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1. Model calibration, validation and implementation
1.1. Determination of vascular source micro-compartment (VSM) density

Physiological vascular density has been measured at 170-285 capillaries/mm? in 2D
slices of tissue 12 or 293 cm?/cm3 (3D surface area of blood vessels per volume of
tissue)3. We also measured the vascular density in a sample of normal non-human
primate lung tissue, although tissue compression artifacts when taking slices of
normal lung tissue are likely to lead to underestimation of vascular density in this
sample. VSM density in GranSim is defined as a percentage of the total grid
compartments. We can calculate the number of vascular sources per mm? from this
definition to compare to 2D literature values. To compare to the 3D literature value,
we approximate the 3D density represented by our 2D grid (Figure S1-A) using
stereology, a technique used to estimate 3D tissue composition from 2D slices*. The
method places arcs on a grid overlaid onto an image, and extrapolates the vascular
surface per volume of tissue from the number of intersections between arcs and
vascular walls. We also apply stereology to the sample of normal NHP lung (Figure
S1-B) to get a 3D density estimate for NHP lung tissue. To interpret the image of
normal NHP lung and identify which areas are blood vessels, air sacs and lung
tissue, we use image classification from geographic information system (GIS, Figure
S1-C). Below we elaborate on each method.

Stereology. We use the Grid Cycloid Arc plug-in for Image] for stereological analysis
with a 20x20 grid for arc placement>6. We acknowledge that stereology was not
developed for use on in silico images, and that our 2D grid assumes all vascular
sources are perfectly cross-sectioned (no longitudinal sections).
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Figure S1: Vascular source density estimation. (A) Representative image of VSM locations in GranSim
with arcs used for stereology shown on the overlaid grid. Black squares indicate VSMs and the
stereology grid is placed within a “counting frame” smaller than the original image, as per the method
description* (B) Fluorescence microscopy image of normal lung tissue. Green is von Willebrand factor
(vascular marker); red is B-actin; blue is cell nuclei stained with DRAQ5 (a DNA stain). (C) ArchGIS 10.1
classification of the microscopy image at the same scale as original image. Dark blue is blood vessels;
light blue is air sacs; red is lung tissue; white dots are pixels of mixed classes (i.e. “edge” pixels) and

comprise <1% of total.

Image classification of the microscopy digital image. For the NHP lung vascular
density estimate, we use a fluorescence microscopy image of normal lung tissue
stained for von Willebrand factor, B-actin and cell nuclei. The image was imported
into a geographic information system (GIS) program, ArcGIS 10.1. We created
training sites for blood, tissue, and air as identified by microscopy (ArcGIS 10.1, on
the imported microscopy image). This produced a digital, classified image
measuring 200 x 200 (40,000) pixels referenced to the same spatial scale as the
original image. By creating an internally consistent reference system relevant to the
original image, scale (distances and pixel size) remains consistent. Thus, the
classified image reveals accurate spatial and areal relationships of the different
tissues classes. The resultant ASCII file (from the classified image) is imported into
Matlab for further analysis. The classified image (Figure S1-C) is used for
stereological analysis.

Results. Numerical data on vascular density in normal human or non-human primate
lungs are limited. We therefore base our vascular density parameter on three pieces
of information: (1) vascular density values in the literature, (2) our estimate of 3D
vascular density in an NHP lung sample, (3) ability of the integrated model to
reproduce rabbit antibiotic penetration data’. Using this information to constrain
the vascular density parameter, we selected a density of 8.8%. This value has a 2D
density of 220 capillaries/mm?, which is within range of literature estimates (170-
285 capillaries/mm?). The 3D vascular density represented by this density
parameter, as determined by stereology, is 185 + 13 cm?/cm3 (mean + SD; N = 3)



which is lower than the literature value of 293 cm?/cm3, and as expected, higher
than our estimate from the NHP lung sample (50 cm?/cm3).

1.2. GranSim calibration for 200x200 grid size

GranSim has been calibrated to match per granuloma CFU curves measured in NHPs
on a 100x100 simulation grid8® (Cilfone et al., submitted 2014). In order to achieve
more realistic granuloma sizes for use in this work, we recalibrated the model to the
same NHP data for a 200x200 grid size. The calibrated control parameter set is
given in Appendix A and model results are plotted with NHP data in Figure S2.
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Figure S2: Time course of CFU per granuloma for NHP (black) as well as GranSim (red) using the
parameters in Appendix A. The model captures the high early peak (~30 d.p.i) before the onset of
adaptive immunity, and the long term stabilization of CFU numbers after ~100 d.p.i.



1.3. GranSim validation

As in previous published versions of GranSim19-12, the larger grid format version
used here is able to reproduce a range of granuloma-scale infection outcomes and

granuloma phenotypes, including outcomes observed in TNF, IL-10 and IFNy knock-
out mice 13-15 (Figure S3).

Virtual knock-outs
Control TNF knockout

[IL10 knockout IFN knockout

Figure S3: Virtual TNF, IL-10 and IFNy knockouts.. Compared to control granulomas (small with some
caseation and localized bacterial growth), TNF and IFNy knockouts show excessive bacterial growth

and caseation, and large granulomas. IL-10 knockout granulomas resemble WT granulomas but with
reduced bacterial growth and increased inflammation.



1.4. Tunable resolution

Previous versions of GranSim focused on understanding the roles of TNF and IL-10
cytokine dynamics at a molecular scale and how receptor-ligand trafficking events
(modeled as a system of non-linear ordinary differential equations (ODEs))
influenced infection outcomes!%11. Although many TNF and IL-10 events were
identified as critical to control of infection, our focus in this work is to understand
issues that arise during antibiotic treatment at the single granuloma level, and
antibiotic dynamics add another level of model complexity. Thus, we apply the
concept of tunable resolution to our model to not only retain our understanding of
the roles of TNF and IL-10 during infection but also reduce model complexity and
computational burdent. Our methods are motivated by the sensitivity analysis
results that we performed in 19 to identify key model features. Briefly, the system of
ODEs in 10 is replaced with the following equations describing the change in soluble
TNF and soluble IL-10 concentrations in a compartment containing an agent:
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Where k{ryr and kg, are the apparent secretion rates of TNF and IL-10, k.ryr and
k.10 are the apparent rate constants for consumption (which incorporate
estimates for total receptors and any scaling factors for both TNF and IL-10), and
Kpr1, Kpr2, and Kp; are affinities for TNFR1, TNFR2, and IL-10R respectively. Each
quotient represents the bound fraction of surface receptors assuming a pseudo-
steady state.

Additionally, we re-write probability functions that relied on molecular scale details
in terms of soluble TNF and IL-10 concentrations:
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knrss Kapop) Tnrie @and Tgpop are modified rate constants and thresholds for TNF-
induced NF-xB activation and apoptosis, respectively, while f;,; is a partition factor
for estimating internalized bound receptors from the pseudo-steady state estimate
of surface bound receptors. These resulting rate constants and parameters can be
estimated from their corresponding parameters when the molecular scale detail is
returned to the model (our computational model allows these sub-models to be

turned on or off).

Lastly, inhibition of TNF synthesis by IL-10 is reduced to a simple dose dependence

function based on the soluble IL-10 concentration in the compartment.
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Where k{ryr is the apparent secretion rate of TNF, a is the threshold parameter, and
B is the shape parameter. These parameters are calculated directly from results of
the system of ODEs. These new model parameter values are given in Table S1.

Table S1: Tunable resolution parameters.

Parameter Value Unit
Apparent TNF consumption rate 0.00077 | st
Apparent IL-10 consumption rate 0.0004 | st

Partition factor for estimating internalized bound receptors 11.3 | -

Threshold for IL-10 inhibition of TNF secretion -1.93 | -

Shape parameter for IL-10 inhibition of TNF secretion 0.181 | -

Apparent TNF secretion rate by macrophages 1.5 | Molecules/s
Apparent IL-10 secretion rate by activated macrophages 0.3 | Molecules/s
Apparent IL-10 secretion rate by infected macrophages 0.02 | Molecules/s
Apparent TNF secretion rate by I[FNg producing T-cells 0.15 | Molecules/s
Apparent TNF secretion rate by cytotoxic T-cells 0.015 | Molecules/s
Apparent IL-10 secretion rate by regulatory T-cells 0.739 | Molecules/s
Affinity of TNF for TFNR1 1.9x10-11 | M

Affinity of IL-10 for IL-10R 4.56x10-10 | M




1.5. Spectral methods for solving diffusion equations

Spectral methods for solving PDEs are a class of collocation methods that analyze
the discretized system in a global instead of a local manner!7-21. The solution to the
entire system is assumed by a basis function and time-varying coefficients are
determined such that the solution to the system is satisfied. Importantly, spectral
methods reduce PDEs to ODEs, reducing the computational burden of the numerical
approximation?0. We adapt the basic method for our needs to allow insulating
boundary conditions and apply simple smoothing pre-processing steps to limit
errors associated with discontinuous concentration fields 22 (Cilfone et al.,
submitted 2014).

2. Uncertainty/Sensitivity Analyses and Classification
2.1.Sensitivity analyses: PRCC and eFAST results

Parameter ranges for the host-specific PRCC are given in Appendix A in the main
text. Parameter ranges for the antibiotic-specific PRCC are given in Appendix E in
the main text. PRCC identifies model parameters that significantly correlate with
model outcomes. Significant host (Table S2) and antibiotic (Table S3) parameters
are shown. Host parameters are grouped into categories corresponding to those
discussed in Table 1 in the main text and the categories for significant parameters
are indicated in Table S2.

The one additional parameter identified as significant by eFAST that was not
identified by PRCC is the intercompartmental clearance rate constant (Q). This
parameter was shown to significantly contribute to variation in the time to
clearance (p<0.05). There is no evidence of a non-monotonic relationship between Q
and time to clearance in the residual plots from the PRCC analysis. Therefore this
could indicate that Q contributes to the variation in the system but without a clear
relationship to the output. This argues for the need of an accurate estimate of Q to
eliminate some of the noise in the system.



Table S2: Host parameters showing significant PRCC with total Mtb, chromosomal equivalents or time to clearance at the end of treatment.
Parameter categories refer to categories discussed in Table 1 in the main text.

Controls INH RIF
Parameter Parameter Time Time Time
category Tot Mtb To Tot Mtb To Tot Mtb To
Mtb. CEQ1] Clear Mtb. CEQ1] Clear Mtb. CEQ1] Clear
Number of host cell deaths causing caseation Caseation --- -- - --- - ---
TNF threshold for causing apoptosis TNF apoptosis ++ + +++ ++ +++ +++ +++
Rate of TNF induced apoptosis TNF apoptosis +++ + --- ++ --- +
Time steps before a resting macrophage can move Cell movement - -
TNF threshold for activating NFkB Mac activation +++ +++ +++ +++ +++ +++ +++ +++ +++
Rate of TNF induced NFkB activation Mac activation --- --- --- --- --- --- ---
Resting
macrophage
Probability of resting macrophage killing bacteria killing - - -
Threshold for intracellular bacteria causing chronically Time bacteria
infected macrophages are intracellular +++ +++
Probability of an activated macrophage healing a
caseated compartment in its Moore neighborhood Caseation +
Probability of a T-cell moving to the same compartment
as a macrophage Cell movement - -- - - - -
IFNy producing Tcell probability of inducing Fas/FasL T cell-mediated
mediated apoptosis killing - -
IFNy producing Tcell probability of producing IFN Mac activation --- --- - --- --- --- ---
T cell-mediated
Cytotoxic T-cell probability of killing a macrophage killing -
Macrophage maximal recruitment probability Recruitment ++ ++ + +++ +++ + +++ +++
IFNy producing T-cell maximal recruitment probability Recruitment --- --- --- --- -- --- ---
IFNy producing T-cell half sat for chemokine recruitment | Recruitment --

-/+:p <0.01; --/++: p< 0.001; ---/+++: p<0.0001

[1]: CEQ (chromosomal equivalents) or the number of bacterial genomes represents the cumulative bacterial load since it has been shown that bacterial

genomes persist when bacteria are killed?23. The difference between CEQ and CFU represents the degree of bacterial killing.




Table $3: Antibiotic parameters and their correlation with antibiotic distribution (AUC and granuloma:lung ratio) and treatment

outcomes (final total CFU and time to clearance). Parameters are listed followed by the sign of the PRCC (-/+: negative/positive
correlation) and the rank of their correlation in brackets (Rank 1: most influential).

Plasma PK parameters

Lung tissue PK parameters

PD parameters

Total CFU

Plasma clearance rate (+) (1)

Degradation rate constant intracellular (+) (1)
Effective diffusivity (-) (1)
Cellular accumulation ratio (+) (1)
Vascular permeability (-) (1)

Max activity intracellular (-) (1)
Max activity extracellular (-) (1)
C50 for intracellular Mtb (+) (1)
Hill constant for intracellular Mtb (+) (1)
Hill constant for extracellular Mtb (+) (1)

AUCin
granuloma

Plasma clearance rate (-) (1)

Degradation rate constant intracellular (-) (1)
Cellular accumulation ratio (-) (2)
Vascular permeability (+) (1)

Granuloma:
Normal lung
AUC ratio

Degradation rate constant intracellular (-) (1)
Effective diffusivity (+) (2)
Cellular accumulation ratio (-) (2)
Vascular permeability (+) (1)

Time to
clearance

Plasma clearance rate (+) (2)

Degradation rate constant intracellular (+) (2)
Cellular accumulation ratio (+) (2)

Max activity extracellular (-) (2)
C50 extracellular non-replicating Mtb (+) (2)
Hill constant for extracellular Mtb (+) (1)




2.2.Naive Bayes classification.

This method uses early model outputs (day 100), called features, to make
predictions about final model outputs (day 280). Using the features listed in Table
S4, the Bayes classifier is able to predict treatment outcome with 82 - 90% accuracy
for INH regimens and 80 - 87% accuracy for RIF regimens (Figure S4).

Table S4: Pre-treatment features predictive of treatment outcomes using the Bayes classifier.

Feature categories refer to categories discussed in Table 1 in the main text.

Pre-treatment Feature

Feature category

Number of resting macrophages

Granuloma size

Number of infected macrophages

Intracellular CFU

Number of activated Ty

T-cell activation

Number of IFN producing Ty

T-cell-mediated killing

Number of Tcyt downregulated by Tregs

Tcell activation

Number of TNF producing Tcyt

Tcell activation

Intracellular CFU

Intracellular CFU

Non-replicating extracellular CFU

Non-repl CFU

Cumulative number of bacteria killed by TNF induced apoptosis

TNF apoptosis

Cumulative number of bacteria killed by cytotoxic Tcells

T cell-mediated killing

Cumulative number of bacteria killed by activated macrophages
intracellularly

Mac activation

Cumulative number of bacteria that died in caseum

Caseation

Total TNF

Mac activation/ TNF apoptosis

Total IL10

Mac activation

Total chemokines

Recruitment and movement

Grauloma size

Granuloma size

Number of caseated compartments

Caseation

Number of caseated compartments healed

Caseation

Number of infected macrophage killed by TNF induced apoptosis

TNF apoptosis

Number of chronically infected macrophages killed by TNF induced
apoptosis

TNF apoptosis

Number of infected macrophages with TNF induced NFkB

Mac activation

Number of Tcells killed by TNF induced apoptosis

TNF apoptosis

Number of macrophages killed by Fas/FasL induced apoptosis

T cell-mediated killing

Number of macrophages killed by cytotoxic Tcells

T cell-mediated killing

Number of macrophages exposed to Mtb

Mac activation

Cumulative number of activated Tgamma

Tcell activation

Cumulative number of activated Tcyt

Tcell activation

Cumulative number of activated Treg

Tcell activation

Average time spent intracellular per Mtb

Time spent intracellular per

bacterium

Cumulative intracellular Mtb

Intracellular CFU
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Figure S4: Predictive accuracy of Bayes classification method based on selected subset of features
described above. Accuracy is shown for cleared and non-cleared granulomas separately and the overall
accuracy of the two groups combined.

Each feature used for the Bayes classifier represents an output of the model at day
100 (pre-treatment), e.g. “Number of infected macrophage killed by TNF induced
apoptosis” is a cumulative measure of how many infected macrophages have been
killed by TNF-induced apoptosis in the first 100 days of infection. These features
depend on the model parameters that we analyzed using PRCC, e.g. “TNF threshold
for causing apoptosis”. Together these two methods identify early predictors
(features) of treatment success or failure as well as the mechanisms (parameters)
that drive them.

3. Antibiotic pharmacokinetic and pharmacodynamics sub-model calibration
3.1.Plasma PK sub-model calibration

Parameter ranges sampled for fitting of NHP plasma PK indices are given in Table
S5. These parameter ranges were guided by data values derived from rabbits 7 as

well as from human studies?425,

Table S5: Parameter ranges sampled for plasma PK calibration

Min Max

Absorption rate constant 1.00 5.00
Intercompartmental clearance rate constant 0.02 0.20

INH | Plasma volume of distribution 0.10 2.00
Peripheral volume of distribution 20.00 40.00
Plasma clearance rate constant 0.20 2.00
Absorption rate constant 0.10 1.50
Intercompartmental clearance rate constant 0.05 0.70

RIF | Plasma volume of distribution 0.50 20.00
Peripheral volume of distribution 0.10 2.00
Plasma clearance rate constant 0.05 0.50




3.2.Tissue PK sub-model calibration

We calibrate the model using normal lung tissue and granuloma AUC observed in
rabbits 7 by sampling parameter space for Kdeg,i, Kdege, D, a, and p in the ranges given
in Table S6. The ranges were guided by knowledge about pharmacochemical
properties of INH and RIF26-28, Parameter values were selected that minimized
differences between experimental measurements’ and model predictions of AUC
ratios relative to plasma. We discuss specific parameters in more detail below.

Table S6: Tissue PK parameter ranges used for model calibration

RangeMin RangeMax

INH

Degradation rate constant extracellular (Kgeg,e) 1x10-10 5x10-6
Degradation rate constant intracellular (Kdeg,i) 1x10-6 1x10-2
Effective diffusivity (D) 1x10-8 1x10-6
Cellular accumulation ratio (a) 3x10-1 1.3
Vascular permeability (p) 1x10-7 1x10-4
RIF

Degradation rate constant extracellular (Kgeg,e) 1x10-10 1x10-6
Degradation rate constant intracellular (Kdeg,i) 1x10-6 1x10-2
Effective diffusivity (D) 1x10-8 1x10-6
Cellular accumulation ratio (a) 2 20
Vascular permeability (p) 1x10-7 1x10-4

Lung tissue PK calibration resulted in an estimated diffusivity (D) of 1.1x10-7 cm?/s
for INH. Experimental data for small molecule diffusion in granulomas is not
available, but data from tumors (another densely packed cellular structure) can be
used as an estimate. Our estimated diffusivity is on the same order as the diffusivity
in tumors (~5x10-7 cm?/s) obtained empirically taking size, lipophilicity and
number of hydrogen donor and accepter sites into account?®. It should be noted that
based on molecule size alone, the estimated diffusivity for INH in tumors is ~1x10-5
cm?/s?7, suggesting that the physicochemical properties of INH limit its movement
in tissue.

Lung tissue PK calibration resulted in an estimated vascular permeability (p) of
8.4x10-¢ cm/s for INH. This is 1 log lower than the predicted vascular permeability
in tumors based on size alone 1x10-# cm/s?’. However, given the effects of the
physicochemical properties of INH on diffusivity it is possible that these properties
also limit vascular permeability. We consider our estimate to be a lower limit of
permeability since the rapid conversion of INH pro-drug to its metabolites can



result in an underestimation of experimentally measured concentrations in the
rabbit granuloma data to which we are comparing?8.

Lung tissue PK calibration resulted in an estimated diffusivity (D) of 7x10-7 cm2/s
for RIF. We anticipate low effective diffusivity of RIF since it is between 84 and 91%
protein bound?® and protein binding reduces effective diffusivity3%31. Indeed, the
estimated diffusivity of small molecules in tumors obtained empirically taking size,
lipophilicity and number of hydrogen donor and accepter sites (but not protein
binding) into account is ~1x10-¢ cm?/s26. Our predicted diffusivity for RIF is higher
than the predicted diffusivity for INH despite the larger size of RIF, and is due to the
high lipophilicity of RIF relative to INH. Model calibration resulted in an estimated
vascular permeability (p) of 1x10-> cm/s for RIF.

INH32 and RIF33 passively diffuse into host cells and differentially accumulate inside
cells. Cellular accumulation ratios (ratio of intracellular to extracellular
concentrations) have been measured in vitro in macrophages or in alveolar cells
from patients34-37. Calibrated values for cellular accumulation ratios (a) of INH
(0.35) and RIF (18) were within range of experimental observations: experimental
cellular accumulation ratios vary between 0.45 and 1.03 for INH and between 2.5
and 16 for RIF35-37,

3.3.PD sub-model calibration

In the case of INH, for the extracellular bacteria population, Bg, the Csg s is set to the
value for bacteria in broth culture 0.04 mg/L38. Intracellular bacterial population,
growing in macrophage monolayers have been reported to have similar3?, lower#041
or higher32 (5o than bacteria in broth culture38. We assume an equal apparent Csp
which, due to lower host cell accumulation of INH34, gives a Csg,p; of 0.02 mg/L, half
of Cso,8£ . Since non-replicating bacterial populations are less susceptible to INH#2
but clearance of infection by INH is still observed in NHPs (Figure 2C)8, Cso,an is set
to 0.5 mg/L42. Intracellular maximum activity of INH is lower than extracellular
maximum activity38, and Emax values were calibrated to reproduce INH efficacy
after 2 months of daily dosing as observed in NHP studies (Figure 2C)8.

Similarly for RIF, the extracellular bacterial population, Bg, value for Csgr is set to
the value for bacteria in broth culture 1.2 mg/L43. Intracellular bacteria, B;, in mouse
macrophage monolayers had RIF Csg s 2.5-fold higher than bacteria in broth culture,
despite a more than 4-fold higher concentration inside cells than outside3>3¢. Since
our model distinguishes between intracellular and extracellular concentrations of
antibiotics we use a Csg,p; of 10 mg/L for intracellular bacterial populations. Non-
replicating bacterial populations (By) show reduced susceptibility relative to
replicating population (4-fold increase in MIC) to RIF and so in this case Csgsn is set
to 5 mg/L#2. Intracellular activity of RIF is lower than extracellular activity*3, and
Emax values were calibrated to reproduce RIF efficacy after 2 months of daily
dosing as observed in NHP studies (Figure 2C)8.



4. Supplemental Figures

4.1.Antibiotic concentration gradients as treatment progresses

In the main text we describe antibiotic exposure for the first day of treatment. In
Figure S5 we show snapshots and antibiotic exposure for 160 and 260 d.p.i. for the
same simulated granulomas discussed in the main text and shown in Figure 5. The

differences in plasma PK parameters between the two granulomas are given in
Table S7.

INH RIF
Day 160 Day 260 Day 100 Day 160 Day 260

Day 100

Granuloma in Figure 5A

Granuloma in Figure 5B

Figure S5: Snapshots and 24 hour antibiotic exposure at three time points (100, 160 and 260 d.p.i) for

the granuloma shown in Figure 5A (top) and the granuloma shown in Figure 5B (bottom). Antibiotic
exposure is shown for INH (left) and RIF (right).



Table S7: Comparison of antibiotic parameters between granulomas shown in Figures 5A and
5B in the main text and Figure S5 above. Parameter units can be found in Appendix E in the

main text.
Granuloma Granuloma
shown in shown in
Figures 5A and | Figure 5B and
S4 S4
Absorption rate constant 4.81 4.18
Intercompartmental clearance rate constant 0.07 0.13
INH | Plasma volume of distribution 0.68 1.97
Peripheral volume of distribution 36.91 22.66
Plasma clearance rate constant 1.12 1.67
Absorption rate constant 0.49 0.59
Intercompartmental clearance rate constant 0.44 0.32
RIF | Plasma volume of distribution 0.65 0.98
Peripheral volume of distribution 0.71 0.83
Plasma clearance rate constant 0.21 0.22

4.2.Proportions of bacteria killed by different mechanisms included in the model

In the main text we identify the importance of resting macrophage phagocytosis and
killing of extracellular bacteria through phagosome-lysosome fusion (i.e. non-
activated mechanisms) using sensitivity analyses. Figure S6 shows the proportion of
bacteria killed by all mechanisms included in the model for untreated and treated
granulomas. Only the bacterial killing that occurs between day 100 and 280 are
included and for the treated granulomas the proportion of bacteria killed by
antibiotics is excluded for this comparison.



Il Death in caseum

I Activated macrophage killing

I Resting macrophage killing

B Macrophage killing of intracellular Mtb
B FasFas-ligand kiling

I Cytotoxic kiling

I TNF induced apoptosis

Antibiotic

Q S \QQ

% of bacterial death caused by each mechanism
(cumulative between day 100 and 280)

Figure S6: Proportion of bacterial killed by host mechanisms differ between treated and untreated
granulomas. For treated granulomas, bacteria killed by antibiotics are excluded for this comparison.
Asterisks indicate significant differences between treated and untreated granulomas. *: p < 0.05, ****: p
< 0.00005. Bars show mean proportions for 412 granulomas.
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