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After decades of research focusing on infected
patients and experimental animals, most mod-
ern research on microbial pathogenesis takes
place at the level of cellular and biochemical
mechanisms governing host-parasite interac-
tion; however, studies at many scales will un-
doubtedly be needed for a deeper understand-
ing of infectious diseases. For example, linking
pathogen-specific information to that on the
immune system will be critical for understand-
ing the dynamics of most bacterial infections.
Components of host-pathogen systems are suf-
ficiently numerous and their interactions suffi-
ciently complex that intuition alone is insuffi-
cient to fully understand the dynamics of the
interactions. Here, mathematical modeling be-
comes an important experimental tool. In this
chapter, we will focus on mathematical models
of colonization and persistent bacterial infec-
tions. We will review the modeling method
and the state of the field and then focus on
three key areas where modeling has, and will
continue to have, an impact: the ecology of
the indigenous microflora and its plasmids, Hel-
icobacter pylori colonization, and host-pathogen
interactions with Mycobacterium tuberculosis.

Denise E. Kirschner and Rolf Freter, Department of Microbiol-
ogy and Immunology, The University of Michigan Medical
School, Ann Arbor, MI 48109-0620.

This is by no means a complete list of bacterial
pathogens that have been explored with mod-
eling; models of other bacterial infections will
certainly emerge over the next decade and be-
yond.

MODELING PRINCIPLES
In many infectious diseases, particularly those
arising from persistent infections with patho-
gens such as M. tuberculosis and H. pylori, we
are far from understandirig the mechanisms of
disease progression. The strength of the model-
ing process is that it can lend insight and clarifi-
cation to existing data and theories. Mathe-
matical models thus provide a unique approach
to representing and studying the integrated be-
havior of complex biological systems. The use
of mathematical models also enables us to com-~
pare and contrast existing theories of the dy-
namic interactions in a complex system.
Mathematical models of host-pathogen dy-
namics are formulated on the basis of specific
assumptions regarding the system’s compo-
nents and their interactions. In the same way
that an experimental animal model can play a
key role in our understanding of a human bio-
logical system (allowing for comparative biol-
ogy), a mathematical model can lend valuable
insights into complex interactions and reveal
key governing parameters. An important dis-
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tinction to make is that unlike statistical meth-
ods that rely solely on the analysis of empirical
data, mathematical models of host-pathogen
interactions are based on assumptions about the
host-bacterial dynamics and use data to esti-
mate the rate constants that govern the interac-
tions. Host-pathogen models are based on
mechanistic assumptions and can therefore be
used effectively to compare and contrast alter-
native hypotheses concerning mechanisms of
pathogenesis. Thus, it should be understood
that the main purpose of mathematical model-
ing is to determine the interplay among specific
interacting factors in infection and not merely
to achieve correlations within empirical data.
A good model, therefore, uses parameters that
represent defined biological entities (e.g.,
growth rates, nutrient uptake, etc.) rather than
numerically derived values that merely serve to
align the model solutions with experimental
data. Also, a key strength of modeling is that
it reveals various sensitivities to the parameters
and initial conditions involved in the model,
indicating which processes and interactions are
dominant in the dynamics. For example, the
outcome of an infection initiated with an inoc-
ulum of 10 bacteria might be shown to be qual-
itatively different from that of one initiated
with 10* bacteria, thus illustrating a sensitivity
to this parameter. The choice of mathematical
method is based on several considerations
about the system being studied. For example,
whether the time frame of a study is short or
long, whether the population sizes are large or
small, whether the system has randommness pres-
ent or is strictly determinable, and/or the types
of questions being posed about the system all
determine the modeling technique that is most
appropriate.

As in experimentation, modeling research
develops by iterative refinement; thus, the
models can progressively incorporate greater
detail as it becomes available. A criticism of
modeling is that the models are only as good
as the knowledge, data, and assumptions which
they are based on. This point actually highlights
their strength in that specific hypotheses can
be tested and compared. A successful mathe-

matical model will not necessarily answer a
question but instead will pose questions about
the system. It also should suggest experiments
that can be conducted to clarify understanding
of the system. Once a host-pathogen system
can be reliably described with a mathematical
model, it becomes possible to explore the ef-
fects of perturbing elements of the system that
may be problematic, or even impossible, to ad-
dress experimentally. If the predictions of a
mathematical model] are incompatible with ex-
perimental data and the underlying theory, it
proves conclusively that the theory is incom-
plete or faulty. However, if the predictions of
a mathematical model agree with the data, this
represents strong evidence for the correctness
of the theory but does not itself constitute con-
clusive proof of its validity.

Some of the earliest mathematical modeling,
of population growth, was done in 1798 by
Malthus. The simple idea he used was that of
exponential growth. Exponential-growth
models assume that the rate of change of a pop-
ulation at time ¢, namely, P(f), is proportional
to itself, and this can be represented mathe-
matically as -

dp(t)
dt

where k is the growth rate constant of that
change. The mathematical solution to this dif-
ferential equation, where P, represents the ini-
tial population size, is P(f) = Pyé®. The graph
of this function is shown on a log scale in Fig.
1B.

Although Malthus was attempting at the
time to predict how the human population was
growing, this proportionality assumption could
be applied to other populations, such as those
of bacteria. Of course for any population, this
model of exponential growth cannot hold true
over along time frame. For example, the actual
growth curve of bacteria is given in Fig. 1A.
Thus, the model should be modified to include
greater complexity about the system to better
capture known dynamics. This modification
elaborates a key step in the modeling pro-
cesses—that of iteration. Finer as well as

kP(t) 1)
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FIGURE 1 (A) Classical complete
growth curve for bacteria. (B) Model
of exponential growth phase only. (C)
Model of exponential and stationary
phases of growth.
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broader details can be included in the system
to better capture its behavior. To that end, in
our example of population growth, we con-
sider the concept of a population carrying ca-
pacity, defined as K. This is a general term that
can encompass various elements affecting the
growth of the population. For example, con-
sider the situation of bacteria growing in cul-
ture. These bacteria are limited by, among
other things, the volume of the culture (which
could moderate toxic effects) as well as the
availability of oxygen and nutrients in the me-
dium (which could account for competition
between bacteria). The parameter K would
then be a measure of these elements in the par-
ticular experimental system. To introduce
these ideas mathematically, we multiply the ex-
isting model, equation 1, by aterm, 1 — (P/K),
as follows:

d
By -2 @
= kp(t) — E&PI(J_))z

Notice that the growth term remains the
same as before (i.e., kP), but now the carrying
capacity, K, and interaction between bacteria,
P2, both inhibit that growth (via the minus
sign). The mathematical solution of the differ-
ential equation in equation 2 is not as tractable
as our first model (equation 1); this is due to
the now nonlinear nature of the equation (i.e.,
the P? term). The graph of the solution func-
tion can, however, be obtained through com-
puter simulation and is given in Fig. 1C. No-
tice that through this simple modification to
the system we are able to predict both the
growth and stationary phases of the well-
known bacterial growth curve. To fully cap-
ture all the stages (including lag and death)
shown in Fig. 1A, we would again have to
modify the model. While the equations can
accurately trace the bacterial growth curve,
they are not yet useful as models to understand
growth, because the parameters k and K were
not chosen as functions of basic biological
mechanisms. This could be improved, how-
ever, by expressing k as a function of nutrient

concentration, temperature, rates of nutrient
uptake, etc., and K as a function of the accu-
mulation of toxic metabolites, oxygen concen-
tration, etc.

Testing and validation are other elements of
the modeling process. A key method for ad-
dressing these lies in the comparison of the
model output with experimental and/or clini-
cal data. The typical goal of the modeling
method is to determine if the assumptions
about the interactions of the elements of the
system lead to the dynamics seen either clini-
cally or experimentally. This would then indi-
cate that the interactions included in the model
sufficiently capture some of the key biological
dynamics. It should be noted that many times
if data are not available with which to test the
model, the model itself can suggest which ex-
periments are needed.

No other, modeling of population growth
was done until the mid- to late 20th century.
Recently, models of host interactions with mi-
crobes have begun to appear, including rela-
tively few models that explore bacterium-host-
level interactions (9, 11, 26, 27, 38, 39, 50, 51).
We will discuss in detail below the key findings
of some of these models. The models by Lip-
sitch and Levin (50, 51) focus on antimicrobial
chemotherapy, while the one by Gordon and
Riley (27) is a first work on urinary tract bacte-
rial infections. Two other models by Antia et
al. (7, 8) explored mycoparasite immune dy-
namics. The first of these (8) considered the
dynamics of parasites during acute infections.
The model incorporates a generic population
of parasites together with an immune response.
The investigators assumed that the virulence of
the organism is proportional to its growth rate
in the host. Their results indicated that optimal
transmission of parasites would result if the par-
asite had an intermediate rate of growth (not
high as in Escherichia coli or low as in M. tubercu-
losis), and they argue that this would result in
the evolution and maintenance of an interme-
diate level of parasite virulence. Their second
model (7) considered a different set of hy-
potheses for the dynamics of persistent myco-
bacterial infections. This model predicted that
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the initial persistence of the parasite may be
achieved by very-slow-growing parasites or by
parasites having a refuge that is inaccessible to
the immune response. They also suggested that
escape from immune control at a later time
might be a consequence of two processes: anti-
gen deletion of T cells in the thymus and the
presence of a limit to the maximal number of
divisions a T cell can undergo (i.e., a “Hayflick
limit”). In their scenario, the persistent parasite
antigens prevent the generation of new para-
site-specific cells from the thymus and the ex-
isting parasite-specific cells are eventually elim-
inated as they reach the Hayflick limit.

Epidemic models of infectious diseases
have been developed since the middle of the
1900s. Hundreds of mathematical models
have been published exploring the effects of
both bacterial and viral pathogens on different
subgroups of human populations. Many of
the results have defined paradigms in epide-
miology, such as the notion of a core popula-
tion in sexually transmitted diseases (31) as
well as ways to determine herd immunity
levels for vaccination policies (3). Relating to
persistent bacterial infections, key pathogens
that have been studied are Neisseria gonorrhoeae
(31), M. tuberculosis (13, 14, 16, 17, 58), and
Treponema pallidum (10). Such important issues
as drug resistance, rate of spread of infection,
trends of the epidemics, and the effects of
treatment and vaccination all have been in-
sightfully addressed through these modeling
approaches.

Models of persistent viral infections,
namely, human immunodeficiency virus
(HIV)-host models, also have a successful re-
cent history. Many of the key results that have
shaped our understanding of the T-cell and
viral dynamics in HIV disease have come from
mathematical modeling approaches (32, 68,
75). Many others have provided insight into
HIV-immune system dynamics as well as dis-
ease progression (1, 4—6, 40—46, 54, 55, 63, 64,
67). For example, a recent model developed by
one of us (D.E.K.) examined the role of the
thymus in pediatric HIV type 1 infection (41).

Until this work, there was no clear explanation
for the different disease progressions in pediat-
ric versus adult HIV infections. The model was
able to show that infection in the thymus not
only can supplement peripheral infection but
can help explain the faster progression in pedi-
atric cases, as well as the early and high viral
burden. This is based on the fact that the thy-
mus is most active in children and involutes in
adulthood. Subsequent clinical data have con-
firmed that the thymus does play a key role
(60).

COLONIZATION BY BACTERIA IN
THE LARGE INTESTINE

Two studies by one of us (R.F.) lend them-
selves to illustrating that some problems in per-
sistent infections (or, for that matter, in any
area of microbiology) can be studied most ef-
fectively by integrating experimental or clinical
observations with mathematical modeling. In
the following discussion, we demonstrate some
of the unique contributions mathematical
modeling can make to the study of complex
problems in host-microbe interactions. Space
does not permit a detailed recounting of the
experimental details of each investigation;
these are available, however, in the original
publications (23, 25, 26).”

The indigenous microflora of the mamma-
lian large intestine is a stable ecosystem, com-
prising more than 400 different kinds of bacte-
ria, most of them strict anaerobes. The study
of the indigenous microflora represents a sub-
specialty of ecology—the science that consid-
ers the relations and interactions of organisms
with their environment and with each other.
The microflora is usually in the climax stage
of ecological succession, meaning that it will
prevent colonization by exogenous bacteria,
including potential pathogens, entering from
the environment. Because of this colonization
resistance, the microflora forms a host defense
mechanism in the intestine that is even more
effective than the much better understood im-
munological mechanisms. Colonization is the
first step in the pathogenesis of persistent (as
well as most other) infections, and for this rea-
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son, insight into the principles underlying col-
onization by the indigenous flora is a necessary
step toward an eventual understanding of the
main topic of this volume. In the absence of a
generally accepted definition, we define colo-
nization here as the state in which the popula-
tion size of the colonizing microorganism in
(or on) the host remains constant, i.e., when
the number of microorganisms that are killed
or otherwise removed from a given site is pre-
cisely compensated for by multiplication of the
remaining microorganisms.

Colonization of the large intestine by several
hundred different kinds of bacteria is obviously
a complex process involving many parameters,
such as microbial multiplication rates, nutrient
concentration, rates of adhesion to the gut wall,
rate of removal by intestinal peristalsis, etc.
Critical to the performance of natural ecosys-
tems is the manner in which these various ele-
ments interact. Such interactions are usually
difficult to appreciate when the individual mi-
crobial populations, and the ecological mecha-
nisms controlling them, are studied in isolation
rather than under the physiological and ecolog-
ical conditions existing in a complex environ-
ment harboring these diverse populations. For
example, under the different conditions pre-
vailing in various natural environments, such
as the lumen or the wall of the large intestine,
a parameter that is potentially able to control
the population size of an indigenous bacterium
may be quantitatively most important or it may
be partially or totally eclipsed in effectiveness
by other mechanisms. For this reason, coloni-
zation is still imperfectly understood, with most
investigators studying individual mechanisms.

In the first study to be discussed, we used
an in vitro model as well as a mathematical
model. The in vitro model was an anaerobic
continuous-flow (CF) culture of the entire
flora of a mouse cecum. Such a culture had
been shown to duplicate bacterial interactions
as they occur in the mouse large intestine (23).
The mathematical model of this system made
the following assumptions.

1. A resident strain of E. coli colonizes the
large intestine (or CF culture). An invader
strain is ingested once, and in large numbers.

2. Resident and invaders have exactly the
same properties.

3. Both strains compete for the same adhe-
sion sites on the wall of the intestine or CF
culture.

4. Offspring of adherent strains occupy ad-
ditional sites or, when most sites are filled, are
shed into the lumen.

5. Adhesion is reversible, and adherent bac-
teria are slowly shed into the lumen.

6. Both resident and invader strains com-
pete for the same limiting nutrient. (Thus, the
relations between growth rates and limiting-
nutrient concentrations were modeled by clas-'
sical Monod kinetics.)

In a typical experiment, such as that shown
in Fig. 2, normal mice were inoculated with a
culture of the E. coli invader strain (marked
with streptomycin resistance). Inoculation was
directly into the stomach by means of a blunt
feeding needle. At intervals thereafter, the ani-
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FIGURE 2 Passage of E. coli invaders through
mouse cecum. The symbols represent experimental
data: the circles are the bacteria suspended in the
lumen, and the triangles are the adherent population.
The curves represent the best-fit estimates generated
by the mathematical model for each of the two experi-
mental populations. (Reprinted from Microecology and
Therapy [25] with permission from publisher.)
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mals were euthanized and the number of in-
vaders in the lumen or adherent to the wall of
the large intestine was determined by culture
of the homogenized specimens. In Fig. 2, these
experimental data are represented by symbols.
The mathematical model of this system was
also employed. The model system was solved,
and its output was run through a computer
program that incrementally varied the param-
eters of interest (e.g., the rate constants of adhe-
sion and elution) until an optimal fit to the data
was obtained (shown by the curves in Fig. 2).

The parameter estimates thus obtained (e.g.,
the rate constants of adhesion and elution, flow
through the system, multiplication, etc.) were
then incorporated into the mathematical
model. The output of the model was then stud-
ied to answer some of the original questions
we posed. For example, the major feature of
the indigenous flora is that it confers coloniza-
tion resistance. This is seen in Fig. 2, where
the population size of the invaders decreases
without their ever being able to colonize (i.e.,
to achieve a stable population size). This is in
spite of the fact that the resident E. coli bacteria
in these experiments (not shown) formed stable
populations (which is part of the definition of
a normal mouse). In light of the importance
of this feature for human and animal health,
numerous hypotheses have been proposed over
the past decades to explain the elimination of
invaders by the indigenous flora, e.g., the pro-
duction of toxic substances or competition for
nutrients or for adhesion sites. Unfortunately,
none of these hypotheses were able to account
for the observation that whatever mechanism
caused the invaders to be eliminated had no
effect on a physiologically identical resident.
The explanations furnished by the mathemati-
cal model are shown in Fig. 3 (top).

As may be seen in Fig. 3, when an invader
strain is introduced at the 50-h mark, it is elimi-
nated rapidly from the mouse intestine. This is
in spite of the fact that the rate of elimination
of bacteria from the large intestine is lower than
the optimal growth rate of the bacteria. In
other words, in the absence of an indigenous
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FIGURE 3 (Top) Prediction by the mathematical
model of the fate of an E. coli strain that invades the
large intestine of an animal that already harbors an ad-
herent E. coli resident strain. (Bottom) Concentration
of limiting nutrient in the system. (Reprinted from
reference 24 with permission.)

flora, the invader strain can form large stable
populations in the lumen, even without adher-
ence to the gut wall. Moréover, as mentioned
above, resident and invader strains have the
same properties (in paired experiments in mice
one can exchange the strains used as residents
and invaders without changing the finding that
it is the invader that is always eliminated). Why
then is the invader strain at such a striking dis-
advantage? The mathematical model shows
that the large number of invaders causes a tem-
porary decrease in the concentration of the
limiting nutrient (Fig. 3, bottom), but when
the nutrient concentration quickly returns to
normal, the invader population is still decreas-
ing. The mathematical model furnishes an ex-
planation for this phenomenon. In a CF cul-
ture, or the large intestine, a large portion of
the resident strain adheres to the wall. In the
adherent state, its rate of elimination by the
flow of nutrient through the gut or through
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the CF culture is lower than that of bacteria
suspended in the lumen. Consequently, the
growth rate that an adherent strain must
achieve in order to maintain a constant popula-
tion (i.e., to have a growth rate equal to its
rate of elimination) must be lower than that
required for a suspended, nonadherent popula-
tion. According to classical CF culture theory,
the concentration of limiting nutrient that will
establish itself in the culture will be exactly that
which will allow the resident strain to maintain
a growth rate equal to its rate of elimination.
However, when an-invader strain having the
same properties as the resident invades, it will
initially be suspended in the lumen and, conse-
quently, have a higher rate of elimination. For
this reason it would require a higher concentra-
tion of nutrient to maintain its population at a
constant level. Not finding an adequately high
nutrient concentration, the invader strain will
grow too slowly and will be eliminated. Elimi-
nation will continue until the small remaining
invader population has found adhesion sites and
has subsequently achieved the lower rate of
elimination typical of adherent bacteria (at
about 200 h [Fig. 3]). Consequently, it will then
be able to maintain a constant population at the
prevailing nutrient concentration. The mathe-
matical model indicated that this slow adhesion
was not due to a lack of free adhesion sites but
rather was a function of the relatively low rate
constant of adhesion of the invader strain. In
other words, the rate of adhesion of the invader
was so low that most of its population had al-
ready been eliminated by the time it could form
significantly large adherent populations.

The mathematical model further indicated
that in the absence of adhesion on the part of
the indigenous microflora, there would be no
resistance to colonization by invading bacteria.
Thus, adhesion of bacteria in the large intestine
is not required for colonization because of the
low rate of elimination of contents from this
organ (in contrast to colonization of the small
intestine), but adhesion in the large intestine
is required for the protective function of the
indigenous flora against colonization by invad-
ing bacteria.

This theory was developed with the aid of
mathematical modeling. Was the mathematical
model essential? In retrospect, it is not entirely
impossible that the relationship among adhe-
sion, nutrient concentration, and resistance to
colonization could have been derived through
experimentation alone. However, the constant
guidance obtained through mathematical
modeling made the study much more efficient.

PLASMID TRANSFER AMONG
BACTERIA IN THE LARGE
INTESTINE

The second example to illustrate the role of a
mathematical model is a study of plasmid trans-
fer among bacteria in the large intestine. As in
the first study, it involves CF cultures as in vitro
models, in vivo animal experiments (which
gave essentially similar results), and published
data from human experiments. Genes for drug
resistance arid virulence factors of bacteria are
often located on plasmids, as are sequences in-
serted by ..recombinant DNA techniques.
Plasmids may then transfer to other bacteria,
thereby increasing the genetic complements of
their new host microorganisms. When
plasmids specify resistance to antibiotics or vir-
ulence factors, there is a strong possibility that
plasmid-bearing bacteria may transfer such ge-
netic components in vivo to normally sapro-
phytic members of the indigenous flora of the
large intestine, with potentially disastrous re-
sults. Because of this, a constant stream of stud-
ies concerning plasmid transfers in vitro and in
vivo were published until about the mid-
1980s. The resulting conclusions were consis-
tent but rather confusing. Nevertheless, inter-
pretation of that literature clearly permits the
following generalizations to be made. Even
among pairs of bacteria that readily permit
plasmid transfers in vitro, very little or no
plasmid transfer occurs in the normal gut, i.e.,
one that is colonized by an undisturbed mi-
croflora. In contrast, when the microflora is
absent, as in germfree or newborn animals, or
when it is incomplete or disturbed, as in the
very young or in antibiotic-treated animals,
then plasmid transfer can be observed as readily
as during in vitro matings.
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The fact that a normal intestine does not
readily permit plasmid transfer has given rise to
numerous speculations about the reason, such
as that inhibitors of plasmid transfer are pro-
duced by organisms of the indigenous mi-
croflora, especially short-chain fatty acids; that
the anaerobic conditions prevailing in the large
intestine may be nonconducive; that the
growth phases of donor and recipient bacteria
may be different; and that the inherent effi-
ciency with which potential recipients can ac-
cept a plasmid, the demonstrable negative ef-
fect of some plasmids on the growth rate of
their host bacteria, and fragmentation or segre-
gation of the plasmid in vivo are all relevant
(see reference 26 for a review and further refer-
ences). Contradictory experimental results
made it impossible to make definitive choices
among these various hypotheses. The major
obstacle to progress was the lack of a rational
method of describing the fertility of a given
pair of donor and recipient strains for a given
plasmid. A major step forward was made by
Levin and Rice (47), who developed a mathe-
matical model based on mass-action kinetics
and determined the transfer rate constants for
various plasmids in mixed static and CF cul-
tures containing only the recipient and donor
strains. The transfer rate constant (7y) was then
taken by these authors as a measure of the fertil-
ity of a given mating. Thus, the transfer rate
constant, Y;, was determined as dNu(f)/dt =
Y1 N, () N(£), with Ni(f) denoting the concen~
tration of transconjugants, N,(f) representing
the concentration of the original donors, and
N(t) being the concentration of recipient bac-
teria. In the pure-culture experiments by Levin
et al. (48), plasmid transfer occurred quite rap-
idly, so that these authors could neglect the
contribution from recent transconjugants. In
contrast, transfers in the presence of the indige-
nous microflora were slow, and the contribu-
tion of recent transconjugants became signifi-
cant, That was particularly true with those
plasmids whose fertility is increased for a few
generations after transfer. Accordingly, a sec-
ond transfer rate constant was defined by us
(24) as AN()/dt = yaN«(£)N(t). The concen-
tration of transconjugants in a CF culture of

mouse intestinal flora or in the mouse gut itself
was then described as a combination of the two
models, namely, dN«(t)/dt = v N, ()N(t) +

’YzN*(t)N(t) + (l'l* - p)N*(t), with l'l* repre-
senting the rate constant of multiplication of
the transconjugants and p representing the flow
rate of contents through the CF culture or the
gut.

The mathematical-modeling experiments
were conducted in a manner analogous to the
one described above, and the best-fit transfer
rate constants were determined. This model
was not very efficient in matching the experi-
mental data points to those calculated. Much
better results were obtained when additional
terms were introduced to account for the
depression of fertility of transconjugants for a
few generations after transfer of the plasmid,
the loss of donor population to transconjugants,
and the segregation of the plasmids. In a total
of 68 experiments in CF cultures and 5 in vivo
experiments in the mouse gut, the most sur-
prising result™was that fertility, defined above
as the transfer rate constants for a given mating,
was not appreciably different in CF cultures
free of indigenous flora, in CF cultures of nor-
mal mouse flora, and in normal mice. These
results imply that the environment of the gut,
contrary to common intuitive assumptions, did
not impair plasmid transfer at all. The low
plasmid transfer rates in the gut were entirely
due to the kinetics of the gut environment, i.e.,
low concentrations of donors and/or recipients.
As afinal test, data published by E. S. Anderson
(2) on human volunteers were inserted into the
mathematical model (Fig. 4). Anderson had fed
plasmid-bearing E. coli bacteria to volunteers
and was able to recover transtonjugants only
on the first day after ingestion of the donor
strain by the volunteers. Our model shows that
this would be expected if transfer in the human
gut were analogous to that in the mouse or in
CF cultures of mouse flora.

The sensitivity of the culture method em-
ployed by Anderson was 10 bacteria per ml (or
g) of feces, a concentration which was found
only once, on day 1. For subsequent days, the
mathematical model postulated lower numbers



88 M KIRSCHNER AND FRETER

LOG NO OF BACTERIA PER ML

TRARNS
CONJUGANTS

0 40 80 120 160
HOURS

FIGURE 4 Modeling of plasmid transfer in the
human gut, based on data published by Anderson (2).
The symbols represent Anderson’s data; the lines were
calculated by the mathematical models based on pa-
rameters derived from computer-generated best-fit es-
timates for mice and from CF cultures of mouse intes-
tinal floras. (Reprinted from reference 26 with
permission.)

of transconjugants in the stool. These were not
detected by the culture methods used, prompt-
ing the earlier authors to assume that all trans-
conjugants had disappeared. This and other re-
constructions of human experiments reported
in the literature are consistent with the conclu-
sion that the quantitative aspects of fertility and
plasmid transfer in the human gut are similar
to those in our mice and CF cultures. It appears
that plasmid transfer occurs consistently in the
human gut but that the resulting transconju-
gant populations are too small to be detected
with the culture methods available to earlier
investigators.

The latter study is an example where the
availability of a mathematical model was a nec-
essary condition for success. There was no

other way to have arrived at the meaningful
parameters and the transfer rate constants with-
out the mathematical model or the computer
to perform the tedious calculations.

DYNAMICS OF H. PYLORI
COLONIZATION

H. pylori is a bacterial pathogen of the gastroin-
testinal tract that persists for decades. H. pylon
induces chronic gastric inflammation that re-
sults in peptic ulcer disease or gastric cancer in
a small set of infected persons (29). H. pylori
is tropic for the acid-rich stomach, which is
essentially sterile, and the immune response,
although present (22), appears to be ineffective
(19). A key question, then, is how can H. pylori
colonize this environment in the face of peri-
stalsis and very low pH?

To address this issue, we posed a regulatory
feedback system based on both bacterial and
host characteristics as a mechanism enabling H.
pylori to colonize. We then created a mathe-
matical model to explore this theoretical con-
struct. It indicates that the proposed feedback
network produces the observed colonization as
well as ruling out other conceptual models of
persistence (39). A summary of the modeling
results is presented below.

Model of Colonization and Persistence
Adherence is a virulence attribute for many
pathogenic bacteria, and in particular, for gas-
trointestinal pathogens that must evade peri-
stalsis or sloughing. For H. pylori, adherence
plays a key role in survival, since the mucus
layer in which most H. pylori organisms reside
is washed away multiple times per day (62). H.
pylori adheres to the gastric’ epithelium lining
the lower stomach and forms adherence pedes-
tals (30, 73). These epithelial cells are also
sloughed, although at a lower rate than mucus
is shed (49). We assume that the adherent phe-
notype is more advantageous than the free-
swimming phenotype because of proximity of
the adherent bacteria to nutrients, a lower
washout rate, and the fact that the pH at the
epithelial cells is in the range for bacterial
growth. Thus, the model incorporates migra-
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tion of H. pylori from the mucus compartment
to adhere to the cell surface. Since the adherent
H. pylori cells divide, and the carrying capacity
of the tissue is most likely near saturation, most
of the new daughter cells must migrate back
into the mucus layer. Thus, in our model of
H. pylori colonization, the small portion of the
bacterial population that adheres to the epithe-
lial cells is crucial to persistence. In comparing
these ideas with the situation in the colon, it
has been assumed that the indigenous colonic
bacteria associate with the mucus gel and epi-
thelium; however, they do not serve as a reser-
voir for the mucus-living bacteria, as is speci-
fied in the H. pylori model. Further, microbial
colonization of the colon and stomach is dis-
similar in environmental pH, nutrient sources,
and interspecies competition, among other fac-
tors. Thus, this model of colonization is unique
to H. pylori.

Recent estimates of the population size of
colonizing H. pylori in the mucus gel range
from 10* to 10° per mm? (62). In the same
study, histological assays indicated that the H.
pylori population on the epithelial layer ranges
from 10! to 10® per mm>. Thus, we assume
that free-living and adherent H. pylori cells rep-
resent 99 and 1% of the H. pylori populations,
respectively. This high ratio of mucus-living
to adherent bacteria, although characteristic, is
not necessary for colonization, as low concen-
trations of H. pylori may be present in the
mucus during persistence. We show with our
model that it is the adherent population that
serves to sustain colonization by acting as a core
population (where a small proportion of the
population serves to sustain an epidemic, as in
sexually transmitted diseases) and that the
mucus population acts both to replenish the
adherent population and for transmission to
new hosts.

The Theoretical Construct

To describe the complex interactions between
H. pylori and the host, we propose a model
in which these colonizing organisms together
with the host regulate their responses in both

a positive and a negative autoregulatory fashion
(Fig. 5).

In this model, bacteria release proinflamma-
tory effectors (such as urease), increasing the
pH of the local environment and provoking a
host response that leads to tissue damage (via
inflammation) with subsequent nutrient re-
lease; the bacteria then grow in response to this
growth-limiting nutrient. However, in the
long term, uncontrolled inflammation may be
deleterious for H. pylori, since its niche would
be lost (33, 36). Experimental observation indi-
cates that H. pylori surface molecules, such as
lipopolysaccharide, have low proinflammatory
activities (57). Thus, we assume that H. pylon
can down-regulate effector production. Re-
leased host nutrients may also activate H. pylon
signal transduction pathways that repress syn-
thesis of bacterial proinflammatory effectors
(12) and nitrogen repression (20) of cloned H.
pylori urease; this is consistent with our hypoth-
esis, since urease and its products have proin-
flammatory activities (52, 72). Inflammation
may be damaging when infection cannot be
eradicated, leading to impairment of tissue
structure and function. Experimental data
show that the cellular response to H. pylori in-
fection appears to be suppressed even in the
early stages of colonizationi (37, 70). The ele-
ments of this highly regulated feedback model
are summarized in a schematic diagram in Fig.
5.

Using this proposed feedback model for H.
pyloni colonization, we created a mathematical
model that examined these interactions and de-
scribed the sensitivity of the system to changes
of the interaction rates.

THE MATHEMATICAL MODEL

We define four populations and describe their
interactions by using differential equations that
monitor their rates of change, where M(¢) is
the concentration of H. pylori cells in the mucus
gel per cubic millimeter at any time and A(¢)
is the concentration of H. pylori cells adherent
to the epithelial cells per cubic millimeter. We
also define N(#), representing the nutrient con-
centration (assumed proportional to inflamma-
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FIGURE 5 Theoretical model describing interactions of H. pylori with the host, incorporating
positive and negative feedback regulation. Effectors released by H. pylori interact with the mucosa
and induce inflammation. Inflammation leads to the release of nutrients that are taken up by H.
pylori, allowing replication and further release of effectors. The bacteria sense inflammation indica-
tors and down-regulate effector production, while the host also down-regulates the inflammatory
response. The interactions within this system are governed by the four parameters 7, C, §, and
7, which are not presently measurable. Therefore, mathematical modeling can play the unique
role of elaborating these host-pathogen interactions. (Adapted from reference 1.)

tion), and E(¢), the total effector concentration
released by H. pylori that leads to inflammation
and nutrient release. A schematic representa-

tion of the mathematical model is given in Fig.
6.

PARAMETER ESTIMATION

To complete the development of a mathemati-
cal model, we must define values for the pa-
rameters and initial conditions for the rate con-~
stants in the model. This is a key place where
experimental results are incorporated into the
models. We chose millimeters™ as the units
marking the volume of population concentra-
tions and measured time in days. Note that the
model is robust with small changes in the

choices of these parameter values. We illustrate
the process of estimation for some of the key
parameters in the model. As mentioned above,
during colonization H. pylori density ranges
from 10* to 10° per mm? in the mucus gel and
from 10! to 10° per mm® on the epithelial layer
(62); thus, we select the initial population size
of mucus-living H. pylori to be 10°/ml and that
of the adherent bacteria to be 500/ml. Epithe-
lial cells slough every 2 to 3 days (37); thus,
the rate (W) is 0.3/day. Estimating that the
mucus sheds at a rate at least two to three times
higher than that of the epithelial cells, pas is
0.85/day. The growth of H. pyloni can be deter-
mined from the doubling time based on logistic
growth (see equation 2). If we assume the in
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FIGURE 6 Mathematical model describing the interaction of H. pylon and host. Mucosal bacteria, M(t), grow
proportionally to nutrient at rate 1gs and are cleared continuously by peristalsis at the rate p,. They also migrate
to the adherent sites [at rate a(K — A(f))] and gain in numbers due to migration from the adherent sites (at rate
8). Adherent bacteria, A(f), follow a similar dynamic, with opposite migration. Nutrients, N(¢), are produced
proportionally to effector amounts (at rate ) and are taken up by the adherent and mucosal populations (at rates
&m and gy, respectively). Effectors are produced by both mucosal and adherent bacteria [at rate TC/T + N(1)]

and degrade nonspecifically at rate .

vivo doubling time of H. pyloriis 1 h (D =
0.0416 day), then using the formula r = In
2/D, the growth rate (r) is 16.66/day.

The four parameters, C, B, 1, and 7, defined
in the feedback system (Fig. 5) play a key role
in the dynamics of the system; values for these
parameters are not presently known and cannot
be experimentally measured. Except for the pa-
rameter T, they are each bifurcation parameters,
i.e., changes in their values can cause significant
change in the resulting dynamics. This is not
surprising, since a fine-tuned feedback system
may be crucial for the unprecedented survival
of H. pylori in the human stomach.

To study the model, we numerically solve
the complex mathematical system that de-
scribes the scheme in Fig. 6; the time-series

solution, showing the system immediately
going into steady state, is shown in Fig. 7.
Thus, the bacteria have completely colonized
the system and are in equilibrium (c.f. reference
39).

This model can now be tested for a variety
of different influences, such as competition be-
tween strains, host perturbations, and other bi-
ological variations. For example, we study the
question of competition between different H.
pylori strains. Clinical studies indicate that hu-
mans may be simultaneously colonized with
(at least) two different strains of H. pylori. For
example, cagA* and mutant cagA (34, 74) have
been shown to be associated with different out-
comes of infection (34, 74). We found with
the mathematical model of these interactions
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FIGURE7 Simulation of colonization model showing H. pylofi persistence. The four popula- |
tions shown are the mucosal bacteria, the adherent bacteria, and the effector and nutrient
concentrations. Notice that within a year the populations enter a steady-state in which they

will remain indefinitely unless there is some perturbation in the system.

that only where genotypic differences did not
alter the apparent phenotype of the strains with
respect to growth, acquisition of nutrients, etc.
(i.e., differences in one or more of the param-
eters), could there be persistent coexistence. If
the phenotypes varied to arny measurable de-
gree based on known characteristics, then co-
existence was only temporary and eventually
the strain with the advantage competitively ex-
cluded the other over a time frame that was
inversely correlated with the magnitude of the
phenotypic difference (11, 39). Therefore, a
clinical biopsy may reveal the presence of mul-
tiple strains within a given host; however, their
concentration levels and long-term existence
patterns may be very different.

The Effect of a Developing Host
Response on Colonization

The system discussed above was designed to
model the steady-state condition that exists for

the majority of H. pylori cells resident in the
human stomach, where we assumed that any
host response was already in a down-regulated
steady state. During infection, however, there
are a variety of host responses to H. pylori. For
example, there are both humoral and cellular
immune responses (19, 22), although both ap-
pear to be ineffective in clearing the bacteria
and preventing colonization in most individu-
als. Our present model of colonization does not
account for the initial events in infection, just
after an inoculum is introduced into a naive
host. In a second study (11), we examined the
initial events by including a generalized host
response.

To elaborate the early dynamics of H. pylori
colonization, we developed a new model that
incorporates the role of the developing host
response. The model allows us to examine both
the initial events following H. pylori introduc-
tion into a naive host and the development of

¢
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colonization. This model also allows us to pre-
dict the effects of host perturbations on the H.
pylori populations and the resulting conse-
quences. Incorporation of the dynamic host re-
sponse into a model of H. pylori colonization
is critical if we are to understand the initial fea-
tures of the interactions between microbe and
host, as well as the phenomena that permit per-
sistence to develop. Thus, we extended our
earlier model to incorporate characteristics of
the host-microbial interaction that had not
been addressed previously. In the new model,
the major role of the host response is to down-
regulate tissue inflammation and its exudate
into the gastric lumen, which we have assumed
to be the major nutrient source for H. pylori.
We were able to show that the strength of the
host response plays a key role in deciding
whether persistent infection can be established.
We describe a new population reflecting the
intensity of the host response to H. pylori (Hg)
(11). The growth rate of the host response is
reflected by ky. The host response initially
grows as a function of the bacterial population,
but this growth has a limited capacity, which
is represented by k, (69). In this model, we
assume that adherent H. pylori, (A), will have
a greater impact on the host response than will
the mucus-living H. pylori, (M), due to its
proximity to host epithelial cells. The new
equation is
dHg(t
D (1) + k) (b — Hr@). )

The equation marking the change in nu-
trients (proportional to inflammation) in the
earlier model is now altered to reflect the host’s
developing response to introduction of H. py-
lori. The source of nutrients now represents the
proportional relationship between effectors, E,
and the limiting effects of the host response,
Hp: if Hg is small, the term acts as it did in
the previous model, but if it is large, then the
production rate of the nutrients is limited.

Exploring the Host Response Model
If we solve the new system of equations to-
gether with the new initial starting values that

reflect beginning at conditions reflecting the
inoculum, we see that the model yields two
qualitatively different outcomes (Fig. 8). For
small values of ks, the host response capacity,
the model predicts that the system will develop
into persistent colonization (Fig. 8A). For large
values of k,, the model predicts the system will
undergo transient colonization and the bacte-
rial population will eventually be cleared (Fig.
8B). Notice in Fig. 8A and B how different
values for the parameter k, alter the host re-
sponse curves. This indicates that under certain
host responses, the bacteria either can be
cleared or will establish persistence. This model
can also be used to test how other variations
in the host response will affect the predicted
model outcomes.

DYNAMICS OF THE HOST IMMUNE
RESPONSE AND M. TUBERCULOSIS

Tuberculosis (TB) has been a leading cause of
death in the world for centuries. Today it re-
mains the number one cause of death by infec-
tious disease worldwide—3.1 million deaths
per year. TB is not only one of our oldest mi-
crobial disease enemies, it remains one of the
most formidable: an estimated one-third of the
world population has latent TB. Thus, there is
a great need to elucidate the mechanisms of
TB progression. Key issues are to understand
the immunologic mechanisms that are in-
volved in establishing and maintaining latent
infection (resolution) and those that lead to
reactivation of M. tuberculosis and development
of active disease. There exists an enormous
body of literature regarding the individual ele-
ments of both pathogenic mechanisms and the
immune response to M. tuberculosis; however,
little is known about combined interactions or
the balance among these processes. This lack
of knowledge is reflected in the limited number
of antibiotic therapies that are currently effec-
tive against multidrug-resistant strains. The
therapy limitations, coupled with the emer-
gence of multidrug resistance, make the devel-
opment of alternative therapeutic approaches
even more pressing. Preliminary efforts in one
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of our laboratories (D.E.K.) focus on elucidat-
ing the mechanisms of disease progression
through investigation of the regulation of the
immune response to M. tuberculosis infection.
Our long-term goal is to explain the establish-
ment and maintenance of latency in M. tubercu-
losis infection. TB is a unique disease in that
90% of persons establish a latent infection;
however, 5% progress rapidly and 5% progress
slowly to active disease over their lifetimes (18,
71). Our particular focus is to predict why
some individuals clear M. tuberculosis infection
while others develop latent infection essentially

this larger host response causes a
timely elimination of the bacteria.

for life, and why still others develop active dis-
ease, via either a fast or slow disease course.
The immune mechanisms that are involved in
these alternative disease trajectories are crucial,
and these mechanisms are the focus of our pres-
ent and continuing work.

‘We have shown above the detailed elements
involved in various approaches to modeling.
Therefore, in the interest of brevity and be-
cause this work is still very much in progress,
we will only outline our preliminary results in
this section.

During infection, immune cells secrete cy-

v
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tokines that modulate the immune response in
both a positive and a negative fashion. Cyto-
kines have been shown to be involved in the
dynamics of M. tuberculosis infection, specifi-
cally by influencing the differentiation of CD4*
T cells into either TH1 or TH2 cells. Mosmann
and colleagues (56) discovered that, upon stim-
ulation, CD4* T cells further differentiate into
TH1 and TH2 subsets that are distinguished on
the basis of the cytokine profiles they produce.
TH1 cells are not only responsible for stimulat-
ing macrophages to engulf and kill foreign par-
ticles but also for activating CD8* T cells,
which then differentiate into cytotoxic T lym-
phocytes that can kill infected cells directly.
TH2 cells down-regulate the cell-mediated re-
sponse while up-regulating the humoral (anti-
body) response.

Models that qualitatively and quantitatively
characterize the balance of the TH1- and TH2-
type response can be useful in delineating the
mechanisms of disease progression in M. tuber-
culosis infection. During infection, there are
two types of cellular immune responses: an ac-
tivated macrophage response (governed by a
TH1 response), leading to a delayed-type hy-
persensitivity (DTH) reaction that on its own
is not able to effect resolution, and a T-cell-
regulated, macrophage-suppressing response
resulting in the down-regulation of the DTH
reaction (governed by a TH2 response) that
can effect resolution.

Although the events in the immunology and
pathology of M. tuberculosis infection are not
well characterized, numerous factors that regu-
late immune processes have been implicated in
the development of TB. These processes in-
clude cell-pathogen and cell-cell interactions
as well as the production and action of cyto-
kines that facilitate these interactions. In partic-
ular, the progression of disease may depend
upon the dominant cytokine phenotype. The
initiation of a TH1 cytokine response by an
inciting agent may result in a vigorous DTH
response with the expression of gamma inter-
feron (IFN-v) and interleukin 12. An effective
response spearheaded by elevated levels of
TFN-7y usually will clear the inciting agent and

ensure that granuloma formation takes place.
On the other hand, TH2 cytokines result in
a cessation of the TH1 response, which may
ultimately prevent the lung environment from
being destroyed by an overly active DTH re-
sponse. We devised a hypothesis that the stages
of TB depend on the balance of TH1 and TH2
cytokines that are generated during the expres-
sion of disease. We are testing this hypothesis
through mathematical modeling.

Primary TB, the response following the first
exposure to M. tuberculosis, usually develops in
the alveoli of the lung at the peripheral mid-
zone after droplets containing the bacteria are
inhaled. The bacteria are then ingested by resi-
dent alveolar macrophages and begin to multi-
ply (15). These cells are poor at destroying their
occupants because M. tuberculosis has the ability
to prevent the phagosome-lysosome fusion in
insufficiently activated macrophages (53, 59).
Eventually, an infected macrophage either
bursts due to the large number of bacteria mul-
tiplying within or it circulates out through the
lymphatic ducts to the lymph nodes (transport-
ing bacteria and antigen), where the specific
immune response is initiated. Here, CD4* T
cells are activated to become TH1 and TH2
cells. TH1 cells, which are thought to be the
dominant type in the immune response to TB
infection (28), must migrate to the site of infec-
tion, activate macrophages to facilitate killing
the ingested bacteria, orchestrate the DTH re-
sponse, kill (or stimulate cytotoxic T lympho-
cytes to kill) macrophages that are unable to
destroy their ingested bacteria.

Many recent studies explore the role of cy-
tokine profiles in infection with M. tuberculosis
(e.g., references 21, 35, 61, 65, and 66). The
relevant immune responses involve a complex
interplay of cellular immune processes and cy-
tokine mediators. To distinguish among the
cellular immune processes for modeling, we
first define the tissue-damaging, DTH response
that occurs due to IFN-y activation of macro-
phages as dominated by a TH1-type response.
Second, we define the immune response re-
sulting in macrophage deactivation as domi-
nated by a TH2-type response. We are inter-
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FIGURE 9 Our hypothetical cytokine-mediated immune response network in M. tuberculosis infection.
The progression of disease to either active or latent TB may depend on the balance of the TH1 and TH2
cytokines that are generated during the expression of disease.

ested in the interactions between these two
processes and in the balance between them that
allows for the establishment and maintenance
of the latent state. We present a scheme for this
interaction in Fig. 9.

Because we hypothesize that it is the balance
between the TH2-type and the TH1-type im-
mune responses that allows for the establish-
ment of latency in M. tuberculosis infection, we
developed a model of the cytokine control net-
work during infection. In an effort to identify
interactions among the immune mechanisms
that are critical for the establishment of this bal-
ance, we explored the effects of perturbing dif-
ferent factors in the model, including cyto-
kines, T cells, macrophages, and bacteria, and
relevant interactions among these populations.

Our initial results indicate that the TH1-TH2
cytokine response is indeed a key factor in the
different disease trajectories of TB. Thus, ther-
apies that enhance or depress certain aspects
of either response may have potential use for
treating M. tuberculosis infections.
CONCLUDING REMARKS

Although mathematical-modeling approaches
have been widely used in the study of virus-
host interactions, they have been applied less
frequently to the study of bacterium-host inter-
actions. If we consider long-term associations
between bacteria and humans a question of
bacterial ecology, such as persistent infections
or the homeostasis of an indigenous microflora,
it becomes more logical to consider mathe-
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matical approaches to understanding these as-
sociations, as modeling has long been used by
ecologists. .

This chapter reviews studies which illustrate
how complex problems in host-microbe inter-
actions are unlikely to have been solved with-
out mathematical modeling. Very often,
models appear to confirm what the experimen-
talists may already surmise about a system.
Properly understood, however, the model can
be seen as a starting point for designing crucial
experiments to test those assumptions. In cases
when the biological system is experimentally
intractable, a representative mathematical
model may offer the sole means of testing key
hypotheses. On other occasions, a model may
illuminate testable aspects of the system that
had not occurred to the experimentalist.

As we accumulate more and more detailed
data, mainly on the molecular level, through
experimental techniques of increasing sophisti-
cation, it is clear that there is a strong need for
an integrative understanding of the complex
processes of host-pathogen interactions. Math-
ematical modeling offers a unique method
for achieving this integration and thus will be
an increasingly important tool in understanding
these processes.
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