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Abstract. In this paper, we develop the framework for the use of the asymmetric mixing func-
tion that allows for a two-sex pair-formation model with self-selection, used in sexually transmitted
diseases. We prove existence and uniqueness of a solution assuming the population distributions are
known.
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1. Introduction. The procedure of who mixes with whom during a sexual en-
counter is a phenomenon which has certainly existed for centuries, but the question
of how this occurs has only recently been posed (cf. [1, 2, 6, 7, 9, 12, 13, 16, 22, 24,
25]). One aspect of the information gained in the answering of this question is that
it can assist epidemiologists in the study of sexually transmitted diseases.

Functions which describe this partner selection process have been developed based
on a characteristic of each individual that would lead them to the pairing. The most
common method of classification has been to put individuals in a class describing their
number of different sexual partners per year. A person (whether male or female) is
placed in the category of r if their desired number of partners is r(> 0). We balance
this with a term ri(t, r), which is the actual number of different partners one has,
given that one is in category r (i represents either male or female). Consequently,
it is necessary to also define the populations where each of these individuals “live,”
namely, Ni(t, r), the sexually active population of category r, of sex i, at time t.1 For
disease modeling, this grouping can also aid in understanding the individual’s risk of
becoming infected with a sexually transmitted disease. This stems from the fact that
data seems to indicate that the risk of becoming infected with a sexually transmitted
disease is highly correlated with the number of different sexual partners one has [21,
26].
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1Traditionally, the function ri(t, r) depended only on the time and the class, r. However, it
has been recently noted by Castillo-Chavez [11, 18] that this may not be completely correct. We
generally assume that ri(t, r) > 0 for all r regardless of whether or not the population Ni(t, r) > 0.
In the cases where r is large, for example, and Ni(t, r) = 0 or Ni(t, r) is too small, it is more precise
to have considered ri(t, r) as functions of not only t and r, but also of the population sizes. To the

end, consider the functions Mi(t) =
∫∞
0

Ni(t, r)dr, i ∈ {M,F}. Then, more appropriately, ri(t, r) is

actually a function of ri(t, r,Mi(t),Mj(t)) for i, j ∈ {M,F}, i 6= j. In particular, ri(t, r,Mi(t), 0) = 0,
i ∈ {M,F}. For this study, however, we assume the population sizes make sense, and require ri to
be a function of t and r alone.
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For a purely heterosexual population, an S-I-A model has been developed to
describe the spread of AIDS [11, 14, 19, 20] (see Appendix A). Two key ingredients of
this model are the mixing functions ρF and ρM , that describe the way in which people
select partners. These functions are coupled to the S-I-A model through the nonlinear
integral equations (3a)–(3b) (see section 2 below). As a result, an important first step
in the process of determining the well-posedness of the S-I-A model is the solvability
of the equations satisfied by ρF and ρM under the assumption that the functions ri
and Ni are known. The work at hand addresses this problem. Subsequent work will
address the well-posedness of the S-I-A model.

To this end, section 2 introduces the mixing functions, and in section 3 we prove
existence and uniqueness of a solution. In section 4 we discuss an example.

2. Mixing functions: ρF (t, r, s) and ρM(t, r, s). Define the functions ρi(t, r, s)
as the density functions for population i of category r of their partners of category s
of sex j, i 6= j. Many have explored these partner selections and pair formations in
the setting of disease modeling, [5], [7], [8], [10], [15], [18], [23]. In 1991, Busenberg
and Castillo-Chavez [4] gave nine general cases for mixing functions, each arising from
different assumptions. Here we present a few to motivate our choice.

For any one- or two-sex model with heterogeneous activity Blythe and Castillo-
Chavez [3] described mixing functions of the form ρi(t, r, s), i ∈ {M,F}. The idea is

that
∫ s+∆s

s
ρi(t, r, x)dx represents the fraction of partners that a person with activity

r has among individuals with activities in the range [s, s+ ∆s].
For these functions ρi(t, r, s), there are some natural conditions which arise.

Namely,

(1a,b)

∫ ∞

0

ρi(t, r, s)ds = 1, ρi(t, r, s) ≥ 0,

and

ρM (t, r, s)rM (t, r)NM (t, r) = ρF (t, s, r)rF (t, s)NF (t, s),(2a)

where ri(t, r)Ni(t, r) represents the distribution of the total sexually active population
for each category r. Equations (1a) and (2a) clearly imply∫ ∞

0

rM (t, r)NM (t, r)dr =

∫ ∞

0

rF (t, s)NF (t, s)ds.(2b)

Equation (1a) guarantees that the probability density function integrates to 1, so
that the people of category r actually have an average of ri(t, r) different partners
per year. Equation (2a) is a balancing equation stating that the number of partners
with classification s with whom people of class r have sex is the same as the number
of partners with classification r with whom people of class s have sex.

In a single-sex scenario, proportionate mixing is represented as (cf. [3], [10])

ρ(s, r) =
rN(r)∫∞

0
xN(x)dx

.

In [8], Busenberg and Castillo-Chavez present a scheme as well as discuss solv-
ability for a two-sex mixing problem. They show that

ρM (s) =
rF (s)NF (s)∫∞

0
rM (x)NM (x)dx

and ρF (r) =
rM (r)NM (r)∫∞

0
rF (x)NF (x)dx
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are the only separable two-sex mixing functions satisfying conditions (1a,b) and (2a,b).
Hyman and Stanley [15] introduced a modified version of this mixing function,

which is a more general alternative to proportionate mixing, and that differs from
the equations of Castillo-Chavez and Busenberg through multiplication by a function
f(s, r). This function f(s, r) is arbitrary and can aid in fine tuning the behavior of
the mixing.

Expanding the notion of proportionate mixing, we refer to the heterosexual popu-
lation self-selection rule from Stanley in [17], [23], namely, the asymmetric rule, where
only one of the sexes in the pairing does the choosing. If we suppose the females do
the choosing, then

ρF (t, r, s) =
[1− ∫ r

0
ρM (t, s, x)dx]fF (r, s)rM (t, s)NM (t, s)∫∞

0
(1− ∫ r

0
ρM (t, y, u)du)fF (r, y)rM (t, y)NM (t, y)dy

,(3a)

ρM (t, r, s) =
ρF (t, s, r)rF (t, s)NF (t, s)

rM (t, r)NM (t, r)
.(3b)

The idea is as follows. The numerator of the right-hand side of the first expression
comes from multiplying the distribution of females and their male partners, times the
acceptance function fF of male partners of class s for the females of class r, times
the actual number of male partners those females have, times the number of available
males. This is normalized by integrating over all the possible male partners of class
s. Notice that (3b) is simply a restatement of (2a).

The remainder of this work focuses on the solution of the system (1a,b)–(3a,b),
the so-called asymmetric mixing problem.

3. Existence and uniqueness of a solution to the asymmetric mixing
problem. For ease of calculation, we begin by manipulating the expression for the
female infectivity, (3a), by applying condition (1) to replace 1− ∫ r

0
ρM (t, r, x)dx with∫∞

r
ρM (t, r, x)dx. Then, substituting equation (3b) into (3a) yields an integral equa-

tion for ρF (t, r, s), namely,

ρF (t, r, s) =

∫∞
r

ρF (t,x,s)rF (t,x)NF (t,x)dx
rM (t,s)NM (t,s) · fF (r, s)rM (t, s)NM (t, s)∫∞

0

∫∞
r

ρF (t,u,y)rF (t,u)NF (t,u)du
rM (t,y)NM (t,y) fF (r, y)rM (t, y)NM (t, y)dy

.

Canceling like terms and suppressing the time notation (since we require this to hold
for all time) yields

ρF (r, s) =

∫∞
r

ρF (x, s)rF (x)NF (x)dxfF (r, s)∫∞
0

[∫∞
r

ρF (x, y)rF (x)NF (x)dx

]
fF (r, y)dy

.(4)

Define

wi(x) = ri(x)Ni(x) for i = {F,M}.

Then the integral equation (4) becomes

ρF (r, s) =

∫∞
r

ρF (x, s)wF (x)dxfF (r, s)∫∞
0

[∫∞
r

ρF (x, y)wF (x)dx

]
fF (r, y)dy

.(5)
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If we apply equation (1a), namely,
∫∞
0

ρM (r, s)ds = 1, then substituting (3b) for
ρM (r, s) yields ∫ ∞

0

ρF (s, r)wF (s)

wM (r)
ds = 1.

Hence,

wM (s) =

∫ ∞

0

ρF (x, s)wF (x)dx.(6)

It is the solution to the integral equation (5) together with condition (6) that is
explored below.2

Remark. Since ρM (r, s) and fM (r, s) do not appear in (5)–(6), we will simply
write ρ(r, s) and f(r, s) to denote ρF (r, s) and fF (r, s), respectively.

In order to obtain a solution to (5)–(6), it is necessary to impose some reasonable
assumptions on f, wF , and wM .

Assumptions.
(Ai) wM , wF ∈ C1(R+) ∩ L1(R+),
(Aii) f ∈ C1(R2

+) ∩ L∞(R2
+),

(Aiii) wM , wF , f > 0,
(Aiv)

∫∞
0

wM (τ)dτ =
∫∞
0

wF (τ)dτ ,
(Av) lims→∞ wM (s) = 0,
(Avi) For every s > 0 there exists εs > 0 such that f(r, s) ≥ εs for all r > 0.

Conditions (Ai), (Aii), (Aiii), (Av) are not unreasonable, as choices for the functions
wM , wF , and f should satisfy these assumptions. Assumption (Aiv) is simply a re-
statement of (2b), and assumption (Avi) is technical in nature and needed for the
analysis.

Multiply (5) by wF (r) and define U(r, s) =
∫∞
r

ρ(x, s)wF (x)dx. Then for each
fixed s, we have a first-order differential equation in U with respect to r. Since (6)
yields initial data for this differential equation, solving it yields the nonlinear integral
equation

U(r, s) = wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫∞
0
U(y, t)f(y, t)dt

dy

)
.(7)

Symbolically, define X = {U ∈ C(R2
+)|U > 0} and

T (U)(r, s) = wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫∞
0
U(y, t)f(y, t)dt

dy

)
(8)

for each U ∈ X.
Note that the conditions on wM , wF , and f guarantee that T is well defined. In

addition, the following lemma is a simple consequence of (8) and our assumptions.
Lemma 1. If u1, u2 ∈ X with u1 ≥ u2 then T (u1) ≥ T (u2). Furthermore, if

u ∈ X then

0 < T (u)(r, s) ≤ wM (s)

2It should be clear that the solution to this problem is equivalent to solving the asymmetric
mixing problem (1a,b)–(3a,b).
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for all (r, s) ∈ R2
+.

We can also obtain the following result.
Lemma 2. Let U0(r, s) = wM (s) and define

Uk(r, s) = T (Uk−1)(r, s)

for each k = 1, 2, . . . . Then

0 < Uk ≤ Uk−1 ≤ · · · ≤ U1 ≤ U0 = wM .

Furthermore, if we define

V (r, s) = wM (s) exp

(
−
∫ r

0

2f(y, s)wF (y)

Ψ(y)[
∫∞
0

wM (τ)dτ − ∫ r
0
wF (τ)dτ ]

dy

)
,

then

0 < V ≤ Uk ≤ · · · ≤ U1 ≤ U0 = wM .

Proof. Define a sequence {U i}∞i=0 ⊆ X as follows. Let U0(r, s) = wM (s) and define
Uk recursively by Uk(r, s) = T (Uk−1)(r, s), k = {1, 2, . . .}. It follows from Lemma 1
(above) that the Uk(r, s) are nested as 0 < Uk ≤ Uk−1 ≤ · · · ≤ U1 ≤ U0 ≤ wM (s).
Also, from the definition of T , we have

Uk(r, s) = wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫∞
0
Uk−1(y, t)f(y, t)dt

dy

)
.

Using the fundamental theorem of calculus, we differentiate to obtain

Ukr (r, s) = Uk(r, s)
(

−f(r, s)wF (r)∫∞
0
Uk−1(r, t)f(r, t)dt

)
.

Replacing Uk(r, s) by Uk−1(r, s) on the right-hand side and integrating both sides
with respect to s yields

∫ ∞

0

Ukr (r, s)

wF (r)
ds ≥ −1, or equivalently,

d

dr

∫ ∞

0

Uk(r, s)ds ≥ −wF (r).

If both sides are integrated with respect to r, the expression becomes∫ ∞

0

Uk(r, s)ds ≥
∫ ∞

0

wM (s)ds−
∫ r

0

wF (τ)dτ.(9)

Then 0<Uk(r, s) ≤wM (s) implies 0 <
∫ b
a
Uk(r, s)ds ≤ ∫ b

a
wM (s)ds for all 0 ≤ a < b.

Furthermore, following directly from (Aiv), there must exist a continuous, positive,
increasing function g(r) satisfying 0 < g(r) <∞, such that

∫ ∞

g(r)

wM (τ)dτ ≤ 1

2

[∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ

]
.
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Combining these observations with (9) yields

1

2

[∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ

]
≤
∫ g(r)

0

Uk(r, s)ds,

since from (9) we have

∫ g(r)

0

Uk(r, s)ds+

∫ ∞

g(r)

Uk(r, s)ds ≥
∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ.

This implies

∫ g(r)

0

Uk(r, s)ds ≥
∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ −
∫ ∞

g(r)

Uk(r, s)ds

≥
∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ − 1

2

[∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ

]

=
1

2

[∫ ∞

0

wM (τ)dτ −
∫ r

0

wF (τ)dτ

]
.

Define Ψ(y) = min0≤t≤g(y) f(y, t). Then for R > 0, there exists an εR > 0 such that
Ψ(r) ≥ εR for all 0 ≤ r ≤ R. If we examine

Uk+1(r, s) = wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫∞
0
Uk(y, t)f(y, t)dt

dy

)
,(10)

then our observations above imply

Uk+1(r, s) ≥ wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫ g(y)
0

Uk(y, t)f(y, t)dt
dy

)
,(11)

≥ wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)

Ψ(y)
∫ g(y)
0

Uk(y, t)dt
dy

)
,

≥ wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)

Ψ(y) 1
2 [
∫∞
0

wM (τ)dτ − ∫ r
0
wF (τ)dτ ]

dy

)
.

This bounds the sequence of Uk(r, s), {k = 1, 2, . . .} away from zero. Namely, we
have

0 < V (r, s) ≤ Uk(r, s) ≤ Uk−1(r, s) ≤ · · · ≤ U1(r, s) ≤ U0(r, s) ≤ wM (s),(12)

where

V (r, s) ≡ wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)

Ψ(y)[12
∫∞
0

wM (τ)dτ − ∫ r
0
wF (τ)dτ ]

dy

)

is clearly a positive continuous function on R2
+.

Lemma 3. Fix R > 0. {Uk} is a convergent sequence in BC([0, R]× [0,∞)).
Proof. If S > 0 and we define W = [0, R] × [0,S], then there exists an εR,S > 0

such that 0 < εR,S ≤ V (r, s) ≤ wM (s) for all r, s ∈ W . Consequently, it follows from
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(8), (10) that {Uk} is bounded in C1(W ). Now, let S1 > 0 such that wM (s) ≤ 1 for all
s ≥ S1. Define W1 = [0, R]× [0,S1]. Then, there is a subsequence {Uk1,j}∞j=1 of {Uk}
which is Cauchy in C(W1). Similarly, there is an S2 > 0 such that wM (s) ≤ 1

2 for all
s ≥ S2 ≥ S1, and there is a subsequence {Uk2,j}∞j=1 of {Uk1,j}∞j=1 which is Cauchy
in C(W2) (W2 = [0, R] × [0,S2]). Inductively, there exists an Sn+1 ≥ Sn such that
wM (s) ≤ 1

n+1 for all s ≥ Sn+1, and there is a subsequence {Ukn+1,j}∞j=1 of {Ukn,j}∞j=1

which is Cauchy in C(Wn+1) (Wn+1 = [0, R] × [0,Sn+1]). Define Û j = Ukj,j for
j = 1, 2, . . . . We will show that {Ûj}∞j=1 is a Cauchy sequence in BC([0, R]× [0,∞)).

To this end, let ε > 0. There exists an n ∈ N such that 1
n < ε. Then, wM (s) ≤ 1

n
for all s ≥ Sn. Since {Ukn,i}∞i=1 is Cauchy in C(Wn), there exists a K > 0 such that
if i, l > K then ||Ukn,i − Ukn,l ||∞,Wn < ε. Let L = K + n, and suppose i, l ≥ L.
Examine

||Û i − Û l||∞,Wn
= ||Uki,i − Ukl,l ||∞,Wn

.

Since i and l are larger than both n and K, there exists ji ≥ i and jl ≥ l such that
Uki,i = Ukn,ji and Ukl,l = Ukn,jl . Hence, ||Û i − Û l||∞,Wn

< ε. If we compare these
sequences on Wn = [0, R]× [Sn,∞), then we have

||Û i − Û l||∞,Wn ≤ ||wM ||∞,Wn ≤
1

n
≤ ε.

Hence, {Û i}∞i=1 is Cauchy in BC([0, R]× [0,∞)).

Consequently, there exists a U ∈ BC
(
[0, R]× [0,∞)

)
such that {Û i} converges to

U uniformly.
Now recall Û i = Uki,i for all i. From the convergence of this subsequence to U

and the monotonicity proved in Lemma 2, we have for all m,

0 < V (r, s) ≤ U(r, s) ≤ Um(r, s) ≤ Um−1(r, s) ≤ · · · ≤ U1(r, s).

Thus, the monotonicity of this sequence and the uniform convergence of the sub-
sequence {Uki,i}∞i=1 to U in BC([0, R] × [0,∞)) yield the uniform convergence of
{U i}∞i=1 to U in BC([0, R] × [0,∞)). Note that since R > 0 was arbitrary, we have
actually proved that there exists U ∈ X such that {U i}∞i=1 converges uniformly to U
on BC([0, R]× [0,∞)) for all R > 0.

Proposition 1. Under assumptions (Ai)–(Av), there exists a unique, positive,
continuous solution U ∈ X of (7). Furthermore, the solution satisfies

0 < U(r, s) < wM (s) for (r, s) ∈ R2
+

and ∫ ∞

0

U(r, s)ds =

∫ ∞

0

wM (s)ds−
∫ r

0

wF (s)ds for r > 0 .

Proof. Let ε > 0 and suppose U is given as in the proof of Lemma 3. Consider

||T (Uk)− T (U)||∞,W∞ ≤ ||T (Uk)− T (U)||∞,Wn
+ ||T (Uk)− T (U)||∞,WSn∞ ,(13)

where WSn∞ = [0, R] × [Sn,∞) and W∞ = [0, R] × [0,∞). Let ε > 0 and choose
n such that if s ≥ Sn, then wM (s) < ε. This implies that the second term in the
right-hand side of (13) is bounded by ε for k sufficiently large.
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It remains to show that the first term on the right-hand side of (13) can be made
arbitrarily small by taking k sufficiently large. To this end, it is sufficient to prove
that there exists a K ∈ N such that if k ≥ K then∣∣∣∣∣

∫ R

0

wF (y)dy∫∞
0
Uk(y, t)f(y, t)dt

−
∫ R

0

wF (y)dy∫∞
0
U(y, t)f(y, t)dt

∣∣∣∣∣ < ε.(14)

But, ∣∣∣∣∣
∫ R

0

wF (y)dy∫∞
0
Uk(y, t)f(y, t)dt

−
∫ R

0

wF (y)dy∫∞
0
U(y, t)f(y, t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ R

0

wF (y)
∫∞
0

(Uk(y, t)− U(y, t)
)
f(y, t)dtdy∫∞

0
Uk(y, t)f(y, t)dt

∫∞
0
U(y, t)f(y, t)dt

∣∣∣∣∣
≤ ‖Uk − U‖∞,W∞‖f‖∞,W∞

∫ R

0

wF (y)dy(∫∞
0
U(y, t)f(y, t)dt

)2
≤ ‖Uk − U‖∞,W∞‖f‖∞,W∞‖wF ‖1,[0,R]

δR
,(15)

where 0 < δR = inf0≤y≤R
(∫∞

0
U(y, t)f(y, t)dt

)2
. Since {Uk}∞k=1 converges uniformly

to U in BC(W∞), we must have T (U) = U .
Consequently, U solves (7). Let’s prove that there are no other positive continuous

solutions. Since U = T (U) we have

Ur(r, s) = U(r, s)

(
−f(r, s)wF (r)∫∞

0
U(r, t)f(r, t)dt

)
.

If we integrate with respect to s then∫ ∞

0

Ur(r, s)
wF (s)

ds = −1.

That is,

d

dr

∫ ∞

0

U(r, s)ds = −wF (r).

Therefore, integration with respect to r yields∫ ∞

0

U(r, s)ds =

∫ ∞

0

wM (s)ds−
∫ r

0

wF (τ)dτ.

Now assume that there exists another positive continuous solution V of (11).
Then V = T k(V ) ≤ T k(wM ) = Uk for all r, s, which implies V ≤ U for all r, s. On
the other hand, since V = T (V ), we have∫ ∞

0

V (r, s)ds =

∫ ∞

0

wM (s)ds−
∫ r

0

wF (τ)dτ,

as above. Therefore
∫∞
0
U(r, s)ds =

∫∞
0

V (r, s)ds. Consequently, we must have U =
V .
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To complete our analysis of (5)–(6) it remains to prove the following result.

Theorem 1. If (Ai)–(Avi) hold then there exists a unique positive continuous
solution of (5)–(6).

Proof. To begin, let U(r, s) be the unique solution of (7). Using the fundamental
theorem of calculus, differentiate both sides with respect to r, yielding

Ur(r, s) = U(r, s)

(
−f(r, s)wF (r)∫∞

0
U(r, t)f(r, t)dt

)
,

or equivalently,

Ur(r, s)
−wF (r)

=
U(r, s)f(r, s)∫∞

0
U(r, t)f(r, t)dt

.(16)

Now define

ρ(r, s) = −Ur(r, s)
wF (r)

for (r, s) ∈ R2
+.(17)

Note that ρ is positive and continuous. To show that ρ satisfies (5)–(6) we need

∫ ∞

r

ρ(x, s)wF (x)dx = U(r, s)(18)

and

wM (s) =

∫ ∞

0

ρ(x, s)wF (x)dx.(19)

For (19), note that by definition

∫ ∞

0

ρ(x, s)wF (x)dx =

∫ ∞

0

−Ur(r, s)dr
= U(0, s)− Lim

R→∞
U(R, s)

= wM (s)− Lim
R→∞

U(R, s).

Also, for (18), we have by definition,

∫ ∞

r

ρ(x, s)wF (x)dx =

∫ ∞

r

−Ur(r, s)dx
= U(r, s)− Lim

R→∞
U(R, s).

So, both (18) and (19) will hold provided LimR→∞ U(R, s) = 0 for s > 0, fixed.

But, for s > 0 fixed,

U(r, s) = wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)∫∞
0
U(y, t)f(y, t)dt

dy

)
.
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So,

0 < U(r, s) ≤ wM (s) · exp

(
−
∫ r

0

f(y, s)wF (y)

||f ||∞
∫∞
0
U(y, t)dt

dy

)

≤ wM (s) · exp

(
−1

||f ||∞

∫ r

0

f(y, s)wF (y)∫∞
0

wM (τ)dτ − ∫ y
0
wF (τ)dτ

dy

)
(from (11))

≤ wM (s) · exp

(
−εs
||f ||∞

∫ r

0

w(y)∫∞
0

wM (τ)dτ − ∫ y
0
wF (τ)dτ

dy

)
(from (Avi))

≤ wM (s) · exp

(
εs

||f ||∞

[
ln

∣∣∣∣
∫ ∞

0

wM (τ)dτ −
∫ r

0

w(τ)dτ

∣∣∣∣
− ln

(∫ ∞

0

wM (τ)dτ

)])

after integration. Recall from (Aiv) that∫ ∞

0

wM (τ)dτ =

∫ ∞

0

wF (τ)dτ.

Hence, limr→∞ U(r, s) = 0.
Therefore, we have existence of a solution of (5)–(6). For uniqueness, note

that if ρ̃ is also a positive, continuous solution of (5)–(6) then Ũ(r, s) ≡ wM (s) −∫ r
0
ρ̃(x, s)wF (x)dx solves (7), as does U(r, s) = wM (s) − ∫ r

0
ρ(x, s)wF (x)dx. But

(7) has a unique solution, which implies U = Ũ , and hence
∫ r
0
ρ(x, s)wF (x)dx =∫ r

0
ρ̃(x, s)wF (x)dx. As a result, ρ = ρ̃.

4. Comments and an example. We want to first point out that the method
we used is constructive, lending itself to numerical interpretation and exploration.

For an example, consider a choice of an acceptance function which is the density
function of a Gaussian-like distribution

f(r, s) = c · exp

{
− 1

2ε2

(
r − s

r + a

)2
}
, r, s ≥ 0,

where c, a, and ε are positive constants. Here, the variable s represents the class of
the partner and r is the fixed class of the person. These assumptions allow for a
widely spread out distribution for high risk category individuals and a very narrow
distribution for low risk category individuals. The (r + a) prevents the low risk
category distribution from degenerating (i.e., there is some minimum variance). The
parameter a might be of order 1. So this choice of f allows the distinction between
high and low risk class groups (i.e., class factors of r = 3 or r = 4 give basically the
same distribution, but one very different from that of r = 15).

We assume the population distributions are given by Ni(x) = Ci

(x+bi)4
for i ∈

{M,F} and Ci, bi, i ∈ {M,F} are positive constants [14]. This assumes that there is
a large distribution of individuals in a low risk class and a small number in the high risk
classes. For the class distributions, we assume ri(x) = x+bi, i ∈ {M,F}. This would
describe a population where the desired number of partners per year equals the actual
number, plus possibly a correcting term relating to the available population. Hence,
the probability distributions, wi(x) = ri(x)Ni(x), are wi(x) = Ci

(x+bi)3
, i ∈ {M,F}.
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Note that the assumptions (Ai)–(Avi) are easily satisfied by these choices of func-
tions wi(x), f(r, s).

Finally, Hyman and Stanley have numerically explored this and other mixing
functions with different acceptance functions. They present numerical results for the
full system (20)–(23) given in Appendix A coupled with appropriate initial conditions
and the nonlinear integral equation for ρi(t, r, s), and they give numerical estimates
for special cases of the asymmetric mixing functions, ρi(t, r, s), i ∈ {M,F} [17].

Appendix A. For a purely heterosexual population, the following model has
been developed to describe the spread of AIDS [11, 14, 19, 20]. Let Si(t, r) denote
the susceptible population at time t with risk r and sex i; let Ii(t, τ, r) denote the
infected population at time t, time since infection τ , with risk r and sex i; let Ai(t, τ, r)
denote the AIDS population (showing clinical AIDS symptoms) at time t, time since
conversion τ̂ , with risk r and sex i. The interaction of all three populations has the
form

(20) ∂Si(t, r)/∂t = µ(Soi(r)− Si(t, r))− λi(t, r)Si(t, r),

(20′) Ii(t, r, 0) = λi(t, r)Si(t, r),

(21) ∂Ii(t, r, τ)/∂t+ ∂Ii(t, r, τ)/∂τ = −(γ(τ) + µ)Ii(t, r, τ),

(21′) Ai(t, r, 0) =

∫ ∞

0

γ(τ)Ii(t, r, τ)dτ,

(22) ∂Ai(t, r, τ̂)/∂t+ ∂Ai(t, r, τ̂)/∂τ̂ = −(δ(τ̂) + µ)Ai(t, r, τ̂),

(23) λi(t, r) = ri(t, r)

∫ ∞

0

ρi(t, r, s)Kj(t, r, s)ds, i 6= j,

where

Kj(t, r, s) =

∫ ∞

0

β(τ, r)
Ij(t, s, τ)

Nj(t, s)
dτ and Nj(t, s) = Sj(t, s) +

∫ ∞

0

Ij(t, τ, s)dτ.

Here i, j ∈ {M,F}, µ and δ(τ̂) are death rates, and λi(t, r) and γ(τ) are the infection
and conversion rates, respectively. Soi is the steady state population in the absence
of AIDS; Kj(t, r, s) is the probability that a person of sex j and risk r will be infected
by a person of sex i with risk s; ri(t, r) is the actual number of different partners
per year; and ρi(t, r, s) is a mixing function (discussed in section 2) which satisfies a
nonlinear integral equation. The system (20)–(23) above is coupled with nonnegative
initial data Si(0, r), Ii(0, r, τ), and Ai(0, r, τ).
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