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A DIFFUSION MODEL FOR AIDS IN A CLOSED,
HETEROSEXUAL POPULATION: EXAMINING RATES OF
INFECTION*

DENISE E. KIRSCHNER!

Abstract. This paper considers a model for the spread of acquired immunodeficiency syn-
dromc (AIDS) in a closed, purely heterosexual population. Using asymptotic expansions, we
derive a set of governing partial differential equations to approximate the population of propor-
tion infected. By assuming a very narrow distribution of partners and a closed population, we
examine both the initial spread of the AIDS epidemic and specific subculture populations which
lend themselves well to this scenario. A main issue explored in this paper is determining a way
to estimate an individual’s infection rate—the probability of becoming infected with HIV given
a fixed individual risk. In particular, as an individual’s risk increases, which we define to be the
number of different sexual partners per year, we observe, through traveling wave solutions, the
increase of an individual’s chance of becoming infected.
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1. Introduction. A number of models have looked at the acquired immuno-
deficiency syndrome (AIDS) epidemic in different venues. This paper’s contribution
lies in the estimation of the chance of becoming infected with human immunodefi-
ciency virus (HIV) given a fixed risk. Comprehensive reviews of existing models can
be found in {1}, [25], for example. To examine the AIDS epidemic, it is important to
try and quantify some of the contributing factors. One major problem concerning
individuals is their personal risk of becoming infected with HIV. Quantifiers have
been suggested to estimate this risk. They range over age, number of people with
whom needles are shared, population density of the city in which one lives, ethnic
group, socioeconomic status, sexual preference, behavior, and number of new sexual
partners per year. These are just a few of the many possible groupings that put
one in a higher or lower risk group of becoming infected. Given an individual has
a fixed risk, we explore a way of quantifying an individual’s chance of becoming
infected with HIV. We choose as the risk factor the number of different sexual part-
ners per year per individual and denote this number ». From data, this appears to
be the main counter [30]. This does not take into account how many contacts take
place with each different partner, just the total number of different partners. We
can account for this through multiplication by an appropriate function to deal with
multiple contacts. We must also distinguish between the actual number of partners
an individual has per year from the desired number of partners per year. A person
is placed in the category of risk r if their desired number of partners is r (whether
male or female). We balance this with a term r;(¢,r), which is the actual number
of different partners one has given one is of risk r (i represents either male or fe-
male). Using asymptotic expansions, we derive expressions for this rate of infection
for both males and females and explore the results through numerical simulations.
Other important factors relate to how people choose their partners. Only now with
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the onset of AIDS has the great importance of this type of information been recog-
nized. This type of behavior has recently begun being studied at the sociological,
epidemiological, and mathematical modeling level [7].

Much work has been done on modeling the effects of HIV in the homosexual
community [2],[5],[10],[13]-[16]. According to the Centers for Disease Control, the
five states with the highest incidence of HIV infection in the heterosexual population
are New York, California, Florida, Texas, and New Jersey. These states contain the
largest cities, and inner cities, in the United States. Therefore, given the increasing
numbers of heterosexual AIDS victims in Africa and in these inner cities of the
United States, we are motivated to consider only a closed, purely heterosexual
community with a strong preference toward partners of similar risk. The reasons for
this are many. For example, in the inner-city groups, intravenous drug users share
needles and exchange sex for drugs on a regular basis. Inner-city gangs usually have
fixed “groupies,” individuals of the opposite sex of the gang members who socialize
only with gang members. Individuals in these groups share similar risk behaviors;
hence, considering a similar risk-based heterosexual population is plausible. This
risk behavior is commonly referred to as the like-vs.-like phenomenon and has been
studied extensively (e.g., [4])-

2. The model. For AIDS, since there is no recovery, we divide the population
into three groups: the susceptibles (S), the infecteds (I), and those diagnosed with
AIDS (A). The susceptible population consists of those individuals who are sexually
active and are not yet infected. The infected population are those who have been
infected but are not showing signs of clinical AIDS as of yet (i.e., cancer, loss of
weight, respiratory or nerve disorders, etc.). And, last, the AIDS grouping is for
those who have progressed to AIDS and/or are removed from the sexually active
population. We always assume that once one moves from susceptibles to infecteds
or infecteds to clinical AIDS, one cannot flow back. With the inclusion of vaccine
and chemotherapy treatments, this model can be extended to have movement in all
directions. .

Time t is calendar time, and once an individual moves from group S to group I,
we begin marking 7, the age of infection. Then, upon moving to group A, we mark
time as 7, the age since diagnosis. For the structure variable, we will define the risk
of the individual, », which governs the probability of moving from one population
category to the next.

We begin with a simple interaction to describe the events which take place
during the epidemic. If a single heterosexual population is considered according to
the three mutually exclusive groups—susceptibles, infecteds, and diagnosed AIDS
cases—we observe compartmental changes in the usual way, in that the susceptible
population can become infected (at rate A) and become infecteds. These infecteds
can convert to AIDS at rate v(7) (dependent on time since infection).

We delineate a two-population model simply by using the subscript i, where
i € {M,F}. Note that an i or j subscript will always refer to sex (i.e., male or
female). Thus, S; refers to the variable S for the sex i. There are six equations
with six auxiliary conditions, which are

(1) as‘i(t’ T)/at = SOi(t,T) - /J'Si(ti 7‘) - Ai(t’ T)Si(t, T)’
(1) Ii(t,r,0) = Xi(t,r)Si(t, r)
(2) OIi(t,r,7)/6t + OI;(t,r,7) /0T = —(v(7) + p)Li(t, 7, 7),
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(2) Ai(t,r,0) = /oo ~(7) (L, v, T)drT,
0
(3) OAi(t,r,7)/8t + BAi(t,r, 7)/07 = —(8(F) + p)Ai(t,r, #),
(4) Ai(t, )y =7ri(t,7) /oo pi(t,r,8)K;(t,r, s)ds, i#je{M,F}
0

A list of variables and parameters is given in Table 1, but we present a brief
description here as to the meaning of each:
ri(t,r) = actual number of different partners per year (to simplify notation, we
will write r; only);

u = natural death rate of persons in sexually active population;
So; = density of people with r new partners per year before AIDS was in-
troduced into the population;
v(T) = per-person rate of developing AIDS for those infected T units of time
’ ago;
6(7) = per-person death rate due to AIDS for those diagnosed 7 units of time
ago.

In the system (1)-(6), Ai(¢,r), the per person rate of infection per susceptible,
is needed to fully specify the system. This is one of the main issues explored in
this paper: a way to estimate the infection rate, \;. If'we examine the definition of
A(t,r) given in (4), we see it depends on three functions: K (t,,s), the probability
that a person of sex j and risk r will be infected by a person of sex i with risk s;
ri(t,r), the actual number of different partners per year; and p;(t, 7, s), the mixing
function, which is discussed in the next section.

2.1. Mixing functions: pr(t,r,s) and pa(t,r, s). The functions p;(t,r, s)
are, more precisely, the density functions for population i of risk r of their partners
of risk s of sex j. Many have explored partner selection and pair formation in re-
gards to disease modeling—for example, [6],(8],(9],[11],[16], [18]..In.1991, Busenberg
and Castillo-Chavez [5] gave nine general cases for mixing functions, each arising
from different assumptions. Here we present a few to motivate our choice.

For any one- or two-sex model with heterogeneous activity Blythe and Castillo-
Chavez [4] described mixing functions of the form p;(t,r,s),4 € {M, F}. The idea is
that f:+As pi(r, z)dx represents the fraction of partners that a person with activity
r has among individuals with activities in the range [s, s + As).

For these functions p;(t,r,s), there are some natural conditions which arise,
namely,

(5a) L pi(t,7,8)ds = 1,

(Sb) pi(t1 T, 8) 2 07

and

(6) pa(t,, s)rM(t, T)NM(t, r) = pp(t, S, T)Tp(t, S)Np(t, 8),

where Ni(t,r) = Si(t,7) + f0°° Ii(t,r,7)dr represents the total scxually active pop-
ulation.

Equation (5a) guarantees that the probability density function integrates to onc
so that the people of risk r actually have an average of r;(t,r) different partners per
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TABLE 1

Independent variables
t calendar time,
age of infection,
age since AIDS diagnosis,
risk factor of individuals (i.e., number of desired different sexual partners per year),
s = risk factor of partners (r,s > 0 and r,s € Z*).

LR
e n

Dependent variables

To model risk-based behavior, we suppose that the population can be distributed according
to the number of its new sexual partners per year. Distribution refers to the total numbers per
risk at time t.

Si(t,r) = distribution of uninfected individuals having sex with partners of risk r,

I;(t,r,7) = distribution of non-AIDS infecteds with risk r at time ¢, and duration of infection
T at time ¢,

A;(t,r,#) = distribution of AIDS cases with risk  and duration of AIDS 7,

Ni(t,r) = total number of sexually active individuals with risk r in the population at time

t,
Ni(t,r) = S8i(t.r) + [ Lit,m, 7)dr,

ri(t,r) = actual number of different partners per year (to simplify notation, we will write
r; only).
Parameters
u = natural death rate of persons in sexually active population,
So; = density of people with r new partners per year before AIDS was introduced into
the population, '
~4(T) = per person rate of developing AIDS for those infected T units of time ago,
6(#) = per person death rate due to AIDS for those diagnosed # units of time ago,

B(r,r) = probability, for an given individual of risk r, of an infection per contact with an
infected person who has been infected for 7 time units (usually, we assume 3(7,7) =
B).
Functions

Ai(t,7) = per person rate of infection per susceptible (incidence at a fixed time),

pi(t,r,8) = the fraction of partners of people with risk » who have risk s (i.e., the fraction
of their sexual partners chosen at time ¢ that have risk between s and s+ ds is
Pi (t, T s)ds)i

K;(t,r, s) = probability of a person of sex j with risk r being infected by a partner of risk s
at time ¢,

Kyt = [ B0 e

year, and (5b) ensures nonnegative densities. Equation (6) is a balancing equation
such that the number of partners with risk s with whom people of risk r have sex
is the same as the number of partners with risk » with whom people of risk s have
sex. The functions p;(t,r, s) are discussed below.

In a single-sex scenario, proportionate mixing is represented as (cf. [4],[11])

(s,7) = __TN(r)
p&T) = [ zN(z)dz’
In [9], Castillo-Chavez and Busenberg presented a scheme and discussed solu-
tions for a two-sex mixing problem. The equations are
_ rr(s)Np(s)
Pl = T @ N @)z

TM(T')NM (7‘)
I rr(z)Ne(z)dz’
where an alternative balance law to (6) is assumed, i.c., [ rasNas = [ rrNps. They

proved that this is the only separable two-sex mixing function satisfying conditions
(5) and (6).

and pr(r) =
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Hyman and Stanley gave a more general alternative to proportionate mixing
[16], which is expressed as

rN(r)
p(r, 8) SN(s)’

f(s,7)rN(r) s
I f(s,2)zN(z)de (1 B /0 p(s, z)dx),r > s

A main difference of these equations of Castillo-Chavez and Busenberg from
that of Hyman and Stanley is the function fr(r, s). This function f (s,r) is arbitrary
and can aid in fine tuning the behavior of the mixing. This p can also be shown to
satisfy constraint (5).

Expanding the notion of proportionate mixing, we refer to the self-selection
rules from Stanley in [17],[27], [28], namely, the asymmetric rule, where only one of
the sexes in the pairing does the choosing:

p(t r S) = [1 - fo"' Pj(t, S, .’L’)dl']fz’(’f‘, S)T’j(t, S)Nj(t7 S)
T [ = fy pi(t v, u)du) fi(r )5 (6 y)N; (& y)dy

r<s
p(s,r) =

_ pi(t, s, m)ri(t, s)Ni(t, s)
A e AT TS

For our purposes here, we assume two major factors: first, that the females, in
this purely heterosexual population, do the choosing—in other words, if a pairing
takes place, then it was the female who chose the partner, and second, that people
choose partners of similar risks. This means that someone who has a risk of 15 most
likely pairs with partners of risk 15 in this like-vs.-like scenario. These assumptions
are dependent on the particular environment of the heterosexual population as
mentioned above. Hence, we choose the asymmetric rule. .

This yields the equation for the density of male partners for women as

_ _ [1=f5 pra(t,s,2)da) fr(r, s)ras(t, s)Nps(t, s)
T8 ) = e v ) ) (6 ) Nae (0035

The idea is as follows. The numerator comes from multiplying the distribution
of females and their male partners, times the acceptance function fF of male part-
ners of risk s for the females of risk 7, times the actual number of male partners
those females have, times the number of available males. This is normalized by
integrating over all the possible male partners of risk s.

The equation for the density of female partners for men is

pr(t,s,m)rr(t,s)Nr(t,s)
rar(t, ) Nas(t,7) ’

(7b) pl\l(t7 T, S) =

which follows from (6).

Here, the function fr(r,s) represents the “acceptance” of females with risk r
by partners with risk s. (It is chosen the same for males here as well, i.e., fr = far.)
In choosing this partner’s acceptance function, we refer to [15], [16]. They consid-
ered intuition as well as data and suppose that partners are chosen according to a
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“Gaussian-like” distribution with density function with mean 4 = r and variance

0?2 =e2(r +a)%:
o2
el -2}

Here the variable is s, which represents the risk of the partner, and r is the fixed risk
of the person. Since we assume s, > 0, the values of the density function for s < 0
are taken to be zero. These assumptions allow for a widely spread distribution for
high-risk individuals and a very narrow distribution for low-risk individuals. The
(r + a) prevents the low-risk distribution from degenerating (i.e., that there is some
minimum variance). The parameter a is going to be of order one. So this choice
of f allows the distinction between high- and low-risk groups (i.e., risk factors of
r = 3 or r = 4 give basically the same distribution but one very different from
that of » = 15) which is independent of sex (i.e., the same function for both males
and females). The c is a constant which cancels in (7a). For any of the following
discussions, we must impose the restriction that f(r,s), when left in general (as
there are mant appropriate choices for f(r,s)), is strictly positive. Otherwise, the
mixing functions, p;(t,r, s) do not satisfy the conditions (5) and (6).

To simplify the formuation and to combine the two properties (72) and (7b),
examine the expression for the female infectivity, (7a), and use condition (5) to
replace the 1— [ pa(t, 7, z)dz term by [ pa(t,r, z)dz. Then, substitute equation
(7b) into (7a). Cancel like terms, suppress the time notation (as this equation should
hold for all time), and define p;(t, ) = 7:i(t,z)N;(t, z). These simplifications yield
an integral equation for pr(t,r, s), namely,

[ pr(z, s)or(z)dz fr(r,s)
LU pr(z,y)er(z)dz) fr(r,y)dy

PF(T', S) =

2.2. Properties of the asymmetric mixing function. It is important to
understand the properties of these mixing functions (7a) and (7b) as formulated in
§2.1. The two main questions are: (i) Do they satisfy constraints (5) and (6) ? (ii)
Does a solution exist to the integral equation (21) defining them? These problems
are nontrivial and have been formulated as a purely mathematical exercise. Namely,
the existence and uniqueness of a solution to (8) have been proven in [21]. We also
present a way to actually construct a formula for the exact solution. This solution
clearly satisfies constraints (5) and (6). So we assume this is given and examine
further. For a numerical discussion of this asymmetric mixing function p;(¢t,r,s),
see [17].

3. Estimation of an individual’s incidence X;(¢,7). Reducing incidence
of infection for each individual is the single most important issue in disease control.
The need for a more understandable and workable expression for describing the per-
person rate of infection is the focus of this section. The term A;(¢,r) is represented
in terms of general functions for which we have no good quantitative or qualitative
estimates. To estimate this infectivity function A;(¢,7), we will use the method of
asymptotic integral expansions. The complete asymptotic analysis appears in [19];
however, a detailed overview is presented in Appendix A.

We begin by examining the densities for males and females (i.e., the partnership
pairing functions) as they appear in (4), the definition of A;(t,r). We first calculate
a workable expression for the female infectivity function, Ap(¢,7) and then proceed
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to calculate it for the males, namely, Aar(t,7) The final expression, derived in
Appendix A and [19], is

(8a)Ap(t, 1) ~ [KM(t,r,x)+E—2£r2iq-E[ a(trx)— 2‘:?\’:% :;K’ (t,r,:):)“

T=r

where / denotes derivative with respect to the structure variable, z and where
K (t,r,8) = fo (7, r)%’ﬁ%dr. It now remains to find an expression for the in-
fectivity of males, namely, Aa(¢,7). Intuition tells us it should be similar to that of
Ar(t,r), but in actuality, because of the nonsymmetric partner-choosing functions,
it is different. However, if we were to let the males do the choosing in this scenario,
we would derive equal but opposite expressions for the A;’s, respectively. We omit
here the details of this derivation, since the asymptotics used are similar to that in
the case of deriving Ap(¢,7). The expression for Ap(t,7) is

rm(t)Kr(t, T, ) PE(t,7)
AM(t, T) ~ RN [(2‘PM(t7:) _ (pp(t,r))]

revaN-T g

(8b) + Kp(t,r, x)e(r + a)rp(t) [3(,0F(t, ) + 2¢(r + a)p’r (2, x)}

+ Kg(t, 7, z)ra (t)e2(r + a)2pF(t,T)

=T

We add the assumption that @ar(t,7) # 2¢r(t,r). This is reasonable since the sum
over all risks of total numbers of male and female partners should be equal, i.e.,
Jor(t,r)dr = [@p(t,s)ds. This holds from equation (6), which can alternatively
be viewed as

/oo rm(t, )Ny (t, r)dr = /m rr(t, s)NFp(t, s)ds
0

0

This would imply that the functions rr and rps should depend on Nr and Nyy,
respectively.

4. Discussion of the differential equations. We now would like to use
the information gained in the derivation of workable expressions for Axr(t,7) and
Ar(t,r) in the most useful way. If we consider the epidemic in its early stages, or
in a subculture scenario, we can ignore birth and death influences (i.e., So; = v =
u = 0). Examine equations (1), (1’), and (2) for the time derivatives of S;(t,r) and
Ii(t,r) and integrate over all 7. Under these assumptions, these three equations
now reduce to 8:Si(t,r) = —Ai(t,r)Si(t,r) and 8:Li(t,r) = Ai(t,7)Si(t,r). Since we
have integrated over all 7, we will now use the notation I;(¢t,r) for f0°° Ii(t,r,7)dT.
If we let N;(t,r) = S;(t,7)+ f0°° Ii(t,r, 7)dr, which is the total population available,
then for small time this implies 8, N;(¢t,7) = 0 (i.e., N ~ constant), yielding a closed
system. Define Vi(t,r) = Tﬂi(tt—% to represent the fraction infected. This implies
that the dependent variables will satisfy 0 < V; < 1. This, together with the
equation 8;L;(t,r) = Xi(t,7)Si(t,r) = Ai(Ni(t,r) — Ii(t, 7)), while suppressing the
(t,r) notation for ease, yields

9) oV = M(1-V;).
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Examine equation (8a). From the definition for Kas(2, 7, s), together with neglecting
changes in the probability of infection per contact with an infected partner since

we are considering the like-vs.-like scenario (i.e., 8(7,r) = 8), for a fixed time and
at 7 = 0 we have Ky (t,r,7) = Wl(!:—:)- BVar(t,r); hence, the expression for (9)

becomes a nonlinear partial differential equatlon in Vaprand Vg:

O:VF = B(1 - Vp)rr [VM + <s2(r;- a)z) (;i;M(i;) OV + 33VM>]

In a manner similar to that of the equation for females, we have 8;Vyy =
Anr(1 = Vr), with Kp(r,r) = fVp(r), and substituting in our now asymptotically
expanded version of Aps, (8b), implies that our coupled set of nonlinear partial
differential equations is

0:Vr = B(1 — Vp)rp

2 2 /)
Vu + M (—MT—)&VM + 67?VM)
2 om(r)

o % (r)
0. Vu = B(1 — Vu)rm [¢M(r)(2goM(r) - ‘PF(T'))VF+

(352(7” + a)pr(r) + 2e2(r + a)2<p’F(r)>a Ve + or(r )an
om(r) om(r) om(r)

To simplify this for analysis, let the coefficients of Vs, 8-Vy and 82V be
Co(r), Ci(r,€), and Ca(r,e) and those of Vr, 8;Vr and 82VF be equal to Cs(r),
C4(r,€), and Cs(r, ¢), respectively, i.e.,

(138,) Co(’r‘) = B’I‘p,
_ —Pu(r) Brre3(r + a)?
Ch (T‘,é‘) = —(-’#_)——-——2——-
(13¢) Cafr,e) = ZEET LD
C(r) ~ Brap%(r)

or(r)(2eom(r) = or(r))’

38rme(r + a)or(r)  2rapBe?(r + a)?

Glne)=—— " e

p(r),

Brue*(r + a)?or (r)
wrp(r)

and Cs(r,e) =
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This yields the system

(14) 8:Vr = (1 — VF)[CoVas + C18:Var + C207 V],
8:Va = (1 = Vay)[C3VF + C48, Vr + C582VF).

When one has no partners, one’s probability of becoming infected is zero, and when
one has an “infinite” number of partners, one’s probability of becoming infected is
one. (In actuality, of course, we assume the right boundary condition is less than
00, and we replace the oo with a large number R..) Therefore Dirichlet boundary
conditions of the form Vg(t,0) = Var(¢,0) = 0 and Vr(¢, Rx) = VM (t, Ro) = 1 are
chosen. These are the simplest form of boundary conditions for the epidemiological
problem. Another correct boundary condition would be to impose a zero flux of
infection. This could be achieved by using an approximation to this condition, such
as Vi, (t, Reo) = V. (t, Roo) = 0.

The first derivative term in the first equation of (14) is interpreted as the fe-
male’s partners of higher-risk men. The following diffusion term represents the fact
that the females have male partners of both higher and lower risk than their own
risk. However, due to the £2 coefficients, convection and diffusion occur slowly in
that they are centered around partners of similar risk. The second equation of (14)
for the males is interpreted similarly. Models involving both convection and dif-
fusion have been used to explain spatial distributions of animal populations that
are principally controlled by the interference between individuals and other envi-
ronmental conditions [12]. If convective effects are large compared with diffusion,
then the population dynamics are, except near the boundaries, dominated by the
convection and interaction terms [22].

A first question that arises focuses on the type of system this is (e.g., parabolic,
hyperbolic, etc.). Examining the system (26) we see it “looks parabolic.”

In matrix form it becomes

(U) _ ( 0 A(U)) (U) + ((C(U,V,Vx))

v/, B(V) 0 V)ex DU, V,Uz) }°

The eigenvalues of the highest order coefficient matrix are A = £/ A(U)B(V). This
says that the system cannot be parabolic since the matrix is not positive definite.
The system is not well posed as an initial value problem unless the matrix has real
nonnegative eigenvalues. It is the negative eigenvalue which corresponds to the
solution to the backward diffusion equation (see below). Systems of a similar form,
however, are referred to as cross-diffusion. They occur when the diffusion matrix is

not strictly diagonal. Cross-diffusion is not common, and little work has been done
in this area. The general form of a cross-diffusion system is

vy _ 0 AU, V) U + c(U,V,Vy)
v/, “\-B(V,U) 0 V) ie DU, V,Uz) )
Since our equations do not satisfy the above criteria, we refer to them as
pseudo-cross-diffusion equations and examine further.

Let VFp — Vi = W and subtract the second equation of (14) from the first.
Suppressing the coefficients, this yields the cquation

We = =W, — W, — W + other terms.
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This is parabolic in form; however, the ;W = —~W,, part implies there is a back-
wards diffusion equation embedded in the system. This does not appear all the
time, as the coefficients must be of a certain form to derive this exact scenario;
however, the irregularity can be seen numerically, as the solutions can wildly oscil-
late for small time and certain parameters and coefficients, especially focused near
and on the boundary [20].

This irregularity is a result of the asymptotics carried out to determine the
cxpressions for Ap(t,r) and Aa(¢,7) (see Appendix A). The methodology carried
out was a straightforward one, and this sometimes is insufficient for the needs of the
individual problem. This was the case for these equations. When dropping terms
of O(£2), which was thought justified, we lost terms that would have accounted for
this irregularity. These all need to be reexamined to uncover the irregularity. Stan-
ley [27] has reexamined this work presented here and discovered a second method
in deriving similar equations. We only mention this here and cite a paper where
one can see this different procedure in full detail. (Her procedure also faces prob-
lems with asymptotic breakdown.) Stavros Busenberg (personal communication)
hypothesized that the reason for the breakdown in both the asymptotic approaches
mentioned is that the higher-order terms were dropped in the expansions and hence
the balancing equation constraint (6) is no longer satisfied. We plan to explore this
possibility as further study. We now explore this irregularity further.

4.1. Analytical results.

4.1.1. Solving for steady-state solutions. To begin an analytical discus-
sion, we first point out that the full system (14) has two constant solutions: Vg =
Vas = 0 and Vg = V3 = 1. However, because the boundary conditions are not
satisfied, these are not valid solutions. To solve the equations for steady-state solu-
tions, the left-hand side of (14) is set equal to zero. This is solved if Vk = Vs =1
(case 1) or if CoVasr +C18,-Vas +C282Var = 0 and C3Vr + C40, Ve + C502VF = 0 are
both satisfied (case 2). (The other combination yields the first case again.) Since
the constant solution does not satisfy the boundary condition, we look to case 2 for
a solution.

Since the two equations of case 2 are of similar form, we will examine the first,
CoViar + C18:-Var + C202Vy; = 0. For notation ease, we will write V = V) for
this discussion. Using equations (13a)-(13c), the coefficients, we can rewrite this

system as Vir — f:; E:er + EQ(Tﬁ_aPV = 0. As discussed below in §4.1.3, we can
approximate @as(r) by ';13'; therefore, the coefficient of V is -‘T—3 For simplicity, we
choose a = 0. The results discussed below are similar to the case a # 0, so we omit
the details. Therefore, the equation we are solving is £2r2V,, — 3e2rV;. + 2V = 0.
A Cauchy-Euler transformation, namely, 7 = e?, yields the constant coefficient
equation €2V}, —4£2V; 42V = 0. Since € < 1 (and here we must require ¢ < v/.5=.71
to have the imaginary eigenvalues), the solution is:

V(r) = r3[c1 cos(win|r]) + ¢z sin(win|r|)],

where w = 1v/2~4e2. The boundary conditions V(0) = 0,V(Rs) = 1 must be
satisfied. The first is satisfied for any choice of ¢1,c2. The second gives an explicit
formula for one in terms of the other. For a particular value of R, we can find
the exact solution. For cxample, with Ry, = 50, and ¢; = ¢z, we get the graph in
Fig. 1.
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The second equation yields a similar result. Again, we see the underlying
irregularity in the derived equations. We attempt to remedy this in the next section.

4.1.2. Solving the partial differential equations. Here we attempt to
regularize equations (14). This is possible because the trouble arises in the O(e?)
term (a high-order term), and we assume that the next-order term in the expansion
would regularize the equations. Consider the full system (14). We will use an idea
similar to that in regularizing the Korteweg~de Vries equation by the Benjamin-
Bona-Mahony equation [3]. We replace only the cross-diffusion terms as they are
the irregular terms (as seen in the backward diffusion equation discussion) and get
the new system

(15)
Vi VeV  2CiVag, "V,
VF¢=(1 - VF)[COVI\‘I +CIVI\4,. + 02( gm- + (CO 2, 1\1) _ CO M, + CO NI)],
0 0 Co
1% VaVE)rr V. a7
Var=(1 = Van)| CaVir + CaV, + Cs( My (CaVaVr)rr _ 2C3Var, + C3Vr ||
Cs Cs Cs

This approximation to (14), which is valid up to order £2, can be verified as follows.
First consider (14) up to order one:

(16) Vr, = (1= VF)CoVar and Viy, = (1 = Var)CsVF.
If we take the Laplacian, we have

Vr,,, = (CoVat)rr — (CoVFVar)rr and Vi, = (C3VF)rr — (C3VEVir)rr-
Rearranging the equations and solving for the irregular terms we have

Vr,.. . (CoVEVM)rr 2CoVar, + CoVu
Co + Ca Co and

Vit , (CaVEVM)rr  2C3Vai, + C3V
18 — ”7y —_— 1 N
(18) VF,. Cs + s s

(17) VM, =
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If one wishes to verify the above approximation, examine (15) with (17) and (18)
substituted in and rctain terms only up to order £2. This reestablishes (14) with a
cubic error term:

(19) VF, = (1 = Vr)[CoVas + C1Vay, + CaVar,,] + O(e3),
Var, = (1 = Var)[C3VF + CaVF, + CsVr,, ] + O(e3).

Therefore, up to O(e3), (15) is a good approximation to (14). Hence, we will do
our analysis on (15), which we rewrite, for notation purposes, as

(20) U, = U)[KoV + K1V; + KUsrr + K2(CoUV )y,
I/t = (1— V)[K3U + K4Ur + K5‘/trr + K5(C3UV)rr],

I

with 0 < U, V < 1, V(0) = U(0) = 0, V(Roo) =U(Rw) =1, Ko = Co— &

=Ci- 230, K=&, Ks=Cs- & Ka=Ci— 2% and Ks = &.
A discussion of the existence of a solutlon to the regularized system is pr%ented

in detail in [19]. We omit the details here for brevity.

4.1.3. Numerically solving the regularized system. We numerically an-
alyze the regularized system (20). Define the structlire and time grid as follows.
Let h represent the change in the structure (i.e., Az) and k represent the change
in time (i.e., At). The superscripts will refer to the discretization in time, and
subscripts will refer to discretization in structure. If we discretize with respect to
both time and structure, we can write our equations in matrix form as AX = B,
where X (i) are the Un+1(%) terms (respectively, V+1(3)), B(I) are the functions
of Un(%) (respectively, V"(i)), and the matrix elements are

2K2( ) K2( ) —K2()

Ai(i) = 1+ ——=(1-UP), A2(i) = (1-U?), and As(i) = 3 (1-ur)
for i=1,...,n—1 for the first equation and
A(G) = 1+2K5(’)(1 —Vm), Ag(i) = K5(’)(1 —V), and As(i) = Ks(’)(l —vn)

for the second equation. Since both of these coefficient matrices are diagonally
dominant (i.c., | Al |>| A2 | + | A3 |), we solve these two systems using a simple
Gaussian elimination explicit method [25]. The boundary conditions, since they are
known quantities, are included in the B(1) and B(n — 1) terms, respectively.

To carry out the numerics we make the simplification that the total number
of partners per time for each sex is equal, and in similar risk populations, this
behavior is not unexpected. Therefore, we assume wp(t,7) = @p(t,r), implying
Tar(t, T)Np(t,7) = rr(t,7)Np(t,r). For the simulations, choose the population
sizes, Nj, to be 1dent1ca.l for cach of the respective populations (i.c., Nr = Njy)
and distributed as % [16], [17). This means that the size of each population with
respect to risk decreases as an inverse quartic as the risk grows. Of possible intcrest
would be to investigate the effects of different distributions such as inverse cubics
or squares.

The actual number of diffcrent partners per year, ri(t,r), will be taken to be
the same as the desired number of partners per year, 7, i.c., ri(r) = r. This follows
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from the definition of  and makes sense since we are operating under the scenario
of like vs. like (that people in the same risk category pair). We range possible
values of r from 1 partner per year to 50 partners per year.

For the parameter 3, the probability of infection given that a contact takes
place, we refer to [29] and use an estimated value of 0.001. (Note that here we con-
sidered that only one contact takes place per partnership regardiess of risk. This
can be modified by scaling by a “number of contacts” function.) It is also appro-
priate, however, to allow for two separate probabilities of infection, i.e., Bras and
Barr, and see how different rates affect the overall behavior. We did this by consid-
ering the infectivity from an infected man to an uninfected woman (B r=0.01) to
be ten times that of the infectivity from an infected woman to an uninfected man
(Brar=0.001) [24]. At the end of the calculation, we see the percentage infected
as twice that in the females as the males (Fig. 2). So this difference in infectiv-
ity greatly affects the dynamics of the disease spread, especially in a heterosexual
population. Variable infectivity, the probability of infection given contact, has been
examined further in [21], [29].

The boundary conditions are Uy = 0,V = 0, Ug. =1, Vg =1. The runs
were calculated using an S-shaped, hyperbolic tangent initial condition of the form
.5(Tanh(4/25(t,7) — 25) + 1), which satisfies the boundary conditions. (Calculations
with different initial curves were carried out, but we do not present them for brevity.)

We centered this S-curve at different places to see the effects of only high-risk
populations infected and watch the curves diffuse slowly into the low-risk groups
over time. The time frame for these simulations is not-scaled but presented in 1800
units. For our purposes we will consider this as 18 years. (This is a direct scaling
calculation, which can be easily remedied by appropriate choices of parameters.)
If we examine the graphs, there is a time plot shown for every 2 years, moving in
the negative x direction. These are sustained traveling wave solutions. We begin
by varying different values of €. Here ¢ was varied discretely from 0.01 to 0.1, but
runs are shown only for values 0.01 and 0.1. For the grid sizes, we choose Az to
be the maximum risk 50, divided by the number of grid points. In most cases,
Az = 0.1. For the time grid spacing, At values of 0.1 to 0.5 were considered. Both
consistency and convergence tests were carried out and shiowed little or no change in
the solutions as we varied grid size. We calculated residual errors for the difference
equations on each time step and found them at each time step to be approximately
on the order of 10—14 to 10-16. The fact that we observed little change in the
output when changing the grid sizes is a good indication that the numerical system
is stable and converges to the analytical solution.

We find the numerical solutions for Vr and Vs as they appear in Figs. 2-4.
We carried out these runs for different values of ¢ (Figs. 3 and 4) and for different
values of B (Fig. 2). Note as the curves move to the left, they become steeper
and steeper. The width of each front is determined by the diffusion term in the
equations; hence, larger coefficients give a wider-shaped front (this would be the
case for large r) and small coefficients give a steeper front (the case for small r) (cf.
13a-13f). This follows from the fact that the distribution of partners for higher-risk
individuals is wider than that of individuals at lower risk. (Think of the individuals
at lower risk as being “choosier” in the like-vs.-likc scenario.) It is the partners of
the upper-middle-risk to middle-risk individuals who “diffuse” over risk and time
into higher risk categorics. However, for long enough time, cvery risk category can
be infected. The advection is thc dominant term in the equations; this is what
retains the S-shape of the curve.
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FiG. 2. (a) Graph of infected females, Vr vs. r for (15). Time is in years. The curve on
the eztreme right is the initial condition, and consequent years, by two, move to the left. Here
€ =0.01,8rF = Brasr = 0.001,h = 0.1, and k = 0.5. Even with ¢ smaller, for long time we still
see that the percentage infected reaches a high proportion. (b) Graph of infected males, Vs vs. T
for (15). Time is in years. The curve on the extreme right is the initial condition, and consequent
years, by two, move to the left. Here € = 0.01,B8mF = Bras = 0.001,h = 0.1, and k = 0.5. Even
with ¢ smaller, for long time we still see that the percentage infected reaches a high proportion.
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Fic. 3. (a) Graph of infected females, Vp vs. v for (15). Time is in years. The curve on
the extreme right is the initial condition, and consequent years, by two, move to the left. Here
€ =0.1,8rmF = Brar = 0.001,h = 0.1, and k = 0.5. Now, for much longer time, we see that the
percentage infected reaches a high proportion. (b) Graph of infected males, Vs vs. r for (15).
Time is in years. The curve on the extreme right is the initial condition, and consequent years,
by two, move to the left. Here ¢ = 0.1,Bp1r = Brar = 0.001,h = 0.1, and k = 0.5. With the
higher diffusion rates, due to larger e, the populations saturate faster as compared to Fig. 3.
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FIG. 4. (a) Graph of infected females, Vr vs. r for (15). Time is in years. The curve on
the extreme right is the initial condition, and consequent years, by two, move to the left. Here
€ = 0.1,8ra = 0.001,h = 0.1, and k = 0.5. Here, we considered different B’s. We see the
fraction of females infected twice that of the males for time equivalent to that in (b). (b) Graph of
infected males, Vyy vs. v for (15). Time is in years. The curve on the eztreme right is the initial
condition, and consequent years, by two, move to the left. Here e = 0.1,80mF = 0.01,h = 0.1,
and k = 0.5. However, for the males, the distribution remains wide, even for low risk.
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The cpidemiological implications arc explained as follows. Following from our
assumptions, we arc cxamining this system at the carly stages of the cpidemic or in
_ certain subculture scenarios where a closed, similar-risk population can be found.
The results show that there arc higher concentrations of individuals at low risk than
at high (in cither males or females).- However, a higher concentration of the high-
risk individuals is infected. We see an cnormous diffcrence between the high-risk
individual’s outcome and the low-risk individual’s. And thosc individuals at high
risk have significant increases in their numbers of infecteds as time increases. Be-
causc we arc cxamining the populations with the birth and death processes removed,
cventually, for long cnough time, everyone will become infected.

We observe, finally, that the equations have different signs in the convection
terms. The first equation of (20) has K7 > 0, while, the second has K3 < 0. This
ariscs from the nonsymmetry in the mixing functions and the biasing in the choosing
of partners (that women get to do the choosing). Because therc are more lower-risk
individuals in a population, more partncrs arc chosen from lower risk categorics.
And since the women do the choosing, they most likely choose from risks which are
the same or lower.

5. Conclusions. Here we have presented a simple model to describe the in-
teractions of a purcly heterosexual population. By defining risk as the number
of diffcrent sexual partners per year, we have seen, tlearly, that the higher the
risk of the individual, the greater the chance of becoming infected and that this
risk increases over time. This is true specifically in the like-vs.-like scenario where
a pairing would take place between partners of similar risk. This result is more
restrictive than that uncovered for the homosexual population by Hyman and Stan-
ley [15] because we impose two things: female choosing and equivalent population
distributions. However, here we are addressing certain communities as mentioned
above.

Estimating rates of infection now lies in the correlation between risk category
and sex (male or female). It is clear that if the infectivity (probability of infection
per contact) is higher for male-to-female transmission than female-to-male and that
the number of different sexual partners per year puts one at a higher risk of becom-
ing infected; thus, educating these high-risk individuals can clearly be a powerful
decterrent in the spread of AIDS.

Appendix A. As Ap(t,r) is composed of functions, we begin first by approx-
imating those in order to get an expression for this infection rate.

Substituting equation (7b) into (7a) gives an integral equation for pr(t,r, s),
namely,

g .z, ,z)Ng(t.z)d
(1 f eelzelne Rl PRI - fo(r, s)rac(t, ) Nas (2, 5)

(21) pr(t,r,s) = = — " :
fOoo (1 - fO pF(tt‘:"lg)(tz()tNA)l%F;; M)fF(T’ y)TI\I(t, y)NA'I (t? y)dy

Substituting an expression for the total number of partners available per unit
time, @i(t,z) = ri(t,z)Ni(t,z), and using definition (22a) below yield (22b) (with
time fixed):

- [  2e(@)
(228) ar(ris) = [ prizs)- Eolds,
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(1 ~ gr(r,8))fr(r,s)
pr(r,s) = o (s) I5° om(@)(1 — gr(r,z)) fr(r, z)dz

evaluated at a fixed time t.

Now we would like to compute Ap(r) = rr [;° pr(r, s)Kpm(r, s) ds.

We will use the methods of asymptotic expansions to estimate this. Substitut-
ing for pr(r,s) from (22b) gives

[T _ om(s)(1 = gr(r,s)) fr(r, s)
(r) =rs /0 Kon(r,8) - e (o = e ) e e

Substituting in for the acceptance function fr(r, s) gives

2
rE fooo on () Kne(r, s) (1 - gr(r, s))e—% ((r—s)/e(r+a))

2 ds.
I em(@) (1 - gr(r, 2))e-d(e-avet+a)” gy

Ar(r) =

Let N (resp., D) be the numerator (resp., denominator) so that Ar(r) = N/D.
Now define

{ n(r,s) =rrKum(r, s)(l - gr(r, S),)(PM(S),
p2(r,z) = (1 - gr(r, 2))ou ().

We will make the assumptions p; and p2 € C3(R*), where R+ = [0,00). This is
not unreasonable since the functions which p; and p2 are composed of are expected
to be well behaved.

This falls in line with the epidemiology. We are considering a special case of
mixing, namely, like vs. like, and under this scenario these assumptions are not
unreasonable. Assuming the derivatives of p; are of exponential order (bounded)
is also reasonable. For example, if r; = r and N; = ;l;, r > 0 (see §4.1.3), The
functions p;(t,7,s) and K;(t,r,s) are also expected to be well behaved. (For a
discussion of p; see § 2.1, mixing functions.) K;(t,r,s) behaves like a scaled version
of Vi(t,r,s), which is the proportion of infecteds, which is certainly bounded (by
definition) and most likely smooth.

Then the expressions which make up p1 and p; are composed of functions which
are expected to be well behaved, and hence assuming they are in C3(R+) is valid.

We can now write (23) as

Ji° emdltr=a)/elr+a)p, (1, 5)

ds
Ar(r) = fO e— 3% ((r—-z)/e(r+a))? pa(r, )d:L‘

b_l 2

Since N and D have the same form, we can expand

o0
N(r) = / -4 ((r=8)/(e(r+a))p, (1. 5) ds
0

and then use the result to approximate D. Make the change of variables t = E(%-‘Tajv
which implies s = r + £(r + a)t and ds = ¢(r + a) dt. For the limits of integration,
s =0 implies t = —r/e(r + a) and s — oo implies ¢ — oco. Hence,
o0
N= et /2p(r,e(r + a)t + 1) - e(r + a) dt.

—r/e(r+a)
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Break N into two intcgrals as follows:

0
N =N+ N =/ e~t*2pi(r,e(r +a)t +7)-e(r +a)dt
—r/e(r+a)

oC
+/ e~t*2py(r,e(r + a)t + 1) - e(r + a) dt.
0

Examine N2 first. The idea used here is that we are examining the integral e(r + a)
I e~1"/2p, (e(r + a)t) dt. Expand $1(t) in a Maclaurin series about t = 0:

p1(t) = p1(0) + &(r + a)tp} (0) + €2(r + a)? %ﬁ'{(o) + Rs(t),

where Rs(t) is the remainder term obtained by approximating p1(t) by a second-
degree Taylor polynomial. We make the assumption (justified above) that the third
derivative of p; is bounded. Call this bound C. (We can also assume it is of
cxponential order as well, and the proofs below are similar, but constants arise
differently.) Examine the integrals

g(r+a) /ooo e~t*/2 (131 (0) + &(r + a)tp}(0) +£2(r +a)? ;;ﬁ’{(O))

oo 3
+ed(r +a)t /0 e—t’/2ﬁ'l”§(t)%dt,

for some £(t) between 0 and t by Taylor’s theorem. We will first examine the last
integral above. Since we assume the third derivative is bounded by C, then we
bound this integral by

et 0
(25) << -é—(r + a)4C/ e—t’/2¢3dt.
0

Clearly, Ce—t"/2t3 < e~t*/4 for t, sufficiently large. Now, choose o based on this ¢,
and hence equation (25) is bounded by

{e2 0
<< gd(r +a)*C (/ e-t*/2t3dt + / e—‘2/4dt) .
0 a

The first integral is bounded, as is the second. Call their sum M. Therefore,

equation (25) is bounded by €4(r +a)*CM. This term is bounded by § if e(r+a) <
/4

(%)’

e , and hence is small. Therefore, we will restrict our analysis to

Nz ~e(r+a) /w e—t’/2 [Pl (r,r) + (r + a)Ba2p1 (1, x)-

0
(e(r + a))?

t+ )

t2
8§p1 (T‘,I) . -2—] dt

T=r ‘
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We have three integrals to evaluate with the restriction that g(r+a) << 1,
ie., r<< % We state cquivalently that a < 1. But, as is standard,

(1) e(r+a) /oo e~t'/2p(r,7) dt = \/ge(r +a)pi(r, 1),
0
(ii) (e(r+a))? / 8op1(r,r) - tet*/2dt = (e(r + a))282p1(r,7),
0
(iit) 2(121‘13 /000 3pi(r,r)-t2/2 e-t?/2dt = w\/gagm (r,7).

Thus,

No ~e(r+a) [\/-g'pl(r, r) +e(r + a)fpi(r, z) + \/gﬂ—;-g)}—a%pl(r, 1:)]

We carry out similar analysis on N1, and combining both Ny and N2 gives

N ~ 2¢(r + a) [pl(r,r)\/g + 52—(-7-:-;—(1—)33'3?1(7‘, z)\/g]

with a similar expression for D in terms of pz. This implies

=T

z=r

2 2 2(r+a)? 85p1(ryz)
Ap(r) ~ PLOTE Ltel gy (r,z) _ pi(rnr) |14 et
pa(rr) + ECEE g2p () pa(rT) | 14 £lper pCo)
PZ(Tvr) T=r
Now, expanding the denominator and neglecting the O(e4) terms we have
pi(r,r) | (r+a)? [Bpi(riz) _mi(rT)
Ap(r) ~ + - - 82pa(r,z
Y R T =t M o e |

From (23), p1(r, 8) = rrKum(r, 8)p2(r, s); thus substituting this and its appro-
priate derivatives in (26) with o (z), we have (with ’ denoting derivative with
respect to the structure variable)

e2(r +a)?

5 [ 4 (1, )
L GEIR 81 - gr(r, z)]wM(r)H

Ar(r)=TF [KM(’I‘,:C) +

(1 - gr(r,m)]em(z)

=T

From the expression for Ar(t,7) in (27), we see the only expressions left to evaluate
are gr(r,7) and d2gF (7, z)|z=r. If the expansions are valid, our assumption is that
we need 82gF(r, ) to first order. This is because Kn(t,T, s) is a specified function.
Namely, K (t,r,s) is the probability of a male of risk s being infected by a female
partner of risk r. From equation (22a),

i ‘PF(tau)
r(t,r, s =/ t,u,s) ——du
gr(t,1,s) A pr( )smw(t,S)
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Plugging in for pr(r.s) from cquation (22b) gives

er(u)(l - gr(u, s)) fr(u, s)
9r(r.s) / T e @fr(w, o)1 - gr(uz) da "
Now define
(28) q(u 8) _ (1 - gF(U,S))(,DF(U)

T om(@) fr(u,z)(1 - gr(u,z))ds’
This yields _
gr(r,s) = / ce™3((==s/e+a)g(z, 5) da.
0

If we cxamine (15), it is evident that the denominator also depends on u, the
variable of integration for the outside integral. Thus we cannot expand this first.

The expansions are valid for r > 0. Let t = (z +a) This implies z = *lfa“t‘ and

dr = %_‘:—t"')‘} dt. This change of variables is justified because t — z is a strictly
monotone decreasing function. For the limits of integration, z = 0 implies t = s/za
and z = r implies t = (s — r)/e(r + a). Replacing the s/ea by oo (this implies that
§ >> g) because € > 0 is small, together with the change of variables and if we

cxpand the 7+_t? term and keep only terms of order &, yields

o ‘s —eat
gr(7,8) ~ e(a + s)c/ e—tz/zq( ,s) dt.
( (s=7)/e(r+a) 1+et

Evaluating at s = r, assuming ¢ € C?, and expanding q in a Taylor series about
the first component, we get (we also assume that the same assumptions are present
here on g as on p; above)

+ O(e2) dt.

o
~ —£2/2 T —€at
gr(r,r) ~ela+ 1')c/0 e [q(r, r)+ ( 15t .

- r) dq(z, r)i]

Here we assume that O(g(r, 7)) = O(d1g(z,r)). Since the coefficient of d1¢(z, ) is
O(e?), and we retain only up to order &, we can drop this term from the expansion.
This yields

(29) gr(r,t) ~c-ela+ r)\/gq(r,r) + O(e2).
Now we need an expression for g(r,r). From equation (28)

(1 —gr(r,1))er(r)
30 q(r,r
(30 {ror) = Jo" en(@) fr(r,z)(1 ~ gr(r,z)) dz
From the same arguments applied to (25), we approximate this denominator in an

asymptotic expansion and neglect the O(e3) terms, and plugging into (30) yields

~ — PET)
q(r,7) ~ o (;2 :_:l) 75 If we use this expression for g(r,r) in (29)

T wr(r)
gr(nr)~elat T)\/;[SOM(T)%(T o) ;J ’
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so we have

iy 220
gr (fs 1") 2" H(r)'

Since we are considering the scenario of like vs. like, we are concerned only
with the limiting case of s = r; hence we can now use this asymptotic expansion
for gg(r,r) in (27), the expression for Ar(r),

Ap(r) ~rF [Xﬁ{n z) | ' __ : e
+—"f"+‘*) [Kn  2Kyr3) - 81 -ss-(r,znw(z)]]{ -

lpu(r) - £57)

(r,2)
+ 0(53)
We neglect the O(e3) term. Now the only term left to approximate is
B ssicait s 7
—gr(r. ::)'I_ .
Ox £ Gor
Begin by examining (28), the expression for gr(r,s). We wish to calculate its
first partial derivative and evaluate at z = r:
T
gr(r,s)=c / q(z, 8)e~ 1 z=0)/e(z+a))* 4o
0
dgr(r,z) @ ( f' Yo b (-2) ey :) [
b — 2 c | -qly,z)e y—z)/e(y+a))
e B8 a(y,z)e” 2 dy i
Using similar asymptotic expansion arguments, we can show

Ogp(r,z)| e
dz o

=T

The complete details for deriving this result (31) are found in [19].
Therefore, our final expression for Ap(r) is

Ar(tyr) ~ v [Kietr, 713 SEEL (i ,0) 2B sy || -

A complete, detailed discussion of what has been presented here can be found
in [19].

We mention here that the equation for ¢(r,r) is possibly problematic. The ¢
in the denominator is an indication that there may be problems using this type of
asymptotic expansion. We discuss this in §4.
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