a steady state.
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Fig. 3.5. Surface plots of the spatial distribution of extracellular bacteria (BE), resting macro-
phages (MR), infected macrophages (MI), activated macrophages (MA), T cells (T ), and chemokine
(C) variables at times t = 0, 150, 300, 450, and 599 days during a simulation leading to uncontrolled
bacterial growth in the metapopulation model.

Results in panels A of Figure 3.4 represent a baseline simulation in which bac-
terial growth is successfully controlled. We extensively explored the dynamics of all
the parameters in the model with respect to this baseline simulation: using the set of
parameter values that yielded the baseline simulation, we varied each parameter to
determine whether biologically reasonable variations in the given parameter yielded
a change from control of bacterial growth to uncontrolled bacterial growth. Table 3.3
summarizes these results. As can be seen from the table, the majority of new param-
eters led to such a stable-state change.

Table 3.3

Parameters that yield uncontrolled bacterial growth from latency in the metapopulation model.
Parameters in the top half of the table are kinetic parameters, while the bottom half lists spatial
recruitment and movement parameters. MR are resting macrophages, MI are infected macrophages,
MA are activated macrophages, BE is extracellular bacteria, and C are chemokines.

Parameter description Disease occurs Containment Units
when value is value

Chronic macrophage infection rate increased 0.5 /day
MR activation rate decreased 0.2 /day
MA deactivation rate increased 0.4 /day
Rate of killing of BE by MA decreased 1.25 × 10−6 /MA/day
Death rate, T cells increased 0.33 /day
Growth rate, BE increased 0.03 /day
Max. recruitment of MR via C decreased 103 MR/day
Max. recruitment of T via C decreased 104 T/day
rate of movement of MA decreased 0.2 /day
rate of movement of T cells decreased 0.4 /day
rate of movement of C decreased 1.0 /day

Recall that significant new features of the metapopulation model included the
following spatial mechanisms: chemokine-driven recruitment of resting macrophages
and T cells as well as chemotactic movement of resting macrophages, activated macro-
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phages, and T cells. As listed in Table 3.3, we found that infection outcome is sensitive
to each of the parameters governing recruitment and movement. This is strong evi-
dence for considering spatial aspects of the immune response in determining infection
outcome. We argued in [22] that many of these spatial aspects can be explained by
the idea that modeling the spatial domain introduces a “delay” between initial in-
fection of macrophages and secretion of chemokine in the center compartment, and
subsequent recruitment and migration of immune cells. This may be compared with
the results of [46] as described above in section 3.2, which also found that a delay in
T cell trafficking to the site of infection can significantly influence infection outcome.

Interestingly, the metapopulation model revealed that spatial interactions out-
side the granuloma itself, i.e., outside of the center compartment, play a key role
in infection outcome. This can be seen most strikingly in considering χA, the pa-
rameter for the rate of movement of activated macrophages. Decreasing χA from its
baseline value led to uncontrolled bacterial growth. This result was counterintuitive,
since it appeared that activated macrophages played a role only within the center
compartment by eliminating extracellular bacteria. Therefore, increasing their rate of
movement should, if anything, be detrimental to the immune response, by removing
more activated macrophages from the site of extracellular bacterial growth.

These results led us to reexamine the role that activated macrophages play in the
adaptive immune response. We identified two mechanisms to explain the result with
respect to χA: activated macrophages contribute to T cell proliferation and chemokine
production. Decreasing χA had the effect of decreasing the number of activated
macrophages that migrate out of the center compartment. This reduces the strength
of the chemokine signal that is produced in the periphery of the lattice, and it also
reduces the amount of T cell proliferation in those locations. Together these have the
combined effect of weakening the immune response sufficiently to result in uncontrolled
infection. Thus, the model revealed that activated macrophage migration may be an
essential aspect of the immune response. Activated macrophage migration away from
the granuloma may serve as a way of signaling and strengthening the adaptive immune
response at the periphery of the site of infection via mechanisms such as chemokine
production and T cell proliferation. These results were unattainable using only a
temporal modeling approach.

3.4. Fourth approach: PDE model. PDEs have been widely used to model
the spatial movement and temporal development of densities of cells [9, 30, 39, 40,
49, 53, 54, 55, 64, 65]. For example, the models of Keller and Segel [39, 40] were
developed to examine how cells move via directed cell movement (chemotaxis). Before
discussing our model [21], we briefly discuss the mathematical techniques used to
model processes in general biological systems that will be utilized here. In this section
we discuss spatio-temporal modeling of Mtb infection using PDEs. Modeling temporal
effects and processes of Mtb infection were discussed in section 3.1, and the first steps
towards modeling more global spatial effects were developed using a compartmental
model (see section 3.2). The metapopulation model of section 3.3 was developed
as a discretized version of a PDE model. Essentially all movement terms were finite
difference approximations to the continuous diffusion and chemotaxis terms we discuss
here. However, in the metapopulation model it was assumed that bacteria were
confined to a single compartment. Although this allowed us to study the effects of
immune cell movement on infection progression, it does not help us estimate the size
of the granuloma or the importance of bacterial movement parameters. Here we show
how PDEs can be used to track the spatial progression of Mtb infection at a local scale.
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In order to develop a spatial model of the innate immune response to Mtb in-
fection, some of the biological processes we needed to include are granuloma size
and growth, recruitment of resting macrophages to the site of infection, cell move-
ment inside the granuloma, and phagocytosis. Mathematically, in its simplest form,
a granuloma can be thought of as an amalgamation of cells that form a compact
spheroid. This spheroid then expands, or contracts, depending on the current state of
the immune cells and bacteria present. Therefore, a granuloma can be described as a
multicellular spheroid in much the same way as a tumor. The main difference is that
a tumor develops via the rapid proliferation of cells, whereas, for granuloma growth,
bacteria infect macrophages and cells are recruited to it. While research on the spatial
aspects of Mtb has been limited, modeling of tumor spheroids has progressed rapidly.
Ward and King [74, 75] used reaction-diffusion equations to study the growth of avas-
cular tumors. They assumed that the tumor spheroid is well packed (has no-voids)
and that cell proliferation, death, and active movement contribute to a volume in-
crease or decrease which causes the cells to move. This type of movement is often
referred to as an internal (or bulk) velocity. Using this formulation, it is straightfor-
ward to calculate the tumor radius at any given time. In our model we use these ideas
to model the growth of a granuloma. To capture recruitment of cells, we can choose
boundary conditions such that cells may enter or leave the granuloma (we discuss
this more fully below). Movement inside the granuloma is captured in two terms,
a standard diffusion term and a chemotaxis term. These types of terms have been
studied extensively by others; for example, see [9, 30, 39, 40, 49, 53, 54, 55, 64, 65].
Phagocytosis is the act of engulfing foreign objects by host immune cells. In our
model we consider resting macrophages that engulf bacteria one at a time. Using an
internal-states formulation we constructed a “ladder of infection” such that we have
Mw, w = 0, . . . , N , where the index, w, indicates the number of intracellular bacteria
within that class of macrophage. Therefore, we track the density of macrophages
infected with a specific number of bacteria, and hence the total density of intracellu-
lar bacteria. This is unique to the formulation of the PDE model. This formulation
allows us to consider phagocytosis as a process whereby macrophages step up the
infectivity ladder.

We now give an overview of our model of the innate immune response to Mtb
(for a full account of this model see [21]). There are five dependent variable types
in our model: extracellular bacteria, B(t, x), macrophages (uninfected and infected),
Mw(t, x), w = 0, . . . , N , a bacteria produced chemokine, C(t, x), the internal velocity
of cells within the granuloma, v(t, x), and the granuloma radius, R(t).

Figure 3.6 shows how the different cell types interact within this PDE model. The
notation for the variables in this model differ slightly to other models presented here.
This is because, rather than having different macrophage classes for resting/infected
and chronically infected macrophages, we use a ladder of infection. Here, a macro-
phage is given by Mw(t, x), w = 0, . . . , N , where w is an integer which denotes the
number of bacteria inside a particular macrophage.

3.4.1. Model. In the lung tissue, we assume that extracellular bacteria grow ex-
ponentially, in the absence of any immune cells. Unlike the metapopulation, we do not
assume that within a compartment all cells are well mixed. In their paper, Sannomiya
et al. [58] showed that bacteria release chemokines on contact with tissue. Therefore,
we assume that extracellular bacteria release a chemokine that attracts resting mac-
rophages to the growing granuloma. Macrophages are then able to phagocytose and
kill bacteria. However, bacteria can proliferate within their host macrophage, and if
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Fig. 3.6. Cellular dynamics for PDE model. M0 are uninfected macrophages, Mw are infected
macrophages, with w the number of intracellular bacteria, and B are extracellular bacteria. Compare
with Figure 2.1, which includes adaptive immunity and multiple compartments.

the macrophage harbors too many bacteria it loses functionality [12]. In particular,
we assume that a macrophage loses its ability to phagocytose extracellular bacteria
and kill intracellular bacteria once the intracellular bacteria levels reach some critical
threshold. Once bacteria levels within a macrophage have surpassed this threshold,
the macrophage will eventually die: either via age or via bursting due to excessive
numbers bacteria [70]. We assume that all cell types move via diffusion and that, once
produced, chemokine diffuses through the tissue. In addition, resting macrophages
also move via chemotaxis. Finally, all cells in the granuloma are affected by an internal
velocity. This was first discussed by Ward and King [74]. Essentially, this velocity is
generated via the volume reduction and growth due to bacterial growth, phagocytosis,
death, and other movement into and out of the granuloma. The model presented here
is one-dimensional, and, therefore, the size of the granuloma is measured by R(t), the
one-dimensional analogue of the granuloma radius.

3.4.2. Parameter estimates. A full list of parameter values can be found in
Gammack, Doering, and Kirschner [21]. Parameters were mostly taken from [76] with
the estimates for cellular movement and flux taken from various sources [53, 54, 74,
75]. To solve the equations, we first nondimensionalized and then used the no-voids
condition to eliminate the extracellular bacteria equation to obtain an expression for
internal velocity. The moving boundary of the granuloma is then mapped onto the
unit interval via a scaling of the spatial variable: x = R(t) ρ. The equations are solved
sequentially: first, v(x, t) is found using the trapezium method; then R(t) is updated;
then the equations were approximated using the NAG routine D03PCF [51]. These
steps are then repeated with B(x, t) found at each time point by using the no-voids
condition.

3.4.3. Results. Before discussing the results of the PDE model, we first recall
that it differs from models presented in other sections in one fundamental way: it
was developed to model the innate immune response. Therefore, as discussed in
Gammack, Doering, and Kirschner [21], only two outcomes are possible: continued
granuloma growth (granuloma radius, R(t), grows unbounded) or control of infection
(granuloma radius, R(t), decays to zero). We would expect that, with the addition
of other immune cell populations, this growth would either be stopped (leading to a
solid granuloma) or continue, leading to a necrotic granuloma. Additionally, the PDE
description of the innate immune response to TB is specific to a given region of the
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lung and tracks the progression of a single granuloma. Therefore, unlike the temporal
models presented in sections 3.1 and 3.2, but similar to the metapopulation model is
section 3.3, all results are spatially local effects rather than global results pertaining
to an individual host.

Table 3.4

Parameters that yield to uncontrolled bacterial growth (disease) from containment in the PDE
model. Spatial parameters are shown below the line, where kinetic parameters are above.

Parameter description Disease occurs Containment Units
when value is value

Extracellular bacteria growth rate increased 10−8 /sec
Macrophage infection rate decreased 10−5 /sec
Rate of intracellular killing of bacteria decreased 10−14 /sec
Flux of chemokine across the
granuloma boundary increased 10−14 m/sec

Flux of resting macrophages across
the granuloma boundary decreased 10−10 m/sec

Rate of macrophage chemotaxis decreased 10−3 m2/sec/M

The PDE model simulations show that phagocytosis, intracellular bacterial killing,
and bacterial growth (both extra- and intracellular) have an important effect on the
development of a granuloma (see Table 3.4). The specific effects of these parameters
are discussed fully in Gammack, Doering, and Kirschner [21]. In summary, decreasing
rates of phagocytosis and bacterial killing lead to granuloma growth (as bacteria are
allowed to survive and replicate), whereas increasing growth rates lead to increased
numbers of bacteria that cannot be dealt with by the innate immune response. In
Figure 3.7 two sets of graphs are shown. It can be seen that for control of infection,
both bacterial populations die out, and macrophage populations decay to zero. This
decay in macrophage population occurs since the granuloma is shrinking. When in-
fection progresses, extracellular bacteria become the abundant population. Figure 3.8
shows how the size (radius) of the granuloma changes over time for the two outcomes
discussed above.
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Fig. 3.7. Plots showing bacterial and macrophage levels over time in the PDE model. Panels A
show results where the granuloma is contained, while panels B show results where the granuloma
continues to grow. The chemotaxis parameter, χ, was set to zero in panels B.

Additional results presented in Table 3.4 relate to the flux (QM , QC) and chemo-
taxis (χ) parameters. In this current work, we varied these parameters over a wide
range rather than the restricted range discussed in our previous paper. The param-
eter QM is, effectively, a source term for macrophages, and that it behaves like a
bifurcation parameter is intuitive. Thus, decreasing its value leads to a reduction in
macrophage numbers inside the granuloma, and hence allows the continued growth of
bacteria. Chemokine flux, QC , acts in the opposite way. As flux increases, the amount
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Fig. 3.8. Radius plots from the PDE model. Two plots of the granuloma radius, R(t), against
time. Parameter values chosen to highlight granuloma growth and containment.

of chemokine at the boundary decreases and macrophage recruitment falls. Therefore,
if chemokine flux is too high, the amount of macrophages present in the granuloma
will be too small to combat infection. Finally, we have found that decreasing the rate
of macrophage chemotaxis, χ, also leads to disease. This likely follows since macro-
phages recruited into the granuloma are not moving directly toward bacteria, thus
giving bacteria an additional advantage over the immune response.

3.5. Fifth approach: Agent-based model. The models described in the pre-
vious sections do not capture the spatio-temporal heterogeneity of individual cells
(macrophages and T cells), in terms of states of cells and their spatial locations.
Representing such cellular-level heterogeneity may be essential to properly capturing
the process of granuloma formation. In order to improve our understanding of this
complex system, we developed an agent-based model that includes representations
of individual entities, their states, and their basic behavioral rules all residing in a
two-dimensional abstraction of lung tissue [62]. The agent-based model allowed us
to define more clearly individual interactions among entities at the cellular level and
observe resulting dynamics at the tissue level.

In an agent-based modeling framework, elements of the system being modeled
are represented primarily as discrete agents. This is in contrast with the differential
equation frameworks used in the models described in the previous sections, in which
elements are represented by continuous population variables. Moreover, these discrete
agents typically reside within some spatial environment and interact with one another
and with the environment locally (with respect to the environment).

Agent-based modeling is an extension and outgrowth of cellular automata models,
which have been applied widely in theoretical biology [15]. Agent-based models have
been applied to social sciences (e.g., [2, 14, 60, 61]) and more recently to biological
sciences (e.g., [1, 25, 43, 44]).

The agent-based model we developed has the following components: the spa-
tial toroid environment, which is a representation of a section of lung tissue; discrete
agents representing macrophages and T cells; continuous variables representing extra-
cellular bacteria and chemokines; rules describing behavior and interactions of agents
and continuous entities; and the time-scales on which the rules are executed. The
environment is made large enough to contain the relevant dynamics entirely within
its interior. Chemokines create a field where macrophages and T cells move toward
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higher concentrations. In this setting, larger size lattices (i.e., the torus) do not affect
the dynamics of T cells, macrophages, or the infection outcome.

In contrast with previous models, the agent-based model distinguishes between
chronically infected macrophages defined as those that cannot be activated and con-
taining many intracellular bacteria versus infected macrophages defined as macro-
phages with a few resident bacteria that have a short window during which they can
still be activated by T cells. The agents and rules that govern their behaviors as well
as implementation features are described in detail in [62].

3.5.1. Parameter estimates. Many parameters were obtained from published
data [19, 22, 76]; however, many could not be reliably estimated from experimen-
tal results (such as the probabilities involved in the stochastic rules). In order to
explore the parameter space and determine which parameters are significant to infec-
tion outcome, we applied both uncertainty and sensitivity analyses. We performed
uncertainty analysis by using the Latin hypercube sampling (LHS) [5, 27], which is an
extension of the Latin square sampling. The LHS sample size was 1000. The sensitiv-
ity analysis was performed by evaluating partial rank correlation coefficients (PRCCs)
for input parameters for each outcome variable. We study the behavior of the model
over a range of parameter values described in more detail in [62]. To quantitatively
analyze the effects of varying parameters, we used the total extracellular bacteria as
the primary measure of infection outcome.

3.5.2. Description of dynamics. The initial conditions consist of a back-
ground level of resting macrophages distributed randomly on the lattice and a low
initial infectious dose of extracellular bacteria placed in a small number of micro-
compartments near the center of the lattice. A given number (four) of “source com-
partments” are placed on the lattice where new cells can be recruited. Resting macro-
phages undergo random walks initially, in the absence of any chemokine on the lattice.
Simulation begins when a resting macrophage comes in contact with bacteria, either
killing bacteria or becoming infected. Due to chemokine secretion by these infected
macrophages and chemokine diffusion, a chemokine gradient is created. This gradient
attracts the remaining resting macrophages to surround infected macrophages. More-
over, once sufficient levels of chemokine diffuse to the source compartments, additional
resting macrophages and T cells are recruited onto the lattice and migrate towards
infected macrophages. Infected macrophages become chronically infected and then
burst as their intracellular bacterial loads grow and eventually reach their carrying
capacity. Bursting leads to spread of bacteria to neighboring compartments. Resting
macrophages attracted to the site may be infected by extracellular bacteria leading
to a repeat of the cycle just described and further spread of infection. On the other
hand, if T cells have reached the neighborhood, newly infected macrophages may be
activated, contributing to containment and even diminution of infection. The model
dynamics are represented in the lung compartment portion of Figure 2.1 without
dendritic cells. Full details are available in [62].

3.5.3. Results. By varying key parameters in the model influencing the dynam-
ics summarized above we obtained a number of distinct outcomes of infection. The
outcomes can be differentiated quantitatively according to total extracellular bacte-
rial load on the lattice over the course of a simulation and, qualitatively, according
to the spatio-temporal spread of infection. The outcomes can be classified as follows:
bacterial clearance, bacterial containment, and bacterial dissemination.

For bacterial clearance to occur, both extracellular and intracellular bacteria are
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completely eliminated, and there is almost no remanent of infection and inflammation
on the lattice. (There may be a small number of necrotic sites due to isolated bursting
and killing.) Clearance occurs when there is a strong effector T cell response, resulting
in a large number of activated macrophages that are able to clear all bacteria.

For bacterial containment to occur (likely the most common outcome), the im-
mune response succeeds in maintaining low levels of infected macrophages and avoid-
ing the spread of infection to other sites. Extracellular bacteria persist but are spa-
tially contained surrounded by macrophages and necrotic sites.

During dissemination, extracellular bacterial levels grow without bound, and in-
fection spreads across the lattice due to bursting and killing. The system is unable to
contain bacterial spread.

Figures 3.9 and 3.10 show results for total bacteria and macrophage levels on the
lattice during two simulations representing two of the infection outcomes. Panels A
show results from a simulation leading to containment, while panels B show the simu-
lation leading to dissemination, after we decreased the value of T cell recruitment. In
the containment simulation (Figure 3.9 A), extracellular bacteria (BE) are trapped
by macrophages and necrotic sites, and BE is greater than intracellular bacteria (BI).
Large numbers of extracellular bacteria are observed in the dissemination scenario
(Figure 3.9 B). In containment, resting macrophages (MR) maintain a steady large
value to keep the infection isolated (Figure 3.10 A). On the other hand, in dissem-
ination the number of resting macrophages decrease after 100 days due to bursting
or killing, and thus the system is unable to contain the spread of bacteria (Figure
3.10 B).
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Fig. 3.9. Results of bacterial load from two simulations of the agent-based model. Shown are
both total extracellular bacteria (BE) and intracellular bacteria (BI); the latter has been scaled by
a factor of 20 so that the results are on similar scales. Panel A shows containment of infection,
while panel B shows dissemination.

These temporal dynamics can be explained by examining the spatio-temporal
progression of the simulations. Figure 3.11 shows snapshots of the lattice at various
times during the same containment simulation used to generate panels A of Figures 3.9
and 3.10. As can be seen, infection initially spreads outwards in a roughly symmetrical
pattern due to bursting of chronically infected macrophages. Resting macrophages
(green) are activated (blue) by T cells (pink) to control infection. At 30 and 60 days
a ring of infected macrophages (orange) is observed around extracellular bacteria
(yellow). In the last snapshot, at time 360 days, extracellular bacteria are trapped
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Fig. 3.10. Results of macrophage populations from two simulations of the agent-based model.
Shown are resting macrophages (MR), infected macrophages (MI), activated macrophages (MA),
and chronically infected macrophages (MC). Panel A corresponds to containment of infection,
while panel B corresponds to dissemination.
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Fig. 3.11. Spatio-temporal snapshots of the lattice at times t = 15, 30, 60, 90, 180, and 360 days
during a simulation of the agent-based model leading to containment of infection. Colors correspond
as follows: bacteria (yellow), T cells (pink), infected macrophages (orange), chronically infected
macrophages (red), resting macrophages (green), activated macrophages (blue), and necrotic regions
(brown).
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within a ring of macrophages and necrotic sites (in brown). A strength of the agent-
based model is that it allows such visualization of the spatio-temporal dynamics of
the model.

We identified numerous parameters in the model that can influence which infection
outcome occurs. Our analysis shows that several parameters have positive or negative
correlations with total extracellular bacteria levels. These results are summarized
in Table 3.5. Interestingly, macrophage recruitment rates are positively correlated
with extracellular bacteria levels. Higher levels of resting macrophages can lead to a
detrimental outcome of infection for the host. This can be explained by a uniquely
spatial phenomenon: a large number of resting macrophages crowded around infected
macrophages hinders T cell proximity to infected macrophages. This limits activation
of infected macrophages, causing them to become chronically infected, eventually
bursting and leading to infection spread.

Table 3.5

Parameters which are positively or negatively correlated total extracellular bacteria (BE) based
on PRC analysis. Parameters in the top half of the table are kinetic parameters, while the bottom
half lists spatial recruitment and movement parameters at 500 days of infection. All correlations
shown have a P-value < 0.001.

Parameter description Correlation with
extracellular bacterial load

Probability a T cell activates a macrophage negative
Rate of macrophage recruitment positive
Rate of T cell recruitment negative
Probability of T cell movement next to a macrophage negative
Rate of activated macrophage movement positive

Indeed, the probability of T cell movement (into a macrophage occupied micro-
compartment) and the rate of T cell recruitment both show a negative correlation with
total extracellular bacteria, further demonstrating that T cell activity is essential for
infection control. Our analysis of the PRC values for these two parameters shows
that the probability of T cell movement is more significant than the rate of T cell
recruitment (see [62]). This result is interesting, as it shows that the spatial distri-
bution of T cells, and specifically their spatial proximity to infected macrophages, is
more significant than their mere abundance. Note that it was the spatial scale of the
agent-based model that led us to introduce a parameter related to T cell movement
and allowed us to observe this crowding effect of macrophages with respect to T cells.

4. Comparison/contrast of results of different approaches. In each of
the five sections, models were presented describing the immune response to Mtb. An
outline of each model, together with key results, were highlighted. Here, we compare
and contrast results obtained and explore what insights are gained using these different
approaches. Table 4.1 presents a summary of model features for comparison. Elements
such as mathematical formulation and design features are shown.

4.1. Baseline outcomes. Model results fall into two categories: global and
local. Global results distinguish between latency and active disease. Local results
distinguish between the development of a small, solid granuloma (containment of
infection) and the development of a large necrotic granuloma (unchecked infection
and spread). Figures in each of the sections present intracellular and extracellular
bacteria loads and macrophage dynamics. We compare these results below. One
interesting thing to note (as pointed out in the parameter analysis sections and dis-
cussions above) is that there exists multiple paths for the system to fail from latency
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Table 4.1

Table summarizing features of the five models. Abbrev: C = continuous, D = discrete, S =
stochastic, d = deterministic, LN = lymph node.

Model type Dynam-
ics

Environment Global/
local

Features

ODE C,d lung fluid
(BAL)

global Computationally easy, Math. complex,
no spatial.

2-Compartment
ODE

C,d 1 cm3 lung
and LN

global Computationally easy, Math. complex,
spatial.

Metapopulation C,S,d 5mm x 5mm
lung tissue

local Computationally expensive, Math. less
complex, spatial.

PDE C,d Lung tissue local Computationally expensive, Math.
complex, less complex biologically,
spatial.

Agent based
model (ABM)

D,S 2mm x 2mm
lung tissue

local Computationally very expensive, Math.
less complex, more biological features,
spatial.

(or containment) leading to active disease (or disseminating infection). The dynamics
presented in the figures are thus representative of each of the achievable infection
outcomes; nonetheless, comparisons can be drawn between them as mathematical
expressions and parameter values are preserved when possible.

4.1.1. Bacterial levels. In all the models we presented, extracellular bacteria
load as a marker of infection progression (both local and global; compare panels A
in Figures 3.1, 3.2, 3.4, 3.7, 3.9, and 3.10). In fact, these models provide a unique
opportunity to track the location of bacteria (intracellular versus extracellular) that
is not measured experimentally. In the first four models, during latency (or con-
tainment) intracellular bacterial load exceeds the extracellular load, while in disease
(or disseminated infection) the bacterial load grows exponentially. In contrast, the
agent-based model indicates that there is a larger number of extracellular bacteria
than intracellular in both containment and disseminating infection (Figure 3.9). In
both cases, the intracellular bacteria load remains in a quasi-steady state. This result
follows in the agent-based model because the necrotic areas are facilitating the control
of bacteria.

4.1.2. Macrophage levels. Regarding macrophage dynamics, clearly the lev-
els of infected macrophages are indicators of infection status (at either local or global
scales). Curiously, there are differences observed in macrophage levels between mod-
els. In the first model (see Figure 3.1, panels B), even high levels of activated mac-
rophages are insufficient to suppress infection. In contrast, in the next two models
(Figures 3.2 and 3.4, panels B) low levels of activated macrophages lead to infection.
This implies that mechanisms other than macrophage activation are necessary for
containment (or latency). This result is confirmed in experiment studies as well [17].

In all of the models, macrophage activation and their activity are essential for
containment but are not sufficient. Even when the system is not able to contain
bacterial growth, there are large amounts of activated macrophages present. This is
also observed in the experimental and clinical setting [11, 20].

Upon examination of the tables for each of the models, we see further confirma-
tion for a key role of macrophages in containment and latency outcomes (see Tables
3.1–3.5). In the two ODE models and metapopulation model, activation and infection
rates are strongly correlated with outcome (correlation coefficients not shown). In the
PDE model which represents the innate response, the ability of macrophages to take
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up and kill bacteria plays a determinative role. Finally, in the agent-based model
setting, although macrophage activation is still important, spatial dynamics become
more relevant. This may explain why macrophage activation is necessary but not
sufficient to contain infection [11, 20].

4.2. Parameters leading to distinct infection outcomes. In each model
section, tables for relevant parameters are presented showing rates/rate constants
that, if altered, lead to disease (disseminated infection) from latency (containment).
There are both strong consistent themes and clear differences between the models.
As the goal of this paper is to explore the spatial aspects of what controls immunity
to TB, we focus on those parameters for our study.

Parameters that govern success or failure of the immune response in the first
model depend largely on macrophage dynamics (Table 3.1). Interestingly, rates/
rate constants that indirectly represent recruitment of new cells to the site of infection
are not key to determining outcome. Other processes that were represented in an
indirect way did arise as important (such as the production of INF-γ from CD8+

T cells, which we represented by a general source term). We have now developed an
extended model to explore this topic more mechanistically [69].

In the two-compartment model, where we begin to more mechanistically explore
some spatial aspects (more global ones than local ones, however), the trafficking of
cells between the two compartments of blood and lymph, as well as recruitment rates
of T cells, emerge as key (Table 3.2). Here we have replaced the indirect phenomeno-
logical representations of these processes from the first model with direct spatial rep-
resentations.

Moving to the first more local spatialization model (the metapopulation model),
recruitment of immune cells again emerges as key (global level recruitment). When
adding local spatialization as well, the speeds at which cells and effector molecules
affect movement on the lattice greatly influences infection dynamics (Table 3.3).

As discussed in section 3.4, the PDE model represents the innate response model
to Mtb. Even in this state, recruitment of cells is key (Table 3.4). However, here
chemokine levels needed to jumpstart the system in the right direction become relevant
for the first time. Chemokines are included in the metapopulation model, but their
rates do not arise as determinative in behavior outcome (Table 3.3).

The importance of both chemokines and cell movement are again observed in
the agent-based model (Table 3.5). Interestingly, the ability of T cells to penetrate
the granuloma structure to activate macrophages is key. This reveals a crowding
effect of macrophage density on infection outcome. It is the spatial scale (local) at
which the agent-based model is formulated that allows the study of this aspect of the
organization of the immune response. This behavior emerges for the first time here
since specific cell-cell interaction dynamics are best captured with this approach.

4.3. Model predictions. One of the key purposes of a mathematical model
is to make predictions regarding the biological problem that is under study. Taken
together, results from all five models suggest the following. First, a consistent theme
from all five models was that of the role of macrophage activation and infection rates
in infection dynamics. Activation is not surprising given that the importance of mac-
rophage activation in TB infection is well established (see, e.g., [20]). What has not
been discussed are infection dynamics. If infection could be slowed or halted, our
results predict that containment or even clearance could occur. Studies with mutant
bacterial strains of Mtb could confirm these predictions. Second, in the ODE models
the ability of T cells to kill infected macrophages was of key importance. This implies
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that once macrophages are infected, containment is completely under the control of
T cells. Studies along these lines are already being performed by our experimental
collaborators. This specific role for T cells became less pronounced in the spatial mod-
els, which we believe clouded these effects. Third, all of the spatial models identified a
role for recruitment and movement of activated macrophages and also their ability to
kill bacteria. Enhancing macrophage dynamics will certainly facilitate containment.
Finally, chemokine dynamics are just being studied in the experimental setting. Our
models predict that chemokine dynamics (turnover, diffusion rates, etc.) are all key
to facilitating an optimal response. Factors that can enhance these features are likely
to tilt the scale in favor of the host.

5. Discussion. One of the fundamental problems in using mathematics to model
biological systems is choosing the appropriate scale representation. This work is an
attempt to model a given biological system (namely the immune response to Mtb)
using multiple scale approaches. To this end, we have applied a wide range of mathe-
matical tools to explore a specific biological topic. In this way, we are able to compare
and contrast the effects that scale has on the results. We applied continuous deter-
ministic models (single and multiple compartment nonlinear ODE systems) to more
discrete stochastic ones (an agent-based model) as well as approaches that fall in be-
tween (PDEs and metapopulation modeling). We presented baseline results in each
scenario and contrasted the local and global spatial effects that were captured with
each. Other groups have done similar comparisons (see, e.g., [41]), but our approach
improves on others as it is comprehensive in both the mathematical and the biological
scale.

Several mathematical challenges arose in the process of developing and analyzing
these models. One of the key difficulties that emerged when modeling cell movement
was that of infected macrophages. In two of the models (metapopulation and PDE)
we made the assumption that infected macrophages remain stationary. This implies
that the intracellular bacterial load within each also remains stationary, and thus
we could track at any moment where these bacteria were located. If we allowed for
infected macrophages to move, there was no easy way to simultaneously allow for
movement of the intracellular bacteria load. This problem was easily solved in the
agent-based model setting.

Additionally, higher-dimensional systems (two- or three-dimensional) are likely
necessary to capture more biological realism. This adds significant complexity to the
current models, and we plan to address this in future work as well. Additional prob-
lems are a lack of in vivo data for the entities involved, including physical parameters
such as diffusion constants, decay rates, number and distribution of molecules and
cells, etc. Further biological refinements can be easily incorporated into any of the
models as data become available.

Finally, a general challenge for modelers is to build models that integrate features
across scales. Processes occurring at the gene, cellular, and tissue levels operate in
tandum, and thus developing models which capture these integrative process simul-
taneously across scales is a collective goal. We believe the work discussed here is a
first step in this direction.

Our ultimate goal is to combine different modeling approaches to produce hybrid
models that operate on different scales simultaneously. For example, if we introduced
PDEs to describe the dynamics of the more continuous entities in the agent-based
model (rather than the ODEs we presently model them with) we can allow for spatial
actions of these variables as well. Another example would be to develop a multi-
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ple compartmental agent-based model (i.e., combining the two-compartmental ODE
model ideas with the agent-based model). Either of these approaches will likely give
further insights into the biological mechanisms operating at different scales that yield
a properly functioning granuloma.

6. Appendix.

6.1. Equations for the metapopulation model. In this appendix we present
the equation for the metapopulation model discussed in section 3.3. As mentioned
in section 3.3, local (within-compartment) interactions and the corresponding terms
in the ODEs are adapted from [76], so the discussion of the equations below refers
back to the equations presented in section 3.1. The movement terms for MR (i,j)(t),
MA (i,j)(t), and T(i,j)(t) are initially denoted by Movw(i,j)(t) (for w = MR,MA, T ) in
the equations below. They are subsequently described in more detail.

6.1.1. Macrophage dynamics. The equations describing macrophage dynam-
ics within each compartment (i, j) are given below (for readability we have suppressed
the (t) notation in all equations):

d

dt
MR (i,j) = (δi + δj)

(
SMR + schM

(
C(i,j)

C(i,j)+schM0

))
− k2MR (i,j)

(
BE (i,j)

BE (i,j)+c9

)
− k3MR (i,j)

(
T(i,j)

T(i,j)+s3

)(
BT (i,j)

BT (i,j)+c8

)
− µRMR (i,j)

+ µdaMA (i,j)

(
s3

T(i,j)+s3

)(
c8

BT (i,j)+c8

)
+ MovMR

(i,j),

(6.1)

d

dt
MI (i,j) = k2MR (i,j)

(
BE (i,j)

BE (i,j) + c9

)
− k17MI (i,j)

(
B2

I (i,j)

B2
I (i,j)+(NMI (i,j))

2

)

− k14MI (i,j)

(
T(i,j)/MI (i,j)

T(i,j)/MI (i,j)+c4

)(
1 − p

(
BI (i,j)

BI (i,j)+NMI (i,j)

))
− µIMI (i,j),

(6.2)

d

dt
MA (i,j) = k3MR (i,j)

(
T(i,j)

T(i,j)+s3

)(
BT (i,j)

BT (i,j)+c8

)
− µdaMA (i,j)

(
s3

T(i,j)+s3

)(
c8

BT (i,j)+c8

)
− µAMA (i,j) + MovMA

(i,j).

(6.3)

In (6.1), δi and δj define the compartments in the spatial domain into which resting
macrophage recruitment occurs. As resting macrophages are assumed to enter the site
of infection only at the boundaries (see below), i.e., for i = 0 or n− 1, j = 0 or n− 1,
δi and δj are defined as follows:

δi =

{
1 if i = 0 or n− 1,

0 otherwise,
δj =

{
1 if j = 0 or n− 1,

0 otherwise.
(6.4)

The dynamics of each macrophage subpopulation (MR (i,j)(t), MA (i,j)(t), and
MI (i,j)(t)) are a simplified subset of the dynamics described in section 3.1. The
major change is that the terms in the equations of that model are “relativized” to
each compartment (i, j). This reflects that these dynamics now take place locally
with respect to the spatial environment, i.e., within each compartment. Thus, resting
macrophages MR (i,j) become infected in the presence of extracellular bacteria BE (i,j)
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in the same (i, j) compartment at a maximal rate of k2. Similarly for activation of
resting macrophages, deactivation of activated macrophages, bursting of chronically
infected macrophages, and lysis of chronically infected macrophages by T cells. Note,
however, that in the terms representing activation and deactivation, Iγ has been
replaced by T(i,j). Cytokines such as IFN-γ were not included in this model, but their
effects were represented by substituting the cell type that produces them, in this case
T cells.

The most significant change in macrophage dynamics as compared to the tem-
poral ODE model is in recruitment of new cells to the site of infection. In both
models, macrophages are recruited to the site of infection via two separate mecha-
nisms: (1) a constant source term that provides a baseline level of resting macrophages
in the lung tissue, even in the absence of infection, and (2) recruitment of additional
resting macrophages to the site of infection in response to chemokines released by
infected and activated macrophages. Since the ODE models did not include chemo-
kines, the latter type of recruitment was represented implicitly, via both the infected
and activated macrophage variables. In that sense, chemokine recruitment was repre-
sented indirectly. Since chemokine variables were added to this model, we represented
chemokine-driven recruitment explicitly. Thus, resting macrophages are recruited into
a boundary compartment (i, j) in response to the value of C(i,j)(t) at a maximal rate
sch; this is modified by a Michaelis–Menten function.

Finally, macrophage migration between adjacent compartments of the lattice is
captured by a set of “movement terms,” Movw(i,j)(t), w = MR,MA. These are in-

cluded in the equations for both resting and activated macrophages ((6.1) and (6.3),
respectively). A description of these movement terms is given below. We assumed
that infected macrophages have a reduced ability to sense chemokine gradients and
to move. Hence, infected macrophages do not move between compartments in this
model.

6.1.2. T cell dynamics. The equation describing T cell dynamics within each
compartment (i, j) is

d

dt
T(i,j) = (δi + δj) schT

(
C(i,j)

C(i,j)+schT0

)
+ α2T(i,j)

(
MA (i,j)

MA (i,j)+c15

)
− µTT(i,j) + MovT(i,j),

(6.5)

where δi and δj are as in (6.4) and restrict T cell recruitment to the boundary com-
partments.

T cell dynamics are substantially simplified as compared to the temporal ODE
model, since we collapsed the three T cell types of that to a single type. Additionally,
we removed the dynamics of various cytokines present in that model. We include
proliferation of T cells in the presence of activated macrophages, and we include
natural death. Finally, as with resting macrophages as described above, we replace
the indirect representation of chemokine-driven recruitment in the temporal ODE
model by a direct representation using the new chemokine variables. As with resting
macrophages above, such recruitment takes places only in the boundary compartment
and is modified by a Michaelis–Menten function.

6.1.3. Bacterial dynamics. The equations describing bacterial dynamics within
each compartment (i, j) are exactly as the bacterial dynamics equations for the tem-
poral ODE model, relativized to compartment (i, j). We do not repeat them here.
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6.1.4. Chemokine dynamics. The chemokine variables C(i,j)(t) represent an
aggregate concentration of the various chemokines involved in granuloma formation.
These chemokines are secreted by infected macrophages and activated macrophages at
maximal rates of cI and cA, respectively. Chemokine decays at rate ΓC . We modeled
chemokine diffusion via two parameters: a rate of diffusion µc and a parameter αC

corresponding to the proportion of chemokine that leaves the compartment (i, j). This
leads to the following equation for C(i,j):

d

dt
C(i,j) = cI

(
MI (i,j)

MI (i,j)+a3

)
+ cA MA (i,j) − ΓCC(i,j) − µc αC C(i,j)

+ χc

(
αC

4

) (
δR C(i−1,j) + δL C(i+1,j) + δD C(i,j−1) + δU C(i,j+1)

)
,

(6.6)

where δR, δL, δD, and δU are defined as in (6.7) to indicate that there is no chemokine
diffusion into the boundary compartments from outside the lattice.

δR =

{
1, i �= 0,

0 otherwise,
δL =

{
1, i �= n− 1,

0 otherwise,

δD =

{
1, j �= 0,

0 otherwise,
δU =

{
1, j �= n− 1,

0 otherwise.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.(6.7)

6.1.5. Movement terms. The movement terms Movw(i,j) that occur in (6.1),

(6.3), and (6.5) (i.e., for w = MR, MA, or T , respectively) represent the chemotactic
movement of these subpopulations from compartment (i, j) to the four neighboring
compartments, i.e., up (U) to (i, j − 1), down (D) to (i, j + 1), left (L) to (i − 1, j),
and right (R) to (i+ 1, j) (see Figure 3.3), and vice versa. The movement terms take
the following form:

Movw(i,j)(t) = −
movement out︷ ︸︸ ︷

χw (1 − αw
i,j,S) w(i,j) + δR

movement in from left︷ ︸︸ ︷
χw αw

i−1,j,R w(i−1,j)

+ δL

movement in from right︷ ︸︸ ︷
χw αw

i+1,j,L w(i+1,j) + δD

movement in from above︷ ︸︸ ︷
χw αw

i,j−1,D w(i,j−1)

+ δU

movement in from below︷ ︸︸ ︷
µw αw

i,j+1,U w(i,j+1) .

The coefficients δl (for l = R, L, D, U), as defined in (6.7), are included so
that only the appropriate movement terms appear in the equations for the boundary
compartments. The parameter χw represents the rate of movement of cell type w.
Finally, αw

i,j,S , αw
i,j,R, αw

i,j,L, αw
i,j,U , and αw

i,j,D are a set of “movement coefficients” for
cell type w in compartment (i, j). The algorithm by which the movement coefficients
are calculated are discussed in detail in [22].
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