Revisiting Early Models of the Host-Pathogen
Interactions in HIV Infection

The interactions between infectious pathogens and the immune system have been mathe-
matically modeled for numerous diseases. Human immunodeficiency virus (HIV), the
agent that causes AIDS, has been modeled most extensively. In 1986, three years after
HIV was isolated, investigators produced the first mathematical description of its patho-
genesis. Since that time modelers have steadily developed more sophisticated systems that
have brought the field of mathematical modeling to the consciousness of virologists and
immunologists. In this paper we review five of the first attempts of modeling HIV and the
immune system. We consider these models in their own right as predictors for CD4"* T-cell
depletion and viral growth, as records of the immunovirological understanding of the day,
and as forerunners of the current generation of models.
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INTRODUCTION

The clinical symptoms of acquired immune deficiency syndrome
(AIDS) were first described in 1982; the etiologic agent, human immun-
odeficiency virus (HIV), was isolated in 1984. HIV has been responsi-
ble for the deaths of millions and the epidemic is still growing.
Accordingly, investigators have extensively studied its pathogenesis in
the hopes of finding targets for pharmaceuticals and immunotherapies
for prevention and treatment. In this paper we will review some of the
earliest mathematical models characterizing disease progression at the
cellular level. We begin by briefly reviewing the natural relationship
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between math models and infectious disease, the human immune sys-
tem, and HIV infection-this background is necessary to put the models
into context.

We present five models from three groups who published in the
1980s. The first, by Leon Cooper, appeared in 1986 and is historically
important because it is the first mathematical model that directly
addressed the immune response to HIV [6]. Dolezal and Hraba pro-
duced the second model we consider [7],[8]. They developed their
model based on the assumption that HIV produced a chemical that ren-
dered immune system cells non-functional. The third model was devel-
oped by Perelson. He has contributed many HIV mathematical models
over the past decade [9],[111,[12],[131,[14], but we discuss only his first
[10],[15].

For each model, we discuss the key variables, assumptions, strengths,
weaknesses, and concordance of simulations to clinical data. We
selected the above three because of their diverse approaches and relative
novelty, but it is important to note that there were several other
HIV-immune models published in the late 1980s [16],[17],[18] as well
the authors in [16) implemented a deterministic model that included a
detailed immune response. In [17], Merril used a stochastic dpproach
specifically designed for the early phase of HIV infection. McLean
determined an important threshold condition regarding susceptibility to
opportunist infections in [18]. Space limitations prevent us from detail-
ing these other models, but the reader is urged to consult the references
for further study.

MATHEMATICAL MODELING OF INFECTIOUS DISEASE

Infectious diseases and math modeling have a natural symbiosis at two
distinct levels. At the population level math models have been used to
characterize the transmission and spread of disease [1],[2],[3],[4],[42],
[43],[47]. Often used in epidemiology, these models address questions
such as: 1.) What proportion of a community will be infected? 2.) How
fast will the epidemic progress? 3.) Will the epidemic reach a maximum
and then steadily decrease? 4.) What proportion of the population needs
to be immunized for the entire population to be protected from an epi-
demic? 5.) What is the best intervention to curtail the epidemic?
Answers to these questions benefit society as a whole. Mathematically,
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disease transmission is not considered as a predator-prey interaction [2],
but is typically characterized in terms of human compartments — the
classic susceptible-infected-recovered (SIR) categorization (c.f. [3],[4]).
These models merit attention but are outside the scope of the present
study.

The second inroad mathematical modeling has made in the study of
infectious diseases is host-pathogen interactions at the cellular level.
These models treat the individual human as populations of cells in con-
flict with the population of pathogens. They have been most extensively
used to describe disease progression in HIV infection. Questions typi-
cally addressed include: 1.) What causes the hallmark depletion of
CD4* T cells over the course of infection? 2.) What are the dynamics of
viral population growth? 3.) What is the turnover rate of immune system
cells and virus during infection? 4.) At what point in infection is therapy
most effectively administered? 5.) What treatment regimens will mini-
mize the likelihood of development of drug resistance? In answering
these questions, investigators address disease dynamics at the individual
level, rather than at the aggregate level. Due to the two distinct back-
grounds necessary to develop such models, immunovirology and mathe-
matics, these models most often arise out of the laboratories of
biomathematicians (for a recent review of HIV-specific immune system
models, see [51]).

IMMUNOLOGY

The human immune system is responsible for determining self from
non-self. It is the body’s distributed defense system that prevents infec-
tion and disease, aids the body in recovering from infection, and retains
memory of past infections.

When a foreign substance (antigen/pathogen) is introduced into the
body, the body elicits an immune response in an attempt to clear the
substance as quickly as possible. In the tissues, pathogens are first scav-
enged and engulfed by macrophages, which then present digested pieces
of the pathogen (antigens) to the CD4 positive T lymphocytes (CD4* T
cells). “CD4” denotes a protein marker on the surface of the cell, and the
“T” refers to thymus, the organ responsible for maturing these cells after
they migrate from the bone marrow. These CD4" T cells, also referred
to as helper T cells (which normally average 1000 per cubic mm of
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blood), orchestrate the primary immune response. First, the helper T
cells expand by division, and then undergo differentiation to one of two
distinct subclasses-TH1 or TH2. The defining difference between the
two is the profile of cytokines each secretes. Cytokines are the signaling
chemicals between cells that regulate cellular activities.

Macrophages process and present antigens to CD4* T cells; they are a
part of a larger class of cells known as antigen-presenting cells (APCs).
The two other types of antigen-presenting cells are dendritic cells and B
lymphocytes. Dendritic cells reside in bulbous organs called lymph
nodes, through which lymph fluid and most of the immune system cells
continually flow while surveying the body. Lymph nodes are the physi-
cal structures that facilitate the immune response. Their specialized
architecture increases the likelihood that immune system cells will con-
tact foreign antigen. B lymphocytes are described below.

Immune responses consist of a combination of cellular and humoral
immune responses-the relative balance depends on the type of pathogen.
A cellular immune response involves not only building up helper T
cells, but also activation of additional macrophages and CD8 positive T
lymphocytes (CD8* T cells). Macrophages become activated ang partic-
ipate not only as antigen presenters, but as phagocytes, destroying both
pathogens and infected cells. CD8* T cells eliminate intracellular patho-
gens directly by destroying infected cells, or by suppressing vital repli-
cation through non-cytotoxic means. A particular class of CD8* T cells,
called cytotoxic T cells (CTLs), carry out most of the infected-cell kill-
ing. CTLs are the most important line of offense against viral pathogens,
including HIV [20, 21, 31]. Once given a target, CTLs seck out and
destroy cells infected with intracellular pathogens. A second, less under-
stood, class of CD8* T cells is called suppressor cells (for review see
[22]). Their mechanism of action is believed to be inhibition of viral
replication via the release of soluble chemical effectors [23, 26]. The
clonal expansion of either type of CD8"* T cells requires signals from
CD4* T lymphocytes to be most effective.

In the humoral immune response (also known as the antibody
response) the TH2 subclass of CD4* T cells signal another set of cells,
called B lymphocytes (B cells). These are immune system cells that pro-
duce the chemical weapons called antibodies. Antibodies are engineered
to bind to and mark specific pathogens as foreign, thereby facilitating
their phagocytosis.
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During and after the immune response, certain cells of each type
retain knowledge of the attack; these specialized cells are known as
memory cells. If the same pathogen (or a similar strain) invades the
body a second time, a much quicker and more aggressive campaign can
be launched and the antigen is eradicated more efficiently. This is the
idea behind vaccines. A weaker version of the pathogen (or subunit of
the pathogen) is introduced into the body eliciting a primary immune
response; then, if the individual becomes infected with the more aggres-
sive relative, the response is immediate and powerful, and the pathogen
cannot establish infection. For a complete reference on Immunology,
see [19].

From the above discussion, it is clear that CD4* T cells act as a link
between the various divisions of the immune system. They recruit and
activate macrophages, direct the humoral branch by stimulating B cells
to produce antibody, and are necessary for a proper cell-mediated
response. Each CD4* T cell has a given specificity to only one antigenic
sequence; there are many specificities a given cell could have, on the
order of 108 [19]. It is estimated that on average 2x1012 CD4* T lym-
phocytes are present in an individual at any given time [24], meaning
the frequency of cells sgecnﬁc for a given antigenic sequence is rela-
tively low: 2x1012 + 20,000 cells. Therefore, CD4* T cells spe-
cific for a given antlgen need to undergo rapid proliferation, called
clonal expansion, to provide protection if that antigen is encountered. It
is clear that CD4* T cells are critically important elements of immune
responses. If a pathogen successfully diminishes CD4* T cell levels, it
can seriously compromise host immunity. That is precisely what HIV
infection does.

HUMAN IMMUNODEFICIENCY VIRUS

HIV is a single-stranded retrovirus; it consists of two copies of the RNA
genome and necessary enzymes packaged within an icosahedral capsid,
surrounded by an envelope coat. As with other viruses, HIV can only
reproduce using the machinery of its host target cells. The primary tar-
get cells of HIV are macrophages and CD4* T cells [20]. Cellular entry
by HIV requires the CD4 receptor and one of several coreceptors.

Each infection of a target cell can be one of three types: productive,
latent, or abortive [25],[48],[49]. Productive or active infection occurs
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when the virion enters the cell, successfully hijacks the cellular machin-
ery, and produces new virions (progeny) at a steady rate. These cells live
approximately two days after being infected [13]. Latent infection
occurs when the virion has entered an unactivated cell (one that has not
received stimulatory signals). HIV can replicate only in activated cells,
so a latently-infected cell is not currently producing viral progeny.
Instead, a latently-infected cell may at a later time, given certain stimu-
lation, begin producing progeny. In contrast, an abortively-infected cell
is one in which the virion has entered the cell, but due to some defect in
the infection process, can never produce virus. Abortive infection is, in
fact, the most common type of cellular infection [25],[48],[49]. Produc-
tively-infected cells account for only about 2% of cellular infections
[19].
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FIGURE 1 Clinical data representing CD4" T cell levels and viral load during the patho-
genesis of HIV [28]. CD4" T cell levels (solid line) and viral load (dashed line) are shown
throughout the long disease course, including expanded detail during the first four months
of infection known as primary infection. Note the characteristic steady depletion of the
CD4* T cells and the burst of viremia during late-stage disease

The clinical picture of HIV is similar in a majority of cases {19]. Pro-
gression generally consists of three stages: primary, asymptomatic, and
AIDS. Primary infection occurs in the first several months and is char-
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acterized by a transient burst of viral replication and a sudden temporary
decrease in CD4™ T cells, as seen in Figure 1 [28]. Asymptomatic infec-
tion lasts for 6-10 years (depending on treatment) during which time the
population of CD4* T cells in the blood decreases slowly but steadily
(Figure 1). AIDS is defined as end-stage HIV infection when CD4* T
cell counts in the blood drop below 200 cells/uL; it lasts 1-3 years.

It is suspected that the cytopathology due to productive cellular infec-
tion cannot by itself explain the decrease in CD4* T-cell level from the
blood. So what can explain this phenomenon? Several hypotheses have
been suggested, but none has indisputable experimental support [27]:

1. toxic viral gene products: Viral gene products such as structural
proteins and enzymes may be directly toxic to CD4* T cells, causing
their death and eventual depletion of the population.

2. syncytium formation: Syncytium are large amalgamations of CDh4*
T cells and other immune cells that effectively destroy many cells at
once while producing large amounts of virus.

3. direct virus killing of cells by productive infection: Productive
infection kills target cells by disrupting normal cellular functions or
bursting the cell.

4. apoptosis: CD4" T-cell receptor stimulation by HIV w1thout viral
penetration may cause affected cells to die by programmed cell
death (apoptosis). ’

5. autoimmunity: Infection with HIV may cause the immune system
to destroy its own healthy CD4™" T cells, a condition of autoimmu-
nity.

6. cytokine expression: Cytokine and chemokine dysregulation may
contribute to CD4™ T-cell depletion by selecting for the wrong dom-
inant immune response.

7. altered circulation patterns: CD4* T cells may be progressively
lost from the blood compartment due to enhanced homing to the
lymph system, a state of altered lymphocyte circulation.

8. disruption of the lymphoid architecture: Infection with HIV can
alter the architecture of the lymph node, thus weakening the immune
response and making CD4* T cells more susceptible to infection.

The models we will consider in the following sections are based on
assumptions of how CD4" T cells are lost from the blood. Even though
they were formulated in the late 1980s, the assumptions used corre-
spond to one or more of the hypotheses listed above.
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We view these historical models with an eye toward understanding
CD4" T-cell depletion and viral load levels over the course of disease.
The models can be used to predict CD4* T cell and virus population lev-
els that can then be compared to clinical data. These comparisons are
helpful in determining the value a given model has in explaining disease
mechanisms. While no model adequately explains all the features of the
clinical data, each has its virtues.

COOPER MODEL-1986

In 1986, the physicist Leon Cooper published the first mathematical
model of the immune system response to what he termed “immune sys-
tem retroviruses”, HIV being the relevant example [6]. Two years later
he reported detailed conclusions and analyses of the equations [29]. He
presented three systems with progressive complexity. The first
described an immune response to a “normal”, non-retrovirus; the second
characterized the response to an infection with retrovirus only; and the
third analyzed an infection with both normal replicating virus and retro-
virus, termed a “mixed infection”. Here we focus on the latter two mod-
els.

Cooper structured his models in the context of immune-pathogen het-
erotrimeric and heterodimeric complexes. He assumed the binding of
HIV virions to B lymphocytes specific to HIV was the required first step
in the adaptive immune response. These heterodimeric complexes then
would bind further to CD4* T lymphocytes specific to HIV. The forma-
tion of the heterotrimeric complex was proposed to activate the CD4* T
cells and induce their clonal expansion. Today it is generally accepted
that antigen presenting cells (APCs), namely dendritic cells, macro-
phages and B cells, process and present digested pieces of virion pep-
tides, called antigens, to the CD4" T cells [19]. CD4* T cells that
specifically recognize these antigenic sequences then bind to the APC,
forming a transient heterodimeric complex that function similarly to the
heterotrimeric complex of the Cooper model.

We first examine the model of HIV infection alone. In his system of
equations, Cooper includes the concentration of only those CD4" T cells
specific to HIV antigen, labeled 7(z). This subset has been shown to
comprise a very small portion of the total CD4" T population, even at
late stages of disease [30]. The other state variables also denote concen-
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trations and include HIV, V(z); HIV-specific B cells, B(t); HIV-infected,
HIV-specific T cells, T"(1); HIV:HIV-specific B-cell complex, Cg(1);
HIV-specific T-cell:HIV:HIV-specific B-cell complex, Cgy7(1); and

HIV-specific, infected T-cell:HIV:HIV-specific B-cell

complex,

Cpyr«(t). The corresponding nonlinear, ordinary differential equations

describing their rates of change are as follows:
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Description of the Cooper Equations

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

Equation 1.1 characterizes the changes in the HIV-specific B-cell
population. g is the constant influx of B cells from a precursor pop-
ulation that is independent of antigen activation. The y;Cgyr term is
the clonal expansion of B cells based on the presence of HIV. B cells
can encounter virus and be lost either the formation of Cgy, at rate 7;,

or die naturally at rate A3.

Equation 1.2 represents the changes in the uninfected HIV-specific
T-cell population. Like the B-cell population, T cells have a constant
source of input, £r, that arises from the thymus. The clonal expan-
sion of T cells is analogous to that of B cells and occurs at rate y,. T
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cells can be lost to the formation of the Cgy complex, infection, and
natural death.

Equation 1.3 represents the rate of change in the infected T cell
compartment, T". Infected T cells are formed only when a T cell
encounters a virion, at rate y,, and T" are lost when they form a com-
plex or by death.

Equation 1.4 is an important equation because it shows that the virus
population has only one source. According to this model, virus is
only produced upon formation of the Cgyp+ complex. We will return
to this point later, when we critique the model. Virus is removed by
an immune response that is dependent on time, B cells, and virus:
I(V,B,t), as well as lost to natural decay.

Equation 1.5 represents the rate of change of the HIV-specific
B-cell:HIV complex compartment, Cgy. The only source term for
this population is the mass-action interaction between a virion and
an HIV-specific B cell, occurring at rate y;. Complexes in this popu-
lation are lost in three ways: to the B-cell:HIV:uninfected T-cell
complex, Cgy7; to the B-cell:HIV:infected T-cell complexy Cgyp«;
and to natural death.

Equation 1.6 represents the rate of change of the B-cell:HIV:unin-
fected T-cell complex population, Cpy7. These are formed at a rate
that is equivalent to the first loss term in equation (1.5). The loss
term represents natural death.

Equation 1.7 characterizes the changes in the B-cell:HIV:infected
T-cell complex, Cgyp=. It is formed when the B-cell:HIV complex
encounters an HIV-specific infected T cell, and can be lost to natural
death.

Among the several hypotheses that attempt to explain why HIV
causes progressive CD4* T-cell depletion, Cooper’s model assumes that
direct killing by productive infection is responsible (hypothesis 3, HIV
section) since the only occurrence of HIV-dependent death of CD4* T
cells is by infection (equation (1.3)). This very mechanistic system,
(1.1)-(1.7), uses the law of mass-action for most of the nonlinear inter-
actions. Specific events are required for virus replication, T-cell expan-
sion, and cellular infection. In general, the more mechanistic a model is,
the more explanatory it can become. More mechanistic also means they
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are more susceptible to obsolescence by advances in scientific under-
standing. Thirteen years and several billion research dollars later, this
model can be viewed with an updated understanding of HIV pathogene-
sis. There are several items that should be re-evaluated.

First, this model cannot account for the observed CD4* T cell deple-
tion or virus population growth in its entirety. As mentioned in the sec-
tion on HIV biology, HIV can infect all CD4* T cells and macrophages.
But the only occurrence of HIV replication in the model is in the forma-
tion of the infected heterotrimeric complex. The overarching problem
with this idea is that only CD4* T-cell subsets specific for HIV are
included, and thus much less viral replication is possible. Therefore its
viral load predictions will be substantially smaller than what is observed
clinically. Many studies have shown that a good predictor for clinical
disease course is viral load [36],[371,[38],[39],[40], a value this model
cannot accurately monitor or predict. Furthermore, the only CD4* T cell
loss that will be predicted with this model is from the small subset of
HIV-specific cells. The eradication of the entire subset would not be
enough to account for the observed clinical picture.

Second, this model does not include the most important mechanisms
of T-cell activation, that of antigen presentation by dendritic cells and
macrophages. As discussed above, it is known that antigen presentation
to CD4" T lymphocytes occurs by dendritic cells, macrophages, and B
cells, collectively referred to as professional antigen presenting cells
[19]. The subset of APCs included in the Cooper model is the small
number of B cells that are specific to HIV. Dendritic cells and macro-
phages together play a more important a role in the activation of CD4*
T cells in HIV infection, because they have no inherent limiting specifi-
city for HIV or any other antigen [20]. That means all dendritic cells and
macrophages have the ability to activate CD4* T cells by presenting’
HIV peptides. Since the model does not include the more important
methods of antigen presentation and CD4*T-cell activation, it will not
account for all the in vivo cell activation.

Third, the system incorrectly models the immune response as inde-
pendent of CD4* T lymphocytes. In the model, the immune response is
based on viral concentration, B cells, and time. Current immunological
understanding underscores the role of CD4* T cells in the development
and control of the immune response, and is supported by clinical obser-
vations [19]. Even in the 1980s it was known that HIV infecteds with
low CD4* T-cell counts have an impaired ability to mount an immune
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response against opportunist pathogens [19],[20]. Thus, a more accurate
immune response function would depend heavily on CD4* T cells.

Forth and finally, this model does not address the important issue of
latent cellular infection. Researchers recently observed that latent infec-
tion is at least as common as productive infection [50],[51].
Latently-infected cells are by definition not producing progeny, but
have the capacity to if activated at a later time.

The above four concerns are those we believe have the largest nega-
tive impact on the accuracy of the model. In addition, Cooper empha-
sizes the role of HIV-specific B cells and downplays the role of CD4* T
cells. Today, investigators realize just the opposite is true: humoral
immunity in HIV is less important than originally thought
[21],[22],[23].

The third model Cooper developed, and the second one we examine,
is that of a mixed infection with HIV and another “normal” non-retrovi-
rus. He asserts this model is more reflective of reality because it is likely
the immune system in an HIV-infected individual is activated by more
than just HIV. This additional activation is most likely needed because
insufficient activation was included in the first model. The revision
necessitates the addition of seven new equations (not shown), aug-
mented with Equations (1.1-1.3) and (1.5-1.7). A major change with
the addition of these equations is the expansion of the HIV target cell
population to include CD4™ T cells that are specific to normal virus.
Now HIV can replicate in a larger number of cells and, as Cooper
pointed out, this more closely resembles the real situation.

One of the insightful features of Cooper's models is the distinction
that HIV can only replicate in CD4* T cells that are activated. The
mixed infection model could be generalized to account for all of the
CD4* T cells that are activated by any antigen, be it normal virus infec-
tion, allergen stimulation, or bacterial infection. This rather easy exten-
sion would go a long way to solving the first of the above four
problems: viral population growth. The three other issues remain unre-
solved in Cooper's mixed infection model.

The numerical analyses given in [6],[29] emphasize the importance of
the initial concentrations of HIV-specific B cells and virus, By and Vj,
on the maximum concentration of virus, V... While there is contro-
versy as to whether or not the size of the viral inoculum, V, is impor-
tant to disease progression it has recently been suggested that the level
of virus in the body after primary HIV infection (~ 6 months after infec-
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tion) has prognostic value, the so-called “setpoint” hypothesis [52].
Unfortunately Cooper does not publish time plots of viral load or CD4*
T-cell counts, or even the parameter values he used in the simulations.
Due to the large number of parameters, some that have no biological
meaning, we do not to attempt to obtain predictions from the Cooper
model. We therefore cannot compare model simulations to the clinical
data in Figure 1. This is an obvious weakness of the model, since it can-
not be verified whether it produces the routinely-observed CD4* T-cell
and viral population dynamics.

Cooper does mention that among the many parameters in the model,
some of the more numerically-sensitive ones are the decay rates of the
complexes, Cgyr, Cpy, and Cgy+. The sensitivity of the Cooper equa-
tions to the decay of Cpy has no biological meaning because, as men-
tioned above, the current understanding of antigen presentation conflicts
with the idea of whole virions participating in the formation of com-
plexes. The sensitivity to the decay of Cgyr and Cgyp+, however, may
reflect the biologically important binding time of the CD4* T cells to
the B cells. Longer binding time may result in greater clonal prolifera-
tion, as depicted in the equations. ,

With the first immune-system model of HIV infection, Cooper primed
the field for biologically mechanistic models. In retrospect, some fea-
tures he chose to emphasize were less important than others: B cells are
less important to CD4* T-cell proliferation than other APCs, the
immune response is critically dependent on CD4™" T cells, and antigen
processing is now more well-understood. However, he incorporated
aspects of HIV infection that investigators speculated were important at
the time. His cause-and-effect, mechanistic style of modeling distin-
guishes the Cooper model from the first model presented in the next sec-
tion.

DOLEZAL AND HRABA MODEL-1988

Early in 1988, Dolezal and Hraba published a mathematical model of
the immune system infected with HIV [7]. Subsequent analyses and
extensions of their initial model soon followed [8],{32],[33],[341,[35].
One of the striking characteristics of their model was that it was origi-
nally developed in 1980 to describe B-cell immunological tolerance to
human serum albumin in chickens. Dolezal and Hraba adapted their
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model to explore HIV infection in humans. The evident adaptability of
this model foreshadows one of its weaknesses: the general nature of its
substituent parts.

The model is rather simple, consisting of two compartments of CD4*
T lymphocytes: precursors, P(z), and fully-functioning mature cells,
M(t). HIV antigen, A(t), is assumed to cause immunological tolerance,
or inactivation, of the CD4™ T cells that it comes into contact with. This
tolerance effectively means loss from the system, so that affected cells
leave their respective compartments permanently. Dolezal and Hraba
used three equations to capture this behavior:

%—1: =71pPy — 1pP — cpAP (2.1)
%At{ = TpP - CMAM - )\MM (2.2)
A(t) = Apexp(dt) - (23)

Description of the Dolezal and Hraba Equations !

Equation 2.1 represents the rate of change of the precursor cell com-
partment, P. The only source term for this population is the constant
influx at rate Tp. The value of the constant, Py, is found from steady
state considerations in-the uninfected case [7]. Precursors are con-
verted into mature lymphocytes at rate Tp, and are effectively lost to
anergy by contact with HIV tolerizing antigen at rate cp. Natural
death is not included for the precursor population. .
Equation 2.2 characterizes the changes of the mature CD4* T-cell
population, M. Mature cells are converted from precursors at rate Tp.
They are lost in two ways: to anergy via contact with HIV tolerizing
antigen at rate ¢y, and to natural death at rate A;,.

Equation 2.3 is a description of HIV antigen levels, A. The model
simplistically assumes antigen grows exponentially without bound
at rate 8.

Dolezal and Hraba utilize a different hypothesis than Cooper to
explain CD4* T-cell depletion. In this model tolerizing antigen (toxic
viral gene products produced by HIV) renders CD4" T cells nonfunc-
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tional, effectively removing them from the population. This corresponds
to hypothesis 1 given in the section on HIV biology: toxic viral gene
products. While an interesting idea, too many simplifying assumptions
are made in its implementation making it difficult to draw useful con-
clusions. Several considerations lead us to this assessment.

First, this model does not represent antigen levels realistically.
Although HIV is a replicating pathogen, unbounded exponential growth
is not observed over the time course of infection until very late stage
disease (see Figure 1). This assumption also means that once antigen is
formed, it is not removed either by an immune response or by a natural
half-life. As mentioned above, HIV is an obligate intracellular pathogen
and requires target cells to effectively produce gene products and repli-
cate. This is overlooked in the model since HIV growth is independent
of CD4* T-cell levels. It has also been noted that HIV has a natural
life-span in the blood on the order of hours to a few days, which would
also function to decrease effective antigen loads [13],[41]. Whereas the
Cooper model underestimates the amount of viral replication possible,
the Dolezal and Hraba model vastly overestimates it.

Second, this model neglects expansion of the mature CD4* T-cell pool
by clonal division. When presented with antigen, CD4* T cells are stim-
ulated and undergo rapid division and these newly formed cells then
orchestrate the immune response. The absence of clonal expansion cou-
pled with unbounded viral growth makes this model a worst-case sce-
nario for infection: the body does not defend itself and merely succumbs
to exponential viral growth.

This worst-case theme is apparent in the numerical solutions of equa-
tions (2.1-2.3). As the model is constructed, rapid CD4* T-cell deple-
tion results anywhere from 900 to 1500 days. Normally CD4* T-cell
loss is slower (see Figure 1). The authors recognized this, and attempted
to account for this discrepancy by hypothesizing variations in viral
growth rates as a result of an immune response. They use the piecewise
function, 8(2), to capture this time-dependent growth rate:

612 t<ty
5(t)={0: th <ty
b1: t>1to

That is, the immune response holds viral replication in check begin-
ning at time ¢;, but is eventually overwhelmed at time t,, when viral rep-
lication begins anew. This artificial manipulation is basically data
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fitting. A better way to implement an immune response is to construct a
more biologically mechanistic model, which Dolezal and Hraba do in
their follow-up paper [8].

In this subsequent work, they include a population of cytotoxic lym-
phocytes (CTLs) which directly reduces the amount of antigen in the
system. Equations (2.1) — (2.2) combined with the two new equations
depicting antigen, A(z), and CTL levels, C(t), comprising the revised
system:

éd% = A(d — yC) exp(dt) (2.4) .
daC M\’
i (elc + aC)A (E) - AcC (2.5)

Description of the Revised Dolezal and Hraba Equations

Equation 2.4 represents the new rate of change of the HIV antigen
compartment, A. Antigen replicates with a maximal rate constant, 8.
This rate constant decreases as the cytotoxic T lymphocyte popula-
tion, C, grows, representing replication limitation from an immune
response. )
Equation 2.5 characterizes the changes in the cytotoxic T lym-
phocyte population. A constant source, €], is augmented by clonal
proliferation, o.C. This rate is modified by antigen levels: the higher
the antigen levels, the greater growth. The factor (M(t)/M)" depicts
the importance of CD4" T cells on CTL proliferation. It is known
that CD4" T cells are required for successful CTL proliferation [19].
The authors hypothesize that a decreased number of CD4* T cells
will negatively impact the ability of CTLs to proliferate. The power
v quantifies the intensity of this effect.

The numerical solutions of the revised model are more satisfying; the N
CTLs visibly hold viral replication in check without artificially manipu-
lating viral growth rates (Figure 2A and Figure 2B). Adding the mecha-
nistic feature provides more insight into which parameters of the model
are important. For example, by varying v from v = ] to v = 2, the quali-
tative behavior changes drastically from a stable nonzero CD4™T-cell
level to complete depletion of the CD4* T-cell population [8]. Clearly in
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this model the power v, corresponding to the intensity of the CD4*
T-cell helper effect on CD8* T-cell proliferation, is critically important
to the system.

CD4 T cell Count

‘.

0 A
003 005 o011 048 025 1.0 20 3.0 40 50 80 70 8.0 9.0 100 No

Time (yrs)

t
FIGURE 2A Dolezal and Hraba’s model predictions for CD4* T cell levels [8] compared
with clinical data [28]. The model simulations (solid line) are qualitatively similar to clin-
ical data (dashed line), but lack the initial drop associated with primary infection and pre-
dict complete CD4* T cell eradication about five years early. Parameter values are as
listed in [8]

Although it was not presented in their work [8], we analyze the

steady-states of the system, fixing v = 2. If we assume precursors can-

not be tolerized by the antigen, that is cp=0, by brief manipulation we
conclude there are three states the system can attain. The first is an unin-
fected steady-state where A=C=0. When the system is at this state, local
stability analysis yields three real, negative eigenvalues and one real,
positive eigenvalue, d. This means the state is always locally unstable
and the “degree” of instability is governed by the viral growth rate 8.
The other two steady-states for the system both include nonzero, finite
antigen and CD4"T cell levels-one is stable and one is unstable. The
steady-state values of P and M are functions of the steady-state level of
antigen, A. In fact, the choice of ¢y, the viral infectivity rate of mature
CD4" T cells is critically important in determining the state of the sys-
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FIGURE 2B Dolezal and Hraba’s model predictions for viral load [8] compared with clin-
ical data [28]. The model simulations (solid line) are a simplified version of the clinical
data (dashed line). The model predicts exponential growth by year five, approximately
five years early and thus exaggerates this growth. Furthermore the model lacks’the initial
burst of viremia associated with primary infection. Parameter values are as listed in [8]

tem. This is readily seen in the bifurcation diagram where ¢, is plotted
versus A (Figure 2C). A saddle-node bifurcation is seen to occur at
c=c_,;; (there is a similar saddle-node bifurcation for the parameter 0 as
well). For values of ¢y < ¢, the system assumes the stable, infected
steady-state. For values of cjs > ¢y, the system has no steady-state and
antigen increases without bound. This behavior shown in Figure 2B
occurs when cy=1. Why did Dolezal and Hraba choose cyy=1? There is
no obvious reason for doing so. In fact, it is reasonable to argue that
every encounter of a CD4" T cell with the antigen would not result in
the CD4* T cell becoming anergic. In such a case, ¢y would be less than
one.

When we use values of the parameters given in [8], no steady-state is
achieved: antigen load increases to infinity and CD4* T cells decrease to
zero. We interpret this as the “crash to AIDS” state. Maintaining v = 2,
we compare the model's prediction of the time course of infection to
clinical data for CD4* T-cell counts (Figure 2A) and viral load
(Figure 2B). There are two key similarities in the qualitative behavior

400



o T 1 i ]l
0 0.2 0.4 0.6 08

cm +

FIGURE 2C Bifurcation diagram of ¢y, versus the steady-state valne of A, steady-state
value of A in the Dolezal and Hraba model. Stable steady states are denoted by solid lines
and unstable steady states by dashed lines. Note the drastic change in the behavior of the
system as ¢,y increases past a critical value (¢, =0.9). This change is a saddle-node bifur-
cation. Other parameter values are as in Figure 2A and Figure 2B

between the model predictions and the clinical data. There is an initial
decrease of CD4'T cells followed by a transient leveling off before
complete depletion, and viral load correspondingly grows exponentially
in end-stage disease. However, there are two key differences between
the model predictions and the clinical data. First, the time to depletion in
the model is almost half of what is observed clinically. Second, the ini-
tial burst of viremia in primary infection is absent from the model pre-
dictions.

Although the qualitative behavior of the model is similar to the clini-
cal picture, we have concerns with Dolezal and Hraba’s estimation of
parameter values. Unfortunately the values of the parameters are listed
without units, literature references, or any biological rationalization.
Current modelers are expected to justify parameter estimates with scien-
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tific reasoning or references, as demonstrated by particularly successful
works [411,[53],[54],[55]),[56]. In fact, the field is evolving toward
detailed sensitivity analysis of parameter estimations [45].

Another concern is the frequent changing of the value of €, the CTL
maturation rate, from 0.05 to 0.3 and many values in between. These
changes take place while varying other parameters, making it difficult to
discern the causes of the changes observed in successive simulations.
Moreover, one would suspect that the CTL maturation rate is relatively
constant in vivo.

In years subsequent, Dolezal and Hraba continued to explore and
extend their base model, making minor revisions [32},{33],[34],[35]. As
one of the first models of HIV immunobiology, their model predicts
some of the key behaviors of the clinical picture. Mathematically it is a
clean and simple description. Biologically, the critical reader recognizes
a very simple model with a lack of justification for parameter values.
This leads us to question which, if any, parameter values were chosen
solely for fitting the data? This is not a concern in the next model; bio-
logical justification is given for most of the parameters used in the
numerical simulations.

PERELSON MODEL-1989

The third and final model we consider was published by Perelson in
1989 [15]. In depth mathematical analysis followed several years later
[10]. Perelson discussed two versions of his model. The first is very
general and includes many aspects of HIV immuno-biology. He
described this model as having many unknown parameters and several
functions of unknown form. As a result, numerical analyses cannot be
performed. The second model is a simplified version of the general one
incorporating only obtainable parameters and no unknown functional
forms. Because it represents the limits of HIV-immune system under-
standing in the late 1980s, it is the latter model that we consider in
depth.

One of the weaknesses of both the Cooper and Dolezal/Hraba models
is that they neglect the latently-infected CD4* T-cell reservoir; this defi-
ciency is absent from the Perelson model. He defines three populations
of CD4" T cells: uninfected, 7(z); latently infected, T;(t); and actively
infected, T4(z). The concentrations of cells in each of these subpopula-
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tions, and the concentration of virus, V(t), comprises the state variables.
Perelson assumes that uninfected CD4* T cells must progress first
through the latent stage before becoming actively infected, as depicted
in the equations: ‘

ar _ T+Tg
il +rT (1 T ) VT — prT (3.1)
% = k1VT - l‘TTL - kZTL (32)
dTa _
Tt— = kgTL /LbTA (33)
%— = prTA - kl VT - IJ'VV (3.4)

Description of the Perelson Equations

Equation 3.1 characterizes the changes of the uninfected CD4"
T-cell compartment, 7. Perelson assumes uninfected CD4* T cells
have a constant thymic source, s, and undergo logistic proliferation
with intrinsic rate constant, r. Uninfected cells can be lost to latent
infection via the mass action term k;VT, or to natural death at rate
Wy

Equation 3.2 quantifies the rate of change in the latently-infected
CD4* T-cell population, T;. These cells are produced from unin-
fected CD4" T cells with rate, k;VT. They can be lost to natural
death at a rate Ly or converted to actively-infected cells at rate k,.
Equation 3.3 is a description of the rate of change of
actively-infected CD4" T cells. T4. Their source is latently-infected
cells with rate k,, and they die with rate .

Equation 3.4 depicts the rate of change in the virus population, V.
The only source term for virus is from actively-infected cells at rate
Nu,,, where N denotes the average number of virions produced by an
actively-infected CD4* T cell. Virus is lost two ways: to natural
decay at rate U, , and via infection of new T cells, k; VT, as in equa-
tion (3.1).
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Perelson assumes the only way a CD4* T cell can be lost due to HIV
is by cellular infection. This means that in the model, he attempted to
explain CD4" T-cell depletlon by hypothesis 3 described in the section
on HIV biology: direct virus killing of cells by productive infection. In
the more general model described in his paper, Perelson incorporates
two additional hypotheses to explain CD4* T-cell depletion: hypotheses
2 and 5, corresponding to syncytia formation and autoimmune
responses, respectively. We now elucidate the salient features of the
simple model.

As discussed before, macrophages are an important reservoir of HIV.
Since this model does not include virus that is produced by macro-
phages, it underestimates the production and concentration of HIV. Per-
elson et al. does, however, include the macrophage component in his
generalized model, and later work [15],[46].

Perelson’s simple model assumes CD4* T-cell proliferation is inde-
pendent of viral load. In the short term, activation and proliferation of
CD4" T cells generally increases with increasing antigen levels during
an immune response. This deficiency is parallel with the lack of
immune response in this model. In fact, the only limitation on number of
free virus in the Perelson model is the number of CD4* T cells available
to infect. In vivo, CD8* T cells have been shown to greatly limit viral
growth, not only by direct killing of virally infected cells by CTLs, but
also inhibition of viral replication by suppressor cells {22]. The immune
response is important to HI'V-host interactions, especially early in infec-
tion, and should not be overlooked.

Despite these limitations, the design of the Perelson model is praise-
worthy for two reasons. First, the latently-infected CD4* T-cell popula-
tion is included in the system. Cellular infection is not a simple binary,
yes/no response and Perelson incorporated this. Second Perelson used
the literature to estimate parameter values. Unlike the Dolezal and
Hraba model, Perelson gives scientific references for most of the param-
eter values he used. He also did not artificially vary parameter estimates
to get more realistic pictures. The result is 2 more believable, and bio-
logical, description of the pathogenic processes.

One parameter value that Perelson et al. does analyze in depth is N,
the average number of virions produced by an actively-infected CD4* T
cell. N is a transcritical bifurcation parameter; the behavior of the sys-
tem changes drastically when the value of N changes from less than
Nerit (=601) to greater than Ncrit [15]. This is important because the
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FIGURE 3A Perelson et al. model predictions for CD4* T cell levels compared to clinical
data. The model simulations (solid line) contrast with the clinical data (dashed line). Most
noteworthy is the steady-state level of CD4* T cells attained by year four. Complete CDh4*
T cell depletion during AIDS is not predicted in this model. Parameter values are as listed
in [15]

value of N is rather difficult to obtain experimentally; estimates in the
literature are currently in the range 100—-1000 [57]. As the model is con-
structed the value of N is of critical importance: if N<Nrcit, the virus
population will be eradicated from the body; if N>Ncrit, the body
progresses to an infected steady-state with a sizeable viral population.

Using reasonable parameter values and N=800, Perelson et al. per-
form numerical simulations, in particular, a time plot of viral load and
CD4* T cell count is given. Comparing these results to the clinical data
(Figure 3A and Figure 3B), we find that the model does not depict well
the in vivo case. In particular, the model predicts the attainment of a
steady-state level of CD4* T cells after about 4 years of infection. Thus,
this model could capture the primary and asymptomatic states of disease
progression, but does not capture the crash to AIDS. This is the most
serious flaw of the model, since CD4" T-cell depletion is the hallmark of
infection with HIV. The viral load predictions are also discordant with
the clinical data.
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FIGURE 3B Perelson et al. model predictions for viral load compared to clinical data. The
model simulations (solid line) deviate significantly from the clinical data (dashed line).
During primary infection, the model predicts a significant decrease in viral load. recipro-
cal to what actually happens. Furthermore, a viral steady state is attained by year three.
The crash to AIDS that is apparent in the clinical data is absent from the model predic-
tions. Parameter values are as listed in [15]

CONCLUSIONS

Mathematical modeling is a useful tool for describing the dynamics of
complex, nonlinear systems. The human immune system infected with
HIV represents one such dynamical system. The immune system is
composed of highly complex interactions between cells as well as
between cells and virus. There is a delicate balance of viral replication,
CD4'T cell turnover, and the CTL response during HIV disease pro-
gression. The particular elements of these interactions emphasized in a
given model depend on the views of the investigator and the hypotheses
being tested. However, mathematical descriptions are only as good as
the current biological understanding: as the knowledge base expands,
newer and more accurate models can be constructed. Here we have
examined some of the earliest models of the HIV-infected immune Sys-
tem-models by Cooper[6],[29], Dolezal and Hraba [7], and Perelson
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[15]-as predictors for clinical observations, as records of the biological
understanding of the late 1980s, and as the predecessors of the current
suite of models.

Cooper structured his model around heterotrimeric complexes that
represented what is now understood to be antigen presentation. He
biased his model toward B lymphocytes, both in the antigen presenta-
tion to CD4* T cells and in the immune response. Since then, scientists
have determined that the role of B cells is less important than other
immune system cells in HIV infection dynamics. Although Cooper
emphasized the wrong features in his model, he did produce a detailed,
mechanistic model that is more explanatory than phenomenological in
its descriptions.

Dolezal and Hraba’s first model attempted to describe CD4* T-cell
depletion with three equations. Viral growth was assumed to be
unbounded and exponential, and no immune response was included. Not
surprisingly, this first model has limited value. Their second model was
an improvement over the first by including a CTL immune response and
thus limitations on viral growth. Moreover, numerical predictions with
this model qualitatively match clinical data, although no parameter esti-
mation discussion is given.

Perelson’s model included a latently-infected CD4* T cell population
and parameter estimates based on experimental data. The numerical pre-
dictions deviate significantly from the clinical data-most notably com-
plete CD4* T cell depletion is not predicted. Improvements to his
model, such as the addition of macrophage and infected macrophage
populations, helped to improve the concordance between the model pre-
dictions and clinical data [15],[46].

Examining early models allows us to contrast current biological
understanding with what was understood in the late 1980s. This retro-
spection helps keep current investigation in context. Indeed, early mod-
els such as these set the stage for the expansion of immune system
modeling. Numerous models of HIV-immune interactions have since
been developed. Current hot topics include pharmaceutical and immu-
notherapies as well as the dynamics of the latently-infected cell popula-
tion in patients undergoing treatment with highly active anti-retroviral
therapy (HAART). Certainly many aspects of treatment are not
well-understood, and it is conceivable that ten years from now today’s
models will be evaluated against the current biological understanding to
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assess how science has progressed, and how modeling has assisted that
progression.
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