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ABSTRACT 13 

Tuberculosis (TB) is a disease of major public health concern with an estimated one-fourth of the 14 

world currently infected with M. tuberculosis (Mtb) bacilli. Mtb infection occurs after inhalation of 15 

Mtb, following which, highly structured immune structures called granulomas form within lungs to 16 

immunologically restrain and physically constrain spread of infection. Most lung granulomas are 17 

successful at controlling or even eliminating their bacterial loads, but others fail to control infection 18 

and promote disease. Granulomas also form within lung-draining lymph nodes (LNs), variably 19 

affecting immune function. Both lung and LN granulomas vary widely in ability to control infection, 20 
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even within a single host, with outcomes ranging from bacterial clearance to uncontrolled bacterial 21 

growth. While lung granulomas are well-studied, data on LN granulomas are scarce; it is unknown 22 

what mechanisms drive LN Mtb infection progression and variability in severity. Recent data 23 

suggest that LN granulomas are niches for bacterial replication and can reduce control over lung 24 

infection. To identify mechanisms driving LN Mtb infection, we developed a multi-scale 25 

compartmental model that includes multiple lung-draining LNs, blood. We calibrated to data from 26 

a nonhuman primate TB model (one of the only models that parallels human TB infection). Our 27 

model predicts temporal trajectories for LN macrophage, T-cell, and Mtb populations during 28 

simulated Mtb infection. We also predict a clinically measurable infection feature from PET/CT 29 

imaging, FDG avidity. Using uncertainty and sensitivity analysis methods, we identify key 30 

mechanisms driving LN granuloma fate, T-cell efflux rates from LNs, and a role for LNs in 31 

pulmonary infection control. 32 

 33 

AUTHOR SUMMARY 34 

Despite a strong prevalence during pulmonary Mycobacterium tuberculosis (Mtb) infection, lymph 35 

node (LN)  Mtb infection is not well understood. There exists an incomplete understanding of how 36 

infection in LNs, a host’s primary site of pathogen-specific immune cell generation, impacts overall 37 

host immune responses. To better comprehend LN Mtb infection progression and its role within 38 

pulmonary Mtb infection, we developed a multi-scale mathematical compartmental model that 39 

captures key infection mechanisms calibrated to data from a nonhuman primate TB model (one 40 

of the only models that parallels human TB infection). To our knowledge, this is a first-of-its-kind 41 

model for LN Mtb infection and analysis of this model identifies new avenues of research 42 

regarding long-term control and treatment of Mtb infection. We performed analyses on this model 43 

to determine bacterial and host factors that drive LN infection outcomes and how LN Mtb infection 44 

impacts host  LNs ability to aid in controlling pulmonary Mtb infection.  45 

 46 

47 
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BACKGROUND 48 

 49 

Tuberculosis (TB) is an ancient disease with recorded human cases as early as 1700 BCE (1). 50 

Millennia later, it is currently estimated that a quarter of the world has been exposed to or is 51 

currently infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB (2). Mtb is 52 

transmitted through the respiratory route and infection leads to hosts developing granulomas 53 

within their lungs (pulmonary infection). Pulmonary granulomas are hallmark structures of Mtb 54 

infection and a primary focus of research. Multiple granulomas form in response to infection [5]. 55 

These highly-structured immune complexes isolate Mtb and, if successful, control Mtb infection. 56 

Multiple granulomas form within lungs of infected hosts (3) and each pulmonary granuloma’s 57 

ability to control its Mtb burdens is highly variable (3,4). The human immune system has potent 58 

tools for controlling Mtb infection and approximately 80-90% of those infected never develop 59 

symptomatic disease, instead progressing to asymptomatic (latent) infections (5,6). Individuals 60 

with latent TB infection (LTBI) typically do not know that they are harboring Mtb, complicating 61 

infection identification and treatment (7). Furthermore, individuals with LTBI may lose control over 62 

their infections over their lifetime leading to reactivation of active TB. Active TB disease is highly 63 

contagious and is a serious disease that is fatal in 10-20% of patients if left untreated (5,6). 64 

 65 

While lung granulomas are the focus of much investigation in TB, lymph node (LN) infection is an 66 

important aspect of this disease that receives less attention. During Mtb infection, multiple lung-67 

draining (thoracic) LNs respond to antigen presentation via dendritic cells arriving from lung 68 

granulomas. In response, LNs supply CD4+ and CD8+ T cells to lung granulomas to participate 69 

in an active immune response. Data suggest that immune cell activation accomplished by CD4+ 70 

T cells is essential for effective infection containment during Mtb infection (8). LNs are critical for 71 

developing immune responses that facilitate protection against disease, including infection with 72 

Mtb throughout the body. Alarmingly, LNs can become diseased: lung-draining (thoracic) LNs are 73 
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among the most common sites of extrapulmonary TB  potentially impacting immune functionality 74 

(9). 75 

 76 

Identifying mechanisms driving dissemination from lungs to LNs is an active area of research, 77 

and many models by which this can happen have been developed (10). Early radiograph-based 78 

studies identified lymphadenopathy in conjunction with pulmonary granulomas–together, called 79 

Ghon complexes–and showed that the presence of LN infection during pulmonary infection is 80 

common and may be important (11). More recently, non-human primate (NHP) studies show that 81 

LN infection is heterogenous in presentation (12). These presentations range from LNs with no 82 

notable granuloma formation to LNs with severe infection, where  granuloma formation completely 83 

effaces and destroys normal LN architecture; the full range of this disease can sometimes occur 84 

within a single individual (12) (Figure 1).  85 

 86 

 

FIGURE 1: Spectrum and heterogeneity of lymph node (LN) condition during Mtb 

infection. (A) Five sections of LNs taken from Mtb-infected nonhuman primates (NHPs), 

arranged by increasing infection severity. The columns are adjacent sections from the same 

LN stained with different panels of antibodies. The left-most panels present (top) normal 
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arrangements of cell populations including CD3+ T cells, CD20+ B cells, and CD11c+ myeloid 

cells (macrophages and dendritic cells); and (bottom) normal vasculature architecture. LNs with 

increasingly severe disease are shown from left to right, culminating in a LN that is completely 

effaced by granuloma-associated macrophages (right). (B) LNs from the same animal, or even 

adjacent segments of a single LN, can have substantially different levels of disease. In this LN, 

B cells (green), T cells (red), and CD11c+ DCs and macrophages (blue) are shown in a non-

diseased (left) and effaced (right) segments from the same LN.  

 87 

As LNs are primary sites of T-cell priming and expansion, LN granulomas are constantly 88 

surrounded by circulating and clonally expanding immune cells (13). Consequently, LN and lung 89 

granulomas have distinct cellular compositions and likely utilize distinct mechanisms to control 90 

infection (12). Presently, it is not clear how LN infection affects T-cell priming or how T-cell priming 91 

affects LN Mtb infection progression. Given that pulmonary disease can be controlled by 92 

engagement with the adaptive immune system (14) and studies have shown reactivation following 93 

decline of CD4+ T-cell populations (15), one hypothesis for eventual reactivation of pulmonary 94 

infection is a decline in LN function. This happens in other diseases such as in cancer, where 95 

existence of cancer cells within LNs promotes tumor-specific immune tolerance of metastatic 96 

processes in distant tissues (16). It is unclear whether similar mechanisms are at play during Mtb 97 

infection until we better understand basic LN function during Mtb infection.  98 

 99 

Available in vivo models to study Mtb infection within LNs are scarce. Mice do not exhibit 100 

granuloma formation and have only a single lung-draining LN (17). Guinea pig models exhibit 101 

both pulmonary and extrapulmonary disease following aerosol exposure but lack complexity seen 102 

within human disease (17,18). Given invasiveness of LN-specific studies, data on human LNs are 103 

typically provided post-autopsy or, in some cases, PET/CT scans can provide low-resolution 104 
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temporal information. Non-human primates (NHP) are an important in vivo model of LN-Mtb 105 

infection, providing time-series data on inflammation and progression via PET/CT imaging and 106 

detailed immunologic and histologic data post-necropsy (19). NHP studies (particularly with 107 

Cynomolgus macaques) capture a full range of LTBI and active TB disease states, as well as 108 

intra-host heterogeneity as observed in humans (20). These data can be coupled with known cell-109 

scale mechanisms to develop in silico models.  110 

Mathematical and computational models can assist with key analysis to better understand 111 

infection dynamics with applications ranging from basic mechanisms of development (21–23) to 112 

impact on epidemiological scales (24,25). The umbrella term of mathematical modeling 113 

encompasses multiple approaches for mathematical and computational representations of a 114 

target system (26). For systems with multiple physiological compartments or scales, Ordinary 115 

differential equations (ODEs) are a good first approach. For capturing mechanisms assumed to 116 

be influenced by tissue geometry and/or rarer events, many modelers elect to use either partial 117 

differential equations or agent-based models (ABMs) (27–29). Multi-scale models (MSMs) 118 

provide an in silico decision-making tool to help identify promising future experimental targets 119 

across physiological scales. For example, MSMs integrate known cell-scale mechanisms with 120 

experimental data to predict infection outcomes that read out at high scale levels (26). A recent 121 

MSM mechanistically linked from molecular to whole-host scales and recapitulated a fully 122 

immunocompetent CD4+ T-cell priming response to antigen (30). For our studies, special 123 

consideration is required to model the interplay between Mtb and host immune cells in the context 124 

of granuloma formation occurring between physiological compartments. In our previous work we 125 

accomplish this by using MSMs to study pulmonary TB at multiple biological scales ranging from 126 

molecular-to-tissue scales (28,29,31–34) and cell-to-whole-host scales (35,36). 127 

 128 

Thus, for a first iteration exploring LN granuloma formation and the role of lung-draining LNs 129 

infection during pulmonary Mtb infection, we developed an ODE-based non-linear, compartmental 130 
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mathematical model that captures phenomena occurring in different physiological compartments 131 

of lungs, LNs and blood. This compartmental  model elucidates drivers of a wide range of infection 132 

outcomes seen in LNs during Mtb infection. Further, we use our model to identify mechanisms 133 

that predict LN bacterial load, granuloma metabolic activity, and effector T-cell efflux from LNs. 134 

By doing this, we uncovered immune factors leading to LN granuloma progression and describe 135 

how LN granulomas likely contribute to pulmonary infection.  136 

 137 

RESULTS 138 

 139 

In this work, we explore the role of LN Mtb infection and LN granuloma formation during Mtb 140 

infection and the connection of these compartments via cells traveling through blood. We use a 141 

system of ODEs that represent populations of Mtb-specific and Mtb-non-specific T cells, 142 

macrophages, and mycobacteria to identify factors that predict LN granuloma fate. Briefly, we 143 

developed a system of 21 ODEs for each of 5 LNs and 16 ODEs for cells within blood. These 144 

ODEs detail LN granuloma formation and host-pathogen interactions, antigen presentation and 145 

clonal expansion processes within LNs, particularly in response to different states of pulmonary 146 

infection (see Methods, Sections 3-6 for additional details of modeled processes). While 147 

experimentally derived data from a NHP system is only available for 200 days post infection (dpi), 148 

we extend our simulations to 480 dpi. Our model is able to match those first 200 days and then 149 

predict the next 280 days, representing a year and a half of Mtb infection. Critically, we distinguish 150 

between individual virtual hosts via parameterization of each ODE from within a calibrated range 151 

(see Methods, Section 8). That is, each virtual host has distinctly-parameterized ODEs for both 152 

its blood compartment and each of 5 LN compartments, allowing for intra-host heterogeneity. 153 

 154 

Multiscale models capture dynamics of a biological system over different physiological scales and 155 

between physiological compartments  (37). In our model, we explicitly represent whole-host scale 156 
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(lung, LNs and blood) (Figure 2A), individual LN (tissue scale) (Figure 2B), and cellular scales 157 

(Figure 2C-D). We also represent measurable outcomes for both individual and total LN 158 

granulomas (total bacterial burden, e.g.), whole-LN scale (effacement, e.g.), and whole-host scale 159 

(e.g. T-cell efflux / net immune response) (Table 1).  160 

 161 

 

FIGURE 2: Multi-scale development of multiple LN and LN granuloma sub-models. Our 

model represents three major scales of study: whole host (lung, LNs and blood) (A),  individual 

LN scale (tissue) (B) and cellular scale (C-D).  Immune cell types tracked within each LN and 
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blood, respectively, are listed including macrophages and T cells of different subtypes. Created 

in BioRender. Krupinsky, K. (2025) https://BioRender.com/h16o401 

 162 

 163 

TABLE 1: Summary of multi-scale model outcome metrics. To predict host fates, we 

measure multiple outcomes from each LN and, for diseased LNs, each LN granuloma. These 

include predictions of total bacterial burden (CFU), time-to-sterilization, and effacement. 

 
LN-Granuloma  

(cell/tissue scale) 
Whole-LN  

(Tissue Scale) 
Whole-Host  

Scale 

• Total bacterial burden 
(CFU) 

• Total macrophage count 

• Time-to-sterilization 

• Predicted effacement 
(diseased) 

• Mtb-specific and total T-
cell count 

• Predicted FDG avidity 
 

• T-cell efflux 

 

 164 

For the analyses presented in this study, Panel 2B highlights outcomes for three specific LN fates 165 

once seeded with not just antigen, but viable Mtb bacilli: LN granulomas with minimal involvement 166 

during infection, LN granulomas controlling infection with stabilizing bacterial growth, and LN 167 

granulomas unable to control infection with uncontrolled bacterial growth and destruction of LN 168 

architecture (effacement) (Figure 2B). In our model, we define these LN fates based on bacterial 169 

load (measured in units of CFU, see Methods, Section 9.1 for additional details). Additionally, 170 

virtual hosts with LTBI versus those with active pulmonary infection have different dynamics within 171 

their lung-draining LNs based on different antigen-presenting cell (APC) profiles (Figure 3A-B). 172 

For hosts with active pulmonary infection, the APC profile is distinctly bi-modal in contrast to the 173 

APC profile for LTBI hosts. This is due to active pulmonary hosts having two uncontrolled lung 174 

granulomas leading to continual stimulation and sending of APCs to the LNs (see Methods, 175 

Section 4 for additional details). We specifically distinguish outcomes between these two 176 

pulmonary infection profiles throughout (most of the results comparing active cases are presented 177 

in the S3 Text).  178 
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 179 

 

FIGURE 3: Experimental design for virtual infection: Virtual hosts defined and measured 

over time using a multi-scale model (MSM). (A, B) Trajectory of antigen presenting cells 

(APCs) delineating the difference between virtual hosts representing (A) LTBI and (B) active 

pulmonary infection. These trajectories, generated from our HostSim model of pulmonary 
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infection (35), capture two major motifs of how APCs are sent from lungs to LNs in response to 

multiple lung granulomas (see Figure S1). Details of different compartments for the MSM are 

in Figure 2. (C) Prior to pulmonary infection, multiple virtual lymph nodes within each uninfected 

host maintain a stable, steady state population of immune cells. (D) Following a simulated 

pulmonary infection with Mtb at day 1, individual LNs become activated when APCs carrying 

Mtb antigen from the lungs enter the LN by day 15 and antigen presentation induces clonal 

expansion of T cells. (E) We examine how infection within a LN impacts outcomes by inducing 

infection within two LNs for each host (i.e., seed them with viable Mtb at day 21); LN granuloma 

formation follows in those LNs (referred to as diseased). (C-E) were created in BioRender. 

Krupinsky, K. (2025) https://BioRender.com/m68b077 

 180 

LN model calibration captures key dynamics, proportions of disease severity, and 181 

granuloma characteristics. Figure 3C-E outlines our experimental design for the LN infection 182 

protocol. Prior to infection there are no Mtb within virtual hosts (LNs are uninfected). APCs traffic 183 

to LNs from lungs bringing antigen (LNs become activated) and finally LN granulomas form when 184 

seeded with live Mtb (LNs become diseased). We use our model to investigate the relative roles 185 

of T cells and macrophages driving dynamics of this system. To this end, we first seek to validate 186 

our model’s ability to produce trends of T-cells similar to published datasets under multiple 187 

infection conditions.  188 

 189 

It is known that in the absence of host infection, there is a steady-state level of T cells flowing 190 

daily through LNs into blood within the human body and that all T cells travelling through LNs 191 

sample for their antigen match (38). Therefore, we first ensure that a negative control healthy 192 

case follows biological data and dynamics (Figure S3A-B). Namely, that T cells are at normal 193 

healthy T-cell levels (steady state) in the absence of pulmonary infection and that there are an 194 
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equilibrium level of T-cell numbers circulating between blood and LNs. There are no datasets 195 

describing these numbers from experiments or literature in either humans or NHPs, so we 196 

estimate their likely sizes (see Methods, Section 7.2 for additional details). With 1000 non-197 

diseased, healthy virtual hosts (i.e., virtual hosts with no Mtb in their LNs or lungs and no APC-198 

driven activation of LNs), our model captures estimated cell-population sizes of Mtb-specific 199 

immune cells both within LNs (Figure S3A-B) and in blood (Figure S2A).  200 

 201 

Recent data from NHP studies during Mtb infection indicate that even if a granuloma does not 202 

form within a LN, there are still increases in levels of both CD4+ and CD8+ T cells in response to 203 

infection (black dots Figure 4A-B) (8). We define a positive control scenario, wherein virtual hosts 204 

have five activated LNs (with APCs presenting Mtb epitopes arriving from the lung), but where 205 

granulomas are not forming within LNs (no live Mtb present - Figure 3D). In vivo, the presence of 206 

APCs drives recruitment of T cells into LNs (39,40). Accordingly, virtual hosts have an influx of 207 

naïve T cells into a LN in response to APC counts, in our model peaking at approximately 21 days 208 

post infection (see Figure 3A-B for virtual APC counts; and Methods, Section 2 for details) 209 

(35,36). By simulating 1000 virtual hosts with LTBI, we capture general trends and spread of these 210 

immune-cell data from NHP LNs (black points in Figure 4A-B) and blood (Figure S2B) as 211 

expected based on known biological mechanisms influencing these processes. Complete details 212 

describing calibration processes can be found in Methods, Section 8. 213 

 214 
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FIGURE 4:  Evolution of immune cell population dynamics in activated and diseased 

cases within Multiple-LNs for 1000 virtual LTBI hosts. Our model is calibrated to capture 

key dynamics of Mtb-specific T cells (A, C) and total T cells (B, D) within activated (A, B) and 

diseased (C, D) cases. Activated hosts have five LNs receiving Mtb activated APCs. Diseased 

hosts have five activated LNs receiving Mtb activated APCs and LN granulomas forming in LN 

#1 and #2. For diseased LNs, our model captures the dynamics of LN bacterial load (E) and 

macrophages (F). We simulated 1000 separate virtual hosts for each case, generating a distinct 

trajectory for each of their LNs based on their parameterization. Lines in each plot show cell 

populations from the indicated LN within one host. For LN bacterial load (E) and macrophages 

(F), lines are colored by bacterial load trajectory: growing large (purple lines), stabilization (teal 

lines), and sterilization (yellow lines). Flow cytometry data from individual NHP LNs taken at 

necropsy are represented by black dots from (8). Note that lines are truncated on virtual host 

death (see Methods, Section 6). 

 215 

Finally, we consider the case of granulomas forming within 2 of the 5 activated LNs (Figure 3E). 216 

From Ganchua et al., an average of 19-50% of lung-draining LNs contained viable Mtb (with 217 

potential to form granulomas) (8) while other LNs remained activated but not infected (no viable 218 

Mtb, but APCs present). We model such hosts with as having five activated LNs (receiving APCs 219 

presenting Mtb epitopes - Figure 3A-B), two of which become diseased (i.e., seeded with viable 220 

Mtb and forming LN granulomas) starting at day 21 post pulmonary infection. This is identical to 221 

our positive control (Figure 3D and Figure 3A-B) except that within two LNs we seed viable Mtb 222 

to initiate granuloma formation. While it is not currently known how antigen presentation/T-cell 223 

clonal expansion is impacted by granuloma formation within LNs, we assume a minimal 224 

interaction between the two processes: that LN granulomas may recruit effector T cells to 225 

participate in granuloma formation and function, rather than allowing them to efflux from LNs to 226 
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aid in pulmonary immunity. We observe a deviation in T-cell counts from our positive control case 227 

once a granuloma starts to form due to Mtb-specific T-cell proliferation within LN granulomas 228 

(Figure 4A vs. 4B). Additionally, both Mtb and macrophage populations increase at the beginning 229 

of simulated infection and settle into distinct trajectories as infection progresses (Figure 4G-F). 230 

For 1000 virtual hosts we observe that both Mtb-specific and total T-cell counts have dynamics 231 

that reproduce similar behaviors and spreads as seen in NHP data from LNs (black points in 232 

Figure 4C-D) (8) and in the blood (Figure S2C).  233 

 234 

To determine distinctions between the 1000 virtual patients for hosts with LNs that contain APCs 235 

alone and those that have 2 granuloma-forming LNs, we explore both simulated and NHP data 236 

dynamics of CFU and macrophages for these different cases. We observe distinct T-cell dynamics 237 

for simulated LTBI hosts between all three LN scenarios—i.e., LNs that are uninfected (Figure 238 

S3A-B), activated (Figure 4A-B), or diseased (Figure 4C-D). For diseased LNs, LN granuloma 239 

fates are not clearly distinguishable by T-cell count dynamics alone. Figure 4E shows trajectories 240 

for CFU over a 16-month period, and we observe a clear separation between three outcomes of 241 

the trajectories: bacterial levels that are growing large (purple lines), bacterial loads that are stable 242 

(teal lines), and bacterial levels that sterilize (yellow lines) (see Methods, Section 9.1 for details 243 

on classification). We overlay data from the same NHP study (8) for macrophages, showing that 244 

these distinct outcomes over a 16-month timeframe are not driven by macrophage counts (Figure 245 

4F). Figure S2D-F, S3C-D, and S4 shows the active TB case for comparison.  246 

 247 

Our model equations represent macrophage and T-cell behaviors within individual LNs, and the 248 

biology captured in this model has been curated over years (35,36,41,42). As shown here, our 249 

model has been mechanistically calibrated to reproduce LN datasets of T cells, CFU, and 250 

macrophages, suggesting that we can infer the impact of T-cell and macrophage behaviors on 251 
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LN Mtb infection progression. With this well calibrated model, we next investigate key LN-specific 252 

outcomes that are expected to depend on mechanisms related to macrophages and T-cells. 253 

 254 

LN bacterial load. As observed in NHP infection studies, bacterial loads of individual LNs have 255 

unique outcomes (8). We explore three unique LN granuloma fates: 1) complete bacterial 256 

sterilization, 2) granuloma formation and stabilizing Mtb growth, and 3) uncontrolled Mtb growth 257 

(Figure 2B). For fates of LNs that are diseased initially, these granuloma fates are defined by 258 

bacterial load (CFU) at the end of a simulated infection (day 480) (additional details are found in 259 

Methods, Section 9.1). We examine 2000 diseased LNs pooled from 1000 virtual hosts for each 260 

pulmonary infection scenario (LTBI and active). Among 2000 diseased LNs, a percentage of 261 

individual LNs exhibit each of these three bacterial fates (Figure 5A). Surprisingly, within 262 

individuals with active lung infection, we see similar percentages of the three granuloma fates 263 

(Figure S5A). To determine mechanisms driving these three unique granuloma fates, we 264 

performed a sensitivity analysis (see Methods, Section 10). Sensitivity analysis explores the 265 

influence that each mechanism has on outcomes from our LN model. Partial rank correlation 266 

coefficient (PRCC) analysis also ranks the importance of these effects over time. We use this 267 

method to identify parameters that most strongly correlate with bacterial load (Figure 5B). From 268 

this analysis, we can infer specific biological mechanisms driving bacterial loads within LN 269 

granulomas.  270 

 271 
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FIGURE 5: Granuloma bacterial loads are driven by a balance of macrophage infection 

and activation. Granulomas are pooled from 1000 LTBI hosts. (A) Proportion of 2000 virtual 

LN granulomas by fate: no bacteria present (sterilized), stable bacterial growth (stable), and 

uncontrolled bacterial growth at 481 days post lung infection (N=2000). (B) Summary of 
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sensitivity analysis detailing significant parameters driving total bacterial load. PRCCs are 

binned into 50-day bins for ease of analysis (see Methods). Shading indicates average PRCC 

value during a time interval t (given a parameter is at least significant for 30 days in t). White 

boxes indicate no significant correlation for longer than 30 days in t. A (+) indicates a positive 

correlation and absence of a symbol indicates a negative correlation. Significance alpha = 0.01 

after Bonferroni correction. Complete model state descriptions (MR, MI, E4, etc.) can be found 

in Table 2 in Methods and parameter value description found in Tables S1-3 in S2 Appendix. 

 272 

Macrophages and T cells play complex and intertwined roles during Mtb infection (43). Non-273 

activated macrophages are unable to bind Mtb-containing phagosomes to lysosomes, providing 274 

an intracellular replicative niche for Mtb. The relatively slow-growing Mtb replicate inside of 275 

infected macrophages, eventually causing them to burst and release bacteria to infect other 276 

macrophages (43). T cells can both induce apoptosis in infected macrophages and activate non-277 

infected macrophages, allowing them to efficiently kill Mtb (44).  278 

 279 

Our LN model captures multiple expected interactions between T cells and macrophages (Figure 280 

5B); positive correlates to total Mtb count include higher bactericidal activity of activated 281 

macrophages (k15), slower resting macrophage recruitment rates (alpha4a), and faster Mtb 282 

growth rates (alpha19, alpha20). Moreover, we see positive correlation between total LN bacterial 283 

load and carrying capacity of Mtb within an infected macrophage (n1). These suggest that Mtb 284 

circumvents macrophage carrying capacity restrictions, replicating within a fixed infected 285 

macrophage population through macrophage bursting. This has been observed in in both in vitro 286 

and in vivo studies (4,45). 287 

 288 
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Our sensitivity analysis (Figure 5B) also reveals two distinct temporal effects of macrophage-T 289 

cell interactions on total LN bacterial burden: early effects based on T-cell macrophage activation 290 

(hs4) and late-stage effects correlated with T-cell mediated macrophage apoptosis (k52). First, 291 

we observe a primary role of macrophage activation by granuloma-associated T cells during early 292 

infection. This is indicated by a negative correlation between total LN bacterial burden and 293 

macrophage activation by granuloma-associated T cells (hs4) between 100-150 days post-294 

infection. From then onward, activated macrophages continue to aid in decreasing total bacterial 295 

load within LN granulomas. During late infection (~250 days and beyond), T cells play an 296 

important role in directly controlling bacterial levels after a LN granuloma has established (by 297 

contrast to indirectly through macrophage activation). A negative correlation between granuloma-298 

associated T-cell proliferation rates (rho2) and bacterial load emerges and, around the same time, 299 

T-cell mediated apoptosis of infected macrophages (k52) negatively correlates with total bacteria.  300 

 301 

Time-to-sterilization is lengthened by large extracellular bacterial populations within LNs. 302 

In Mtb-infected NHPs, even in hosts that have active disease, a substantial proportion of lung 303 

granulomas can generate sufficient immune pressure to cause a subset of granulomas to sterilize 304 

early (4). In our LN Mtb infection model, only 14% of LN granulomas sterilize (Figure 5A). This is 305 

comparable to frequencies of LN granuloma sterilization that are observed in NHPs at similar time 306 

points (8). To further understand variations in LN granuloma fates based on bacterial load (i.e. 307 

sterilization, stabilized growth, or uncontrolled growth) we examine the sterilization case. Among 308 

2000 LNs (from 1000 virtual LTBI hosts), there are 308 diseased virtual LNs that sterilize by the 309 

end of simulated infection (481 days post-infection). Sterilization begins in some LNs as early as 310 

one-month post-infection while other LNs take as long as 480 days to sterilize (Figure 6A).  311 

 312 
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FIGURE 6: Time-to-sterilization of LN granulomas is driven by macrophage behavior 

within LTBI hosts. Time to sterilization for a simulated LN is defined as the first-time post-LN-

infection that a LN contains less than 0.5 total bacteria, or one day beyond the end of the 

simulation did not sterilize (see Methods). (A) Time to sterilization among 308 diseased LNs 

from 1000 simulated hosts that were sterilized within the 480-day simulation period. (B) 

Significant PRCC correlates between functional groups of parameters and output of interest, 

namely time-to-sterilization (significance with alpha = 0.01 after Bonferroni correction). Our 

analysis used 388 individual diseased LNs with granulomas from 1000 simulated hosts. 

Complete model state descriptions (MR, MI, E4, etc.) can be found in Table 2 and parameter 

values in Tables S1-3 in S2 Appendix. 
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 313 

To understand specific factors that increase or decrease time-to-sterilization, we perform a 314 

sensitivity analysis with time-to-sterilization as our outcome measure (Figure 6B; see Methods, 315 

Section 10 for details). One important note: time-to-sterilization yields a single value per-316 

sterilizing-granuloma, unlike total bacterial load. This sensitivity analysis indicates which 317 

parameters are most predictive of where a granuloma is to fall within the distribution giving rise to 318 

Figure 6A. As we expect from our previous section, we see that both recruitment (alpha4a, w2) 319 

and proliferation (k19, rho3, rho2) of granuloma-related inflammatory cells (macrophages and 320 

granuloma-associated T-cells) correlate with faster time-to-sterilization. This suggests an 321 

importance of absolute numbers of immune cells present to determine time-to-sterilization.  322 

 323 

The correlates identified in our analysis (Figure 6B) also suggest that LN granuloma time-to-324 

sterilization is worsened by Mtb internalized within macrophages. Both macrophage infection 325 

rates (c9) and bursting rates (n1) correlate with longer time-to-sterilization, indicating that 326 

intracellular Mtb are more difficult to clear, leading to slower sterilization times. Relatedly, we find 327 

T-cell mediated macrophage death (k52) (which leads to Mtb death or bacteria release into 328 

extracellular spaces) reduces time-to-sterilization. Finally, we observe time-to-sterilization 329 

shortens with more efficient Mtb-killing by resting macrophage populations (k18) (thereby 330 

preventing internalization).  331 

 332 

Predicting LN effacement. From our analysis, we observe that LN granuloma fates are 333 

determined by numbers of both macrophages and T cells. LN granulomas exist within the context 334 

of highly structured and precisely organized LNs. One clinically interesting feature of LNs that 335 

contain granulomas is that they typically have some degree of effacement that is induced by 336 

granuloma formation (8) (Figure 1A). Effacement presents as structural destruction of LN tissue 337 
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(necrosis) and narrowing of the anatomic spaces that normally contain the LN’s functional 338 

architecture.  339 

 340 

Within the NHP dataset, each LN was classified by a pathologist into two categories based on 341 

effacement status: greater than (>) 50% effacement and less than (<) 50% effacement. Greater 342 

than 50% effacement was based on the observation that approximately more than half of a LN 343 

was comprised of structures that were granulomatous material. Those that were less than 50% 344 

effacement meant that less than half (or none) of a LN contained granulomatous material. In our 345 

study, we use this classification to explore our model outcomes. 346 

 347 

To validate our hypothesis that bacteria loads of LN granulomas drive effacement, we tested 348 

whether our model reproduces observed patterns of total LN effacement as observed in NHP LN 349 

datasets (from (8)). Total LN effacement directly correlates to LN granuloma size, an outcome 350 

calculated based on immune cells and largely driven by total LN granuloma bacterial load (see 351 

Methods, Section 9.5 for additional details on calculation). To do this, both NHP LNs and 352 

simulated infection LNs were divided into two groups: greater than (>) 50% effacement and less 353 

than (<) 50% effacement (see Methods, Section 9.5 for details). In the analysis, we include all 354 

NHP experimental LNs taken before 201 days post-infection; we compare these to simulation LNs 355 

from 201 days post-infection. We find that our simulated infection experiment reproduces a similar 356 

breakdown of LN effacement (Figure 7). This finding further indicates that our model captures 357 

relevant features of T cells, CFU, and macrophages as they relate to LN granuloma formation 358 

and maturation. This model validation further increases confidence of our predictions.  359 

 360 
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FIGURE 7: Simulation and experimental comparison: LN model reproduces NHP LN 

effacement distributions. (A) Proportions of experimentally obtained NHP LNs with greater 

(and less) than 50% effacement at day 201. (B) Proportions of simulated LNs at 201 days post-

infection from 2000 virtual LN granulomas from 1000 simulated hosts. 

 361 

Predicting drivers of a clinically-accessible measurement. PET/CT images are sometimes 362 

available in clinical settings as well as used in experimental NHP studies (46). One measure taken 363 

from these images is FDG avidity. This experimental measurement of relative amount of tagged 364 

glucose uptake is the standardized uptake value ratio (SUVR) score. Clinically, PET/CT scans 365 

provide information about inflammation occurring in lung granulomas; however, it is incompletely 366 

known how this score is impacted by surrounding cells during LN Mtb infection. Despite this, we 367 

assume that FDG avidity captures metabolic activity of Mtb infection within humans and NHPs 368 

(46,47). For this study, we simulate a theoretical metric to estimate FDG avidity based on likely 369 

immune cell contributors to metabolic activity (see Methods, Section 9.3). This metric embeds 370 
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assumptions about relative metabolic activity by cell type, and so this application of our model is 371 

exploratory in nature. That is, we measure relative impact of predicted FDG avidity to provide 372 

plausible hypotheses. Towards that goal, we track predicted FDG avidity over time for each LN 373 

days post-infection (Figure 8A).  374 

 375 

 

FIGURE 8: Metrics for tracking infection progression and adaptive immune response. 

(A) Simulated FDG avidity of each LN over time beginning post-infection (starting at day 1). (B) 

Number of effluxing effector T cells for hosts with LTBI (left) and active pulmonary infection 

(right). Solid lines represent the median numbers of effluxing effector T cells from individual 

LNs (n = 2000 for diseased and n = 3000 for activated, pooled from 1000 virtual hosts). Shaded 

regions represent interquartile ranges (IQRs). 

 376 

To elaborate what drives simulated FDG avidity, we perform a sensitivity analysis (Figure 9). Our 377 

sensitivity analysis shows that numbers of Mtb-specific T cells in blood and LN (BlN4, lambda, 378 
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lnDistPercent) positively correlates with simulated FDG avidity. A greater number of Mtb-specific 379 

T cells within a LN prior to infection means more efficient differentiation into cell types that have 380 

a higher impact on simulated FDG avidity - i.e., as populations of metabolically active cells within 381 

a LN grow, simulated FDG avidity increases. (This case is unlikely unless a host has been 382 

previously infected.) We also find that T-cell efflux rates (xi11, xi12, xi5) negatively correlate with 383 

simulated FDG avidity, as increases in number of T cells effluxing from a LN lead to fewer T cells 384 

present within a LN. Similarly, T-cell recruitment (hs1, hs10, k1, k17) correlates with simulated 385 

FDG avidity, reflecting a dependance of simulated FDG avidity on T-cell numbers.  386 

 387 
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FIGURE 9: Predicting drivers of FDG avidity within a host with LTBI using sensitivity 

analysis of simulated FDG avidity. Left panel contains data from 2000 simulated individual 

diseased LNs and right panel contains data from 3000 individual simulated activated LNs with 

no granuloma forming. All simulated LNs are taken from the set of 1000 virtual hosts. Shading 

indicates correlation between parameter and FDG avidity during time interval t (given a 

parameter is at least significant for 30 days in t). White boxes indicate that the parameter is not 
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significantly correlated with model outcome at any time points in t. Significant positive 

correlations are further marked with a (+) (significance with alpha = 0.01 after Bonferroni 

correction). Complete model state descriptions (MR, MI, E4, etc.) can be found in Table 2, and 

parameters in Tables S1-3 in S2 Appendix. 

 388 

We assume that Mtb-specific effector T cells have the highest weighted contribution to simulated 389 

FDG avidity (this is based on activity of activated cells, see Methods, Section 9.3 for additional 390 

details). Accordingly, we find increases in T-cell priming (hs14) (an early step along the effector 391 

T cell production pathway) and increases in direct differentiation from precursor T cells into 392 

effector T cells (k14) correlates with simulated FDG avidity. Thus, rates that directly increase 393 

effector production are predictive of increases in simulated FDG avidity. Likewise, T-cell 394 

reactivation rates (k12) positively correlate with simulated FDG avidity. Conversely, differentiation 395 

rates driving T cells away from effector cell states (k15, k6) negatively correlate with simulated 396 

FDG avidity.  397 

 398 

For activated LNs, the above-described parameters maintain these correlations throughout the 399 

entirety of an infection simulation; however, for diseased LNs, these correlations fade as a LN 400 

granuloma matures. Our simulated FDG avidity metric assigns a high weight to granuloma-401 

associated T cells, infected macrophages, and activated macrophages. We find that simulated 402 

FDG avidity strongly and positively correlates with increased populations of these cell types (k19, 403 

k9, rho2, rho3, c0, k2, alpha4a, w2). We find bacterial growth rates (alpha20) positively correlate 404 

with simulated FDG avidity. Bacterial load is not an explicit contributor to our simulated FDG 405 

avidity; however, bacterial load increases signals for T-cell recruitment, macrophage activation 406 

and infection – all leading to increases in cell types that are highly weighted within our metric. 407 
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Conversely, increases in bacterial death rates (k15) correlate with decreases in simulated FDG 408 

avidity. 409 

 410 

LN granulomas reduce LN ability to aid in fighting pulmonary infection. During pulmonary 411 

Mtb infection without diseased LNs, the primary role of a LN is to produce effector T cells that 412 

traffic back to lungs to aid in controlling pulmonary infection. To do this efficiently, a LN must 413 

maintain its highly organized structure that facilitates optimal interaction between APCs and T 414 

cells. In the case of diseased LNs, LN structure is physically altered (effaced) by granuloma 415 

formation and thus functionality is disrupted. This functionality disruption could occur in two ways: 416 

(i) LNs may offer reduced effector T-cell production, or (ii) LNs may produce the same numbers 417 

of effector T cells, but some are diverted to engage in anti-Mtb immune responses in LN 418 

granulomas instead of effluxing to lungs. Here we assess the potential role of the second 419 

mechanism through analysis of our LN model. For virtual LTBI hosts, we see little difference in 420 

the number of effector T cells that exit both diseased and activated LNs throughout the course of 421 

an infection (Figure 8B, left panel). For virtual hosts with active pulmonary infection, this 422 

difference is more pronounced (Figure 8B, right panel). To understand what drives these 423 

differences in numbers of effluxing T cells based on LN involvement status and host pulmonary 424 

disease status, we performed sensitivity analyses (Figure 10), discussed for the remainder of this 425 

section. 426 

 427 
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FIGURE 10: Predicting drivers of Mtb-specific T-cell efflux: comparing LTBI and active 

hosts using sensitivity analysis of Mtb-specific T-cell efflux. Left panels contain data from 

2000 individual simulated diseased LNs and right panels contain data from 3000 individual 

simulated uninfected/activated LNs. All simulated LNs are from the same set of 1000 virtual 

hosts. Shading indicates correlation between parameter and FDG avidity during time interval t 



30 

 

(given a parameter is at least significant for 30 days in t). White boxes indicate not significantly 

correlated at any time points in t. Significant positive correlations are further marked with a (+). 

Correlations that change sign are marked with a (+/-). (significance with alpha = 0.01 after 

Bonferroni correction). Complete model state descriptions (MR, MI, E4, etc.) can be found in 

Table 2 and parameters in Tables S1-3 in S2 Appendix. 

 428 

The most immediately intuitive drivers of T-cell efflux identified by sensitivity analysis (Figure 10) 429 

are consequent to one term in our model's equations: the number of effector T cells effluxing from 430 

a LN (xi3, xi9). This term is proportional to the Mtb-specific effector T-cell population size within 431 

that LN. In all cases, we find that the number of Mtb-specific T cells in blood and LN (BlN4, lambda, 432 

host_Ln, lnDistPercent) positively correlates with numbers of effluxing effector T cells. Consistent 433 

with this, rates of both precursor proliferation within-LN (rho1) and naïve T-cell recruitment-to-LN 434 

(hs1, k1) positively correlate with numbers of effluxing effector T cells. During early infection, we 435 

observe that naïve T-cell priming (hs11, hs5, k2) has a positive impact on LN effector T-cell 436 

counts, indicated by a positive correlation between naïve priming rate and effluxing effector T-cell 437 

count.  438 

 439 

Similar to our FDG avidity sensitivity analysis (Figure 9), parameters supportive of differentiation 440 

of T cells into effector phenotype (k5, k14) positively correlates with numbers of effluxing effector 441 

T cells (Figure 10). We also find that parameters that drive differentiation away from effector cells 442 

instead into memory cell phenotypes (k6, k15), negatively correlate with numbers of effluxing T 443 

cells. This is a general observed trend; however, there are key differences in the duration of time 444 

that these trends are significant between each of our LN classifications. Within LNs of LTBI hosts, 445 

we find that throughout the entire simulated infection there is a negative correlation between 446 

precursor to central memory differentiation rates (k9, k15) and numbers of effluxing T cells. For 447 

LNs within hosts that have active pulmonary infection, we find this correlation only during the early 448 
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stages of infection. This is reflective of the APC profile for hosts with active pulmonary infection 449 

that provides stimulation for continued differentiation into effector cells (and not memory cells) 450 

throughout the entire simulation period – something that the APC profile of LTBI hosts does not 451 

provide (Figure 3A-B and Methods, Section 2).  452 

 453 

Thus, the size of total effector T-cell population within LNs is a major determinant of numbers of 454 

effluxing T cells throughout the entire simulated infection with key differences between diseased 455 

and active LNs. During both cases, T-cell efflux correlates with multiple parameters associated 456 

with increased effector T-cell population sizes (Figure 10). For activated LNs, which lack 457 

granuloma formation, this dependency is undisturbed regardless of active pulmonary infection or 458 

LTBI; T-cell efflux positively correlates with precursor-to-effector differentiation rates (k5, k14) for 459 

the entire infection duration. By contrast, diseased LNs during active pulmonary infection divert 460 

effector T cells to within-LN granulomas. This is evident as during early infection, we observe 461 

positive correlations between diseased-LN T-cell efflux and effector population size parameters 462 

(BlN4, lambda), while these correlations diminish over time as granulomas become established.  463 

 464 

As T cells become more effective in aiding control of bacteria, fewer T cells are recruited into LN 465 

granulomas, allowing more effectors to efflux. Within diseased LNs of LTBI hosts, we did not find 466 

significant correlations between precursor differentiation rates (k6, k5, k14) and numbers of 467 

effluxing T cells as in the active case (Figure 10). Within these individuals, T-cell proliferation 468 

(hs6) and T-cell mediated infected macrophage death (k52) positively correlate with numbers of 469 

effluxing T cells. In hosts that have active pulmonary infection, rates of activated macrophage 470 

killing of bacteria (k15) positively correlate with total T-cell efflux. In this case, we also find that 471 

bacterial growth rates (alpha20), macrophage recruitment rates (w2, alpha 4a), and macrophage 472 

infection rates (k2) each negatively correlate with numbers of effluxing T cells.  473 
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 474 

DISCUSSION  475 

 476 

LNs are among the most common sites of extrapulmonary TB and may hold the key to 477 

understanding how pulmonary infection progresses or participates in reactivation after years of 478 

LTBI (12). Data from LNs during human and primate infection is scarce and usually obtained only 479 

at autopsy or necropsy. In this study, we developed a mathematical model that recapitulates 480 

individual LN dynamics in both the presence and absence of LN Mtb infection over time. Using 481 

our model and available datasets on LNs during Mtb infection in NHPs, we sought to identify 482 

mechanistic drivers of LN granuloma outcomes and FDG avidity (a clinical marker of Mtb infection 483 

progression). We also aimed to understand specific mechanisms that may lead a LN to 484 

inefficiently provide effluxing effector T cells to aid in control of Mtb within an infected lung.  485 

 486 

Within the context of Mtb infection, macrophages play a key and complicated role in determining 487 

infection progression (48,49). Macrophages are a replicative niche of Mtb and, when Mtb are 488 

taken up by a macrophage, they replicate and evade within-macrophage killing, essentially 489 

shielded from antibacterial immune factors (50,51). However,  macrophages can be activated and 490 

then are able to directly kill mycobacterial populations. Within our LN model we find that bacterial 491 

populations are aided by mechanisms promoting intracellular Mtb survival and harmed by 492 

mechanisms promoting mycobacteria within extracellular spaces within a LN granuloma (Figure 493 

5). Similarly, we find that mechanisms promoting intracellular bacterial populations slow time-to-494 

sterilization or fully prevent sterilization, and that mechanisms that lead to externalized Mtb or 495 

preventing internalization of Mtb promote earlier LN granuloma sterilization (Figure 6). 496 

Specifically, mechanisms supporting macrophage infection/persistence slows time-to-sterilization 497 

and mechanisms supporting macrophage death leading to increases extracellular Mtb speeds 498 

time-to-sterilization.  499 
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 500 

Our findings regarding the roles of extracellular/intracellular bacterial populations show that both 501 

host and bacterial factors contribute to LN granuloma fates. They also lead to differential infection 502 

outcomes, depending on both intensity and combination of host and pathogen mechanisms. This 503 

is consistent with a ‘damage-response’ framework of microbial pathogenesis that posits that the 504 

specific outcome of a microorganism’s dynamics is a direct result of both host and microorganism 505 

mechanisms and their interactions (52,53). For many mechanisms we represent coarse-grain 506 

phenomena for both bacteria and host-factors. For example, our mechanisms are influenced by 507 

well-studied features of Mtb biology such as modulation of its microenvironment and replication 508 

rates (54). These features are known to be characteristic of Mycobacteria, evidenced by their 509 

highly-conserved and low (1-2) rRNA operon copy numbers (55), as compared to other bacterial 510 

species, including E. coli (56) and Salmonella enterica, many of which often have seven or more 511 

copies (57). On the other hand, the importance of host factors is highlighted by conditions like 512 

sarcoidosis (a granulomatous condition with no directly identifiable pathogen that is comparable 513 

to TB in several ways (58–61)). Other host factors are indicated by the diagnostically-problematic 514 

similarities between malignancy and Mtb-infected intestine-adjacent LNs (62), and genetic 515 

variability in cytokine expression levels (63). Together, this suggests that LN granuloma fates are 516 

not determined by a single feature (i.e. a virulence factor, as is the case in many microbial 517 

infections). Instead, as we have also observed within lung granulomas, it is a balance of host and 518 

microbial factors that must be understood to understand infection outcome (64). 519 

 520 

Moreover, the importance of this balance of host-pathogen interactions may be intrinsic to 521 

transmissible granulomatous conditions. Disruption of this balance may be responsible for the 522 

"paradoxical reactions" observed in approximately 20% of LN-diseased TB hosts (65,66). In those 523 

cases, anti-tuberculosis-treated LN granulomas transiently enlarge before eventual resolution 524 

(65,66). This balance is also seen in schistosomiasis, an infectious granuloma-forming disease 525 
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with LN granulomas in very rare cases (67). It is similar to TB in that the pathogen maintains a 526 

curated level of tissue damage; the resultant inflammation is hypothesized to be important in the 527 

pathogen's transmission cycle (68).  528 

 529 

NHP studies show that granuloma fate of one diseased LN does not influence the fate of a 530 

different LN in the same host  (8). This is also observed within lungs during Mtb infection where 531 

each granuloma is an island with a unique trajectory of dynamics and bacterial load started by a 532 

single bacillus (3). Those findings are organ specific; regarding between organ associations, our 533 

model shows that pulmonary infection status does influence LN infection determinants and 534 

outcomes via antigen presenting cell information passed from lungs into LNs. Specifically, we find 535 

that T cells modulate most measures of LN granuloma control, dependent on direct stimulation 536 

from Mtb-antigen-bearing APCs influxing from lungs. Nonetheless, these changes suggest that 537 

continued stimulation from APCs when there is an active pulmonary infection as compared to 538 

LTBI fundamentally changes the progression and impact of LN granuloma fates. 539 

 540 

The role of Mtb-specific T cells versus total T cells has not been deeply explored in primates 541 

(humans and NHPs) as tools for identifying specificity is currently limited to tetramers, which are 542 

not yet available except for mice and MHCII limited primates like Mauritian cynomolgus 543 

macaques(69). Interestingly, we identified Mtb-specific T cells as a key component driving our 544 

FDG metric as well as the metric of time-to-sterilization of LN granulomas suggesting these Mtb-545 

specific cells are worth further exploration.  Relatedly, we also find that initial number of Mtb-546 

specific T cells in the blood and LN are key determinants of FDG avidity (Figure 9), suggesting 547 

that an individual’s exposure and vaccination history may be important when considering LN FDG 548 

avidity. Further, the relevance of pre-existing immunity levels is supported by our observation of 549 

levels of Mtb-specific T-cell populations in blood influencing numbers of effluxing effector T cells. 550 

However, within most animal studies (including datasets we used to calibrate our model (8)), we 551 
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assume animals are naïve to Mtb prior to experimental infection (and these animals were not 552 

vaccinated). Following first encounter with a microorganism (regardless of infection 553 

establishment), a memory immune response is established. With additional data from Mtb-554 

experienced hosts, we can pursue identification of promising mechanisms that could underpin a 555 

more targeted mode of Mtb vaccination (70,71). This Mtb memory may be gained by BCG 556 

vaccination (presently administered in much of the world) as is seen in some cases (72); although 557 

how long immune memory lasts is unknown. Further, we estimate total T cells in LNs (including 558 

non-specific) using common assumptions from literature (see Methods, Section 7.2). 559 

Surprisingly, our estimates suggest total T-cell counts in healthy LNs (estimated as 106-108) 560 

considerably larger than those measured in antigen-stimulated NHP LNs (measured as 104-106). 561 

This inconsistency reveals a need for better characterization of differences between healthy NHP, 562 

human, and murine lymphatics. 563 

 564 

Like all models, our MSM has limitations that depend on assumptions. First, variety of LN 565 

granuloma fates observed may be explained by our choice to only represent three subtypes of 566 

macrophages: resting, infected, and activated. This assumption allows us to sufficiently match 567 

available NHP data. However, some studies suggest that there may be additional dendritic cells 568 

and macrophage subtypes play unique roles in controlling Mtb infection, although these data have 569 

not yet been collected within LNs (73,74). We also do not represent spatial heterogeneity of lymph 570 

node granulomas in this work. This is a simplifying (coarse-graining) assumption that would affect 571 

representation of processes like drug treatment; however, our validations show that cell scale 572 

drivers of LN granuloma fate are within our model’s context of use (see Methods, Section 8.3). 573 

Additionally, LN necrosis (accumulation of dead cells) is not directly represented in our model. 574 

Our data suggests that the organization of LN granulomas differs from lung granulomas that are 575 

mostly caseous necrotic in nature. This likely results from immune cells ready at the start of LN 576 

granuloma formation, where within lungs it can take anywhere from 3-6 weeks for adaptive 577 
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immunity to become detectable (14). In current work we are exploring the role of necrosis in LN 578 

granulomas.  579 

 580 

Our model is built solely to describe LN dynamics, and this phenomenologically captures dynamic 581 

interactions between lungs and LNs during infection. We assume that a function representing 582 

APC influx into LNs from lungs (derived from our previously calibrated model of lung infection) 583 

represents flow of information to LNs. We also assume that numbers of Mtb-specific T cells within 584 

a lung infection is derived solely from the efflux of numbers of effectors T cells leaving a LN. This 585 

is a fair assumption to start, however our current work  is linking this detailed LN model together 586 

with our model that represents lung dynamics with multiple granulomas and blood and lymph, 587 

HostSim (35). This will allow us to delve deeper into exact mechanisms of how LN and lung 588 

infection affect each other during TB. Our model also assumes that virtual hosts are Mtb-naïve 589 

and do not have comorbidities such as human immunodeficiency virus (HIV). Thus, we do not 590 

explore the impact of prior TB infection and comorbidities on LN infection progression. We also 591 

assume that LN failure does not affect the number of antigen-bearing presenting cells coming 592 

from lung into LNs. The impact on dynamic interactions between LN shutdown and pulmonary TB 593 

outcomes is currently unknown, and we will explore this in future work. 594 

 595 

We independently sample parameters for each virtual LN, an assumption supported by data 596 

showing large differences in the ability of individual LNs to control disease. In the future, we could 597 

change our sampling method to constrain individual hosts to have more similar LNs, if biological 598 

evidence supports this. Additionally, we hope to further develop how we capture mechanisms of 599 

LN T-cell population partitioning, where T cells are either granuloma associated or not. This will 600 

likely impact development of LN granulomas and LN maturation as well as activation of T cells 601 

and T cell efflux to lungs. As no data exists for these values, our current model also does not 602 

include any decrease in rates of proliferation and differentiation of T cells in response to LN 603 



37 

 

granuloma formation. This is likely an additional mechanism through which a LN granuloma 604 

impacts LN efficiency and will be included in future iterations of the model. In doing this, we will 605 

have the capability to determine how LN granulomas impact pulmonary infection control and how 606 

they may contribute to the reactivation of pulmonary disease – a pressing question in TB research 607 

today and one that may stem directly from LN control. 608 

 609 

METHODS  610 

 611 

In the present study, we aim to understand the role of granuloma formation within multiple LNs 612 

during Mtb infection within LNs. We have previously published a whole host model of TB including 613 

lungs, LNs and blood (Section 1). In that model, called HostSim, LNs serve solely as a source of 614 

T cells to supply the lung granulomas trafficking through blood (35,36). Here, we expand on this 615 

work and describe in detail the development of our multiple LN model with LN granuloma 616 

formation capability (Section 2). Our ODE-based model simulates multiple independent LNs 617 

(Section 3) that are linked to the virtual host (i.e., whole-host scale model components) through 618 

influx of antigen presenting cells (Section 4). A LN granuloma sub-model (Section 5) is 619 

embedded within each LN and initiated based on manual input of infected macrophages and 620 

intracellular bacterium. To account for whole-host-scale biology, virtual host death is permitted 621 

following reaching of a pre-determined total bacterial load threshold (Section 6).  622 

 623 

We calibrate and validate our model using NHP datasets, experimental methods used to generate 624 

these data are described in Section 7; these data have been previously published (8). For model 625 

calibration, we employ multiple well-validated parameter estimation methodologies (Section 8). 626 

We use our model to examine 5 biologically relevant outcomes: LN granuloma bacterial load 627 

(Section 9.1), time-to-sterilization (Section 9.2), serial 2-deoxy-2-[18F]-D-deoxyglucose (FDG) 628 

avidity (Section 9.3), numbers of effluxing T-cells (Section 9.4), and virtual LN effacement 629 
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(Section 9.5). To analyze these outcomes, we employ uncertainty and sensitivity analysis using 630 

a combination of Latin hypercube sampling and partial rank correlation coefficients (PRCC) 631 

(Section 10). We describe model implementation and software in Section 11.  632 

 633 

1 Model selection and development.  634 

Previously, our lab has developed several models to study lymph nodes during infection. First, 635 

we developed a novel model of blood and lymph node infection during HIV-1/AIDS infection 636 

(75,76). Next, we adapted that model to study Mtb during Mtb infection (77–79). These models 637 

assume that a LN is a “well-mixed” homogeneous compartment and that there is no spatial 638 

component to the dynamics, a good approximation for the questions we were asking. We also 639 

studied dynamics of T cells and dendritic cells trafficking within LNs using an agent-based model 640 

to capture the intricate spatial dynamics of individual cells locating each other within LNs (80–83). 641 

Building on this work, we developed a whole-host model of Mtb infection called HostSim. HostSim 642 

is a multi-scale hybrid computational model that captures key features of pulmonary Mtb infection 643 

progression by representing the lungs, blood, and also an activated lymph node compartment 644 

(35). HostSim adapted the architecture of our earlier LN and blood models and coupled it to a 645 

model of multiple lung granuloma formation (35,36). Here, we use HostSim both to generate 646 

predicted trajectories of lung-sourced APCs and as a starting point for ODE development. 647 

 648 

2 Model overview.  649 

To build a model of multiple LNs, we represent each LN with a system of ordinary differential 650 

equations (ODEs) that represent unique populations of antigen-presenting cells (APCs), T cells 651 

(different types), macrophages (different states), and Mtb (different locations) that was updated 652 

previously in the HostSim model (35,36). Each term in the ODE system represents an immune 653 

cellular mechanism – i.e., a behavior, interaction, or transition – and their activity is characterized 654 

by one or more parameters (see S1 Appendix full list of equations). Our individual LNs can either 655 
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remain uninfected (i.e. no APCs draining to that LN), participate in antigen presentation (i.e., 656 

become activated by the presence of antigen presentation cells) and/or form LN granulomas (i.e., 657 

become diseased in Mtb infection) (Figure 2B). When representing hosts with Mtb-infected LNs, 658 

we simulate two of five virtual LNs with a virtual host as being diseased; however, our model can 659 

readily adapt to include a larger number of diseased LNs per-host. In our model, blood serves as 660 

both a source of naïve or memory T cells trafficking to/from LNs and as a reservoir that T cells 661 

must travel through before trafficking to the site of primary infection (in the lungs). While we do 662 

not explicitly represent lungs in this model, we use HostSim to generate a time-course prediction 663 

of APC count from the lungs of virtual patients with either LTBI or experiencing an active 664 

pulmonary infection (Figure 3A-B) (35,36), which we then use as the source of APCs for our new 665 

multiple-diseased-LN model.  666 

 667 

Our virtual population has N=1000 hosts, each with five LNs. Given the range of infection 668 

presentations experimentally observed within LN infections and heterogeneity between LNs 669 

within individual Mtb hosts in both humans and NHPs (8), we define a unique set of parameters 670 

for each LN within a virtual host by employing our parameter sampling technique calibrated with 671 

data (see below). Our complete list of parameter ranges is found in Tables S1-3 in S2 Appendix.  672 

For activated-LN simulations, we assume that pulmonary infection begins at simulation day 1. As 673 

simulations progress, individual LNs participate in antigen presentation, independently from one 674 

another. For diseased-LN simulations, we further let two LNs per-host become diseased (i.e. 675 

harbor live bacteria and form LN granulomas). We simulate each of our virtual hosts for 481 days 676 

post-infection (~16 months) to capture dynamics of both early and late-stage infection.  677 

 678 

3 Creating the multiple lymph node model.  679 

Within a single host, LNs vary widely in their individual baseline characteristics, such as proximity 680 

to the site of infection, efficiency contributing to adaptive immunity, and ability to manage the 681 
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presence of live Mtb bacilli and control it. We represent each LN in our model by an individual set 682 

of non-linear ODEs (S1 Appendix) and these ODEs are independent from each other via 683 

parametrization (Tables S1-3 in S2 Appendix). We capture the dynamics of five lymph nodes 684 

within each host. We make this assumption as there is an average of 4 to 21 LN, with the average 685 

being 12 within a thoracic cavity of Cynomolgus macaques (8) and, on average, 5 thoracic lymph 686 

nodes are detectable during Mtb infection (3,8). Diseased LNs (with potential to form LN 687 

granulomas) have three main outcomes: (1) sterilization, with Mtb bacteria clearing and no 688 

presence of granuloma formation, (2) controlled granuloma formation occurs, leading, stable 689 

levels of bacterial burden, and (3) uncontrolled infection, wherein the granuloma completely 690 

effaces LN structure (Figure 1A).  691 

 692 

To summarize mechanisms that we define in our model equations (see Figure 3C-E), we assume 693 

that each virtual host is at healthy equilibrium prior to infection. We represent this state by five 694 

sets of ODEs, each representing one of the virtual host’s lung-draining LNs. Each of a host’s 695 

virtual LN connects to a single, well-mixed blood compartment. The blood compartment serves 696 

as a sole source of circulating T cells for LNs. Both Mtb-specific and Mtb-non-specific cells efflux 697 

from a LN into blood and from blood to LNs (initially we begin with only Mtb non-specific T cells) 698 

(see Figure 2C). Within each LN, there are populations of naïve and central memory CD4+ and 699 

CD8+ Mtb-specific (once APCs begin to arrive) and Mtb non-specific T cells (see Figure 2D). A 700 

complete list of abbreviations used for each cell type can be found in Table 2. We additionally 701 

describe full model equations and details for each in S1 Appendix.  702 

 703 

TABLE 2: State variable symbolic definitions. This table contains symbolic and plain text 

names of state variables and their corresponding descriptions. Plain text names are referenced 

in Figures 4, 5, 8, and 9. All cells are counted in units of average cell numbers per population. 



41 

 

State Variable Plain Text Name Description 

𝑀𝑅  MR Resting macrophages 

𝑀𝐼 MI Infected macrophages 

𝑀𝐴 MA Activated macrophages 

𝐵𝐼 BI Intracellular bacteria 

𝐵𝐸 BE Extracellular bacteria 

𝐺4 G4 Granuloma-associated CD4+ T cells 

𝐺8 G8 Granuloma-associated CD8+ T cells 

𝑁4 N4 Naïve CD4+ T cells 

𝑃4 P4 Precursor CD4+ T cells 

𝐸4 E4 Effector CD4+ T cells 

𝐶𝑀4 CM4 Central memory CD4+ T cells 

𝐸𝑀4 EM4 Effector memory CD4+ T cells 

𝑁8 N8 Naïve CD8+ T cells 

𝑃8 P8 Precursor CD8+ T cells 

𝐸8 E8 Effector CD8+ T cells 

𝐶𝑀8 CM8 Central memory CD8+ T cells 

𝐸𝑀8 EM8 Effector memory CD8+ T cells 
 

 704 

4 Antigen-presenting cells.  705 

In response to ongoing lung infection, APCs traffic into all five LNs. We determine APC trafficking 706 

dynamics by two vectors: one representing typical dynamics of antigen presentation for LTBI 707 

hosts and another representing typical dynamics of antigen presentation during hosts with active 708 

pulmonary Mtb infection (Figure 3A-B). We derive the LTBI vector by averaging the number of 709 

APCs generated by 25 virtual LTBI hosts from our whole-host level model (35). We derive the 710 

active Mtb infection vector from the HostSim model simulations by selecting a representative 711 

virtual host with active Mtb infection (in this case the host had 2 granulomas with very high 712 

bacterial loads even though others cleared or controlled, Figure S1) [from 20]. The number of 713 
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APCs for either LTBI or active APC vector is divided evenly among our 5 individual LNs to 714 

represent trafficking to individual LNs. While each LN receives the same number of APCs, LN 715 

responses differ due to small, biologically relevant variation in parameter values describing intra-716 

LN behaviors (i.e., priming rates, T-cell proliferation rates). Once APCs arrive at a LN, naïve T 717 

cells are primed and differentiate into effector, effector memory, and central memory T cells. In 718 

response to APC encounters, memory T cells differentiate into effector T cells. Following these 719 

processes, T efflux (leave) from LNs and transit through blood to lungs, the site of original infection 720 

(see Figure 3D). Here, we track  the number of cells leaving over time, but since we do not model 721 

the lung, we collect the cells over time in the vector for analysis representing functionality of LNs.  722 

 723 

5 Model of a granuloma developing within a lymph node.  724 

To represent the ability of granuloma formation within LNs, we created a sub-model (granuloma 725 

compartment within a LN) representing key cell types found within LN granulomas. Specifically, 726 

we represent three types of macrophages (resting, infected, and activated), two types of Mtb 727 

(intracellular and extracellular), and two subsets of effector T cells (CD4+ and CD8+), hereafter 728 

referred to as granuloma-associated T cells (Figure 2D). A complete list of cell types within our 729 

model LN granulomas and their associated abbreviations can be found in Table 2. 730 

 731 

We initiate LN granuloma formation with a single infected macrophage containing a single live 732 

intracellular Mtb. In our simulations, we initiate LN granulomas in two of five LNs 20 days after 733 

lung infection. We base this number on data derived from previous NHP experimental studies 734 

showing that in a given NHP host, 20-50% of LNs will be CFU+ (8), Therefore 2 of 5 modeled LNs 735 

is consistent with this observation. Previous studies support this timing and show that starting at 736 

approximately 21 days post-infection, viable bacteria are detectable within LNs (8).  737 

 738 
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Following this introduction, granulomas begin to form (or not) through interplay of macrophage, 739 

bacterial, and T-cell subtypes as described by the following equations:  740 

 741 

𝑑

𝑑𝑡
𝑀𝑅 = 𝛼4𝑎(𝑀𝐴 +𝑤2𝑀𝐼) (1 −

𝑀𝑅
𝑛2
)

⏟                  
Recruitment

− 𝑘2𝑀𝑅 (
𝐵𝐸

𝐵𝐸 + 𝑐9
)

⏟          
Macrophage Infection

− 𝑘3𝑀𝑅 (
𝐵𝐸 +𝑤1𝐵𝐼

𝐵𝐸 + 𝑤1𝐵𝐼 + 𝑐8
)(

𝐺4
𝐺4 + ℎ𝑠4

)
⏟                      

Macrophage activation

742 

− 𝜇𝑀𝑅𝑀𝑅⏟    
Natural death

 743 

𝑑

𝑑𝑡
𝑀𝐼 = 𝑘2𝑀𝑅

𝐵𝐸
𝐵𝐸 + 𝑐9⏟        

Macrophage infection

− 𝑘17𝑀𝐼 (
𝐵𝐼
2

𝐵𝐼
2 + (𝑛1𝑀𝐼)

2
)

⏟              
Macrophage bursting

− 𝑘52𝑀𝐼 (

𝐺8 (
𝐺4

𝐺4 + 𝑐𝐸4
) + 𝑤1𝐺4

𝐺8 (
𝐺4

𝐺4 + 𝑐𝐸4
) + 𝑤1𝐺4 +𝑀𝐼𝑐52

)

⏟                          
T-cell driven apoptosis

744 

− 𝜇𝑀𝐼𝑀𝐼⏟  
Natural death

 745 

 746 

𝑑

𝑑𝑡
𝑀𝐴 = 𝑘3𝑀𝑅 (

𝐵𝐸 + 𝑤1𝐵𝐼
𝐵𝐸 + 𝑤1𝐵𝐼 + 𝑐8

) (
𝐺4

𝐺4 + ℎ𝑠4
)

⏟                      
Macrophage activation

− 𝜇𝑀𝐴𝑀𝐴⏟    
Natural death

 747 

𝑑

𝑑𝑡
𝐵𝐼 = 𝛼19𝐵𝐼(1 −

𝐵𝐼
𝑀𝐼
𝑁1
)

⏟          
Intracellular replication

+ 𝑘2
𝑁1
2
𝑀𝑅 (

𝐵𝐸
𝐵𝐸 + 𝑐9

)
⏟            

Macrophage infection

− 𝑘17𝑁1𝑀𝐼 (
𝐵𝐼
2

𝐵𝐼
2 + (𝑛1𝑀𝐼)2

)
⏟                

Macrophage bursting

748 

− 𝑘52𝑀𝐼
𝐵𝐼
𝑀𝐼
(

𝐺8 (
𝐺4

𝐺4 + 𝑐𝐸4
) + 𝑤1𝐺4

𝐺8 (
𝐺4

𝐺4 + 𝑐𝐸4
) + 𝑤1𝐺4 +𝑀𝐼𝑐52

)

⏟                            
T-cell driven apoptosis of 𝑀𝐼

− 𝜇𝐵𝐼𝐵𝐼⏟  
Natural death

749 

− 𝜇𝑀𝐼
𝐵𝐼
𝑀𝐼
𝑀𝐼

⏟      
Release of 𝐵𝐼  by naturally dying 𝑀𝐼

 750 
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𝑑

𝑑𝑡
𝐵𝐸 = 𝛼20𝐵𝐸 (1 −

𝐵𝐸
𝑁3
)

⏟          
Extracellular replication

+ 𝜇𝑀𝐼𝜆𝑠𝑢𝑟𝑣𝐵𝐼⏟      
Release of 𝐵𝐼 by naturally dying 𝑀𝐼

+ 𝑘17𝑁𝐼𝑀𝐼 (
𝐵𝐼
2

𝐵𝐼
2 + (𝑛1𝑀𝐼)

2)
⏟                

Macrophage bursting

751 

+ 𝑘52𝑁𝑓𝑟𝑎𝑐𝑐𝐵𝐼 (
𝐺8 (

𝐺4
𝐺4 + 𝑐𝐸4

) + 𝑤1𝐺4

𝐺8 (
𝐺4

𝐺4 + 𝑐𝐸4
) + 𝑤1𝐺4 +𝑀𝐼𝑐52

)

⏟                              
T-cell driven apoptosis of 𝑀𝐼

− 𝑘2
𝑁1
2
𝑀𝑅 (

𝐵𝐸
𝐵𝐸 + 𝑐9

)
⏟            

Macrophage infection

752 

− 𝑘15𝑀𝐴𝐵𝐸⏟      
Activated macrophage killing of 𝐵𝐸

− 𝑘18𝑀𝑅𝐵𝐸⏟      
𝑀𝑅  killing of 𝐵𝐸

− 𝜇𝐵𝐸𝐵𝐸⏟  
Natural death

 753 

 754 

𝑑

𝑑𝑡
𝐺4 = 𝜉3𝐸4

𝑤2𝑀𝐼 +𝑀𝐴
𝑤2𝑀𝐼 +𝑀𝐴 + ℎ𝑠6⏟              

Recruitment from LN

+ 𝑘9𝐺4 (
𝜌2

𝐺4 + 𝜌2
)(

𝑀𝐼
𝑀𝐼 + ℎ𝑠6

)
⏟                  

Proliferation

 755 

𝑑

𝑑𝑡
𝐺8 = 𝜉9𝐸8

𝑤2𝑀𝐼 +𝑀𝐴
𝑤2𝑀𝐼 +𝑀𝐴 + ℎ𝑠8⏟              

Recruitment from LN

+ 𝑘19𝐺8 (
𝜌3

𝐺8 + 𝜌3
)(

𝑀𝐼
𝑀𝐼 + ℎ𝑠6

)
⏟                  

Proliferation

. 756 

 757 

Here, we show an example of the equations describing LN granuloma formation for one LN with 758 

definitions of individual model states given in Table 2. The full set of model equations describing 759 

all LNs can be found in S1 Appendix and a complete description of model parameters can be 760 

found in Tables S1-3 in S2 Appendix.  761 

 762 

Within a virtual LN, resting macrophages are recruited to a forming granuloma via signals from 763 

existing infected and activated macrophages in the LN granuloma. Resting macrophages are 764 

either infected through Mtb uptake or activated by CD4+ T cells. If infected, macrophages serve 765 

as a replicative niche for Mtb and either burst due to intracellular bacterial overload or undergo 766 

apoptosis following T-cell signaling. Alternatively, if activated, macrophages participate in 767 

extracellular bacterial killing. Mtb exists in one of two states: intracellular (within) or extracellular 768 

(outside of) infected macrophages. When intracellular, Mtb replicate and are released into the 769 

environment following macrophage bursting or natural death. They are also subject to natural 770 
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death or macrophage-mediated killing. When extracellular, Mtb replicate and are subject to uptake 771 

by macrophages. Extracellular Mtb can also undergo activated- and resting-macrophage-772 

mediated killing as well as, in rare cases, natural death. Granuloma-associated CD4+ and CD8+ 773 

T cells are recruited to a developing granuloma and proliferate based on infected and activated 774 

macrophage cell counts that represent a proxy for cytokine signaling produced by each cell, 775 

respectively. While there are no definitive data that T cell proliferation occurs within LN 776 

granulomas, a secondary source of T cells is necessary in our model formulation to capture 777 

experimentally-measured T-cell counts. Once diseased within a LN granuloma, granuloma-778 

associated T cells are unable to leave the LN. 779 

 780 

6 Virtual host death.  781 

Within our model, we do not explicitly model physiological attributes such as strength of LN walls. 782 

This means that our virtual LNs can reach cellular levels and infection severity that is not clinically 783 

relevant, and these virtual LNs would result in LN bursting and animal death if they were within 784 

an NHP, for example. To account for this, we assume that our virtual hosts die at the first time 785 

point that a virtual LN exceeds 107 CFU (4). We do not plot outcomes after day of virtual death 786 

under the assumption that any data thereafter is not clinically relevant. While this is reasonable 787 

for all clinically relevant analyses, we chose to these values in sensitivity analyses because they 788 

allow us to see extremes of disease progression and drivers of the underlying dynamics resulting 789 

in death.  790 

 791 

7 Calibration data (8).  792 

Most calibration data comes from a single study published by the Flynn lab (8). In this study, 32 793 

Cynomolgus macaques were infected with a low dose (~1-28 CFU) of Mtb strain Erdman. At 794 

necropsy, LNs were excised and cut into two sections. One section was homogenized into a 795 

single cell suspension for immunological testing and aliquots made to obtain colony forming units 796 
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(CFU). The other section was prepared for histologic examination. For immunological testing, 797 

single cell suspensions were stimulated with Mtb specific antigens ESAT-6 and CFP-10 in 798 

presence of Brefeldin A and, separately, were stimulated with non-specific antigens phorbol 799 

dibutyrate (PDBu) and ionomycin. The flow cytometry panel for these samples examined cell 800 

surface markers CD3, CD4, and CD8 and intracellular staining for cytokines IL-2, TNF, IFNg, IL-801 

17, and IL-10. Histological examination was performed by an experienced veterinary pathologist 802 

with characteristics of granulomas being noted. See (8) for complete details on data collection 803 

methods. 804 

 805 

Aside from this study, we calibrate our model activated (no antigen presentation or LN granuloma 806 

formation) LNs to known healthy T cell concentrations within blood of Cynomolgus macaques (84) 807 

and an estimated number of total T cells within individual LNs (see subsection below). 808 

Additionally, total model CD4+ T cells and total CD8+ T cells in blood are calibrated to cellular 809 

blood concentrations from (42). 810 

 811 

From the Flynn lab study (8), we have access to data at the resolution of individual NHP LNs and 812 

the number of cells within them (which were presented as avg in the original study). We assume 813 

that all NHP LNs we have data for are activated (receiving APCs) and/or diseased (containing a 814 

LN granuloma) because, if non-activated (not receiving APCs), they are not enlarged enough to 815 

be chosen for excision. In this dataset, there are some NHPs that have multiple LNs with complete 816 

data. We treat each LN as independent regardless of origin because it is known that LNs have 817 

different responses to Mtb infection even within the same host. We classify each NHP LN as 818 

activated (receiving APCs) if a LN was both colony-forming unit (CFU) negative and lacked a 819 

granuloma on gross pathology inspection. If these conditions are not met, we classify a LN as 820 

diseased (receiving APCs and containing a LN granuloma). For calibration, we map data from 821 

each of these classifications of NHP LNs to model LNs of the same name and type. 822 
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 823 

Within each LN classifications, we calibrate NHP and model LN cell counts by comparing 6 unique 824 

datasets: total CD4+ T-cells, total CD8+ T-cells, Mtb-specific CD4+ T-cells, Mtb-specific CD8+ T-825 

cells, total macrophages, and total Mtb. We assume cell count data from NHP LNs following 826 

stimulation with phorbol dibutyrate (PDBu) and ionomycin maps onto our virtual total (Mtb-specific 827 

and Mtb-nonspecific) LN CD4+ and CD8+ T cells, respectively. Additionally, we assume cell count 828 

data from NHP LNs following stimulation with ESAT-6 and CFP-10, Mtb-specific antigens, maps 829 

onto our virtual Mtb-specific LN CD4+ and CD8+ T cells, respectively. Total NHP LN macrophages 830 

map to total virtual LN macrophages and total NHP LN CFU map to total virtual LN Mtb.  831 

 832 

Each LN within the dataset was also classified by a pathologist into two categories based on 833 

effacement status: greater than (>) 50% effacement and less than (<) 50% effacement. Greater 834 

than 50% effacement implies approximately greater than half of a LN is comprised of structures 835 

that were granulomatous material. Those that were less than 50% effacement meant that less 836 

than half (or none) of a LN contains granulomatous material. In our study, we use this 837 

classification to validate our model outcomes.  838 

 839 

7.1 Immunohistochemistry.  840 

LNs from Mtb-infected thoracic LNs were stained as previously described in (85). Briefly, thoracic 841 

LNs were harvested from animals being necropsied as part of ongoing studies and were fixed in 842 

10% neutral-buffered formalin before being embedded in paraffin and sectioned at 5 mm/section. 843 

Sections were deparaffinized and antigen retrieval was performed as previously noted (85) and 844 

adjacent sections were stained for CD3+ T cells (rabbit polyclonal; Dako, Carpinteria, CA), and 845 

CD11c (mouse monoclonal, clone 5D11; Leica Microsystems, Buffalo Grove, IL), followed by 846 

fluorochrome-conjugated secondary antibodies. CD20 (rabbit polyclonal; Thermo Fisher 847 

Scientific, Waltham, MA) was stained with Invitrogen’s Zenon labeling kit (Thermo Fisher 848 
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Scientific) as a directly conjugated tertiary. Adjacent sections were visualized for high endothelial 849 

venules (HEV) and lymphatic vessels, by staining for PNAd (clone MECA-79; BioLegend, San 850 

Diego, CA) and LYVE-1 (goat polyclonal; Biotechne, Minneapolis, MN) as well as CD3 T cells 851 

(Dako). The sections were imaged with either an Olympus Fluoview 500 or Fluoview 1000 laser 852 

scanning confocal microscope (Olympus, Center Valley, PA) maintained by the University of 853 

Pittsburgh's Center for Biologic Imaging (Figure 1A) or a Nikon e1000 epifluorescence 854 

microscope (Nikon Instruments, Melville, NY) (Figure 1B). Three-color images (red, green, far 855 

red [pseudocolored as blue]) were acquired sequentially at 20x magnification, followed by 856 

a DAPI image (gray) showing nuclei. Because the lymph nodes were too large to image in a single 857 

field, multiple overlapping fields were acquired and assembled into a single composite image with 858 

Photoshop (Adobe Systems Incorporated, San Jose, CA) or Nikon Elements AR. 859 

 860 

7.2 Estimation of LN T cell counts in healthy NHPs.  861 

For validation of our model in the absence of Mtb infection, we estimate the number of CD4+ and 862 

CD8+ T cells within a LN. Experimentally, it is difficult to detect non-stimulated LNs and verify 863 

whether they all contain similar numbers of T cells. This effect is further confounded by LN size 864 

variability upon antigen presentation. To create an estimate, we list a number of assumptions and 865 

published data from literature below. 866 

 867 

1. We assume that naïve T-cell repertoires described below is scalable by weight between 868 

Cynomolgus macaques and humans to estimated T-cell counts in uninfected LNs. NHP 869 

weight is approximately a tenth of a human's body weight (86). This gives a human naïve 870 

T-cell repertoire (approximately 3*1011 total naïve T cells across both CD4+ and CD8+) 871 

(87), and we infer an average NHP naïve T-cell repertoire size of 3*1010 across both CD4+ 872 

and CD8+ T cells. Similar comparisons have been made between mice and humans (87). 873 

2. We consider 60% of naïve T cells to be CD4+ and 40% to be CD8+ (87). 874 
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3. We assume that a majority (50-100%) of the total LN T-cell population is naïve (not specific 875 

to any particular antigen measured here) (87).  876 

4. We assume 49% of naïve T-cell populations are within LNs at any given time for the 877 

following two reasons: First, we assume that lymphatic tissues contain populations of T 878 

cells within the spleen, lymph nodes, and tertiary lymph nodes. We assume that half of T 879 

cells within lymphatic tissues reside within the spleen because approximately half of T 880 

cells secreted into blood come from the spleen; we also assume that a negligible portion 881 

of the T-cell population resides within tertiary lymphoid structures. This means that 882 

approximately 50% of T cells within lymphatic tissues lie in LNs. Moreover, at any given 883 

time, 98% of the CD4+ and CD8+ T-cells are circulating through lymphatic tissue (88). 884 

(rather than blood). We obtain 49% as the product of these estimations. 885 

5. We assume that lymph influx may be as low as 10% of the lymphatic system's capacity 886 

(89).  887 

6. In absence of published NHP counts, we assume that numbers of LNs within NHPs are 888 

between 100 and 800 (fewer than or comparable to human LN counts) and assume that 889 

LDLNs have near-average T-cell population sizes. 890 

7. We assume between 1:200,000 and 1:2,000,000 (CD4+) and 1:20,000 and 1:1,300,000 891 

(CD8+) T cells will respond to Mtb antigen (87) (i.e. will be Mtb-specific in our model). 892 

8. Datasets will include additional variation on the order of >30%, due to environmental or 893 

behavioral factors (90). We capture this below as increasing or decreasing the above 894 

estimates by 15%. 895 

 896 

Factoring these together, we calculate the following estimates for T-cell counts within individual 897 

LNs: 898 

 899 



50 

 

Mtb-specific CD4+ Upper Bound900 

= (3 ∗ 1010) ∗ 60% ∗ (50%)−1 ∗ 49% ∗ 100% ∗
1

100
∗ 1: (2 ∗ 10−5) ∗ 1.15 ≈ 4000 901 

 902 

Mtb-specific CD4+ Lower Bound 903 

= (3 ∗ 1010) ∗ 60% ∗ (100%)−1 ∗ 49% ∗ 10% ∗
1

800
∗ 1: (2 ∗ 10−6) ∗ 0.85 ≈ 2 904 

 905 

Mtb-specific CD8+ Upper Bound906 

= (3 ∗ 1010) ∗ 40% ∗ (50%)−1 ∗ 49% ∗ 100% ∗
1

100
∗ 1: (2 ∗ 10−4) ∗ 1.15 ≈ 27000 907 

 908 

Mtb-specific CD8+ Lower Bound 909 

= (3 ∗ 1010) ∗ 40% ∗ (100%)−1 ∗ 49% ∗ 10% ∗
1

800
∗ 1: (1.3 ∗ 10−6) ∗ 0.85 ≈ 1 910 

 911 

Nonspecific CD4+ Upper Bound                                 912 

= (3 ∗ 1010) ∗ 60% ∗ (50%)−1 ∗ 49% ∗
1

100
∗ 1.15 ≈ 108 913 

 914 

Nonspecific CD4+ Lower Bound             915 

= (3 ∗ 1010) ∗ 60% ∗ (100%)−1 ∗ 49% ∗ 10% ∗
1

800
∗ 0.85  ≈ 106 916 

 917 

Nonspecific CD8+ Upper Bound                  918 

= (3 ∗ 1010) ∗ 40% ∗ (50%)−1 ∗ 49% ∗  100% ∗
1

100
∗ 1.15 ≈ 108 919 

 920 
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Nonspecific CD8+ Lower Bound               921 

= (3 ∗ 1010) ∗ 60% ∗ (100%)−1 ∗ 49% ∗ 10% ∗
1

800
∗ 0.85 ≈ 6 ∗ 105 922 

 923 

8 Parameter estimation and model calibration.  924 

As we used HostSim LN and blood ODEs as a starting point for the individual LN ODEs and used 925 

HostSim lung granuloma ODEs as a starting point for the LN granuloma ODEs, we began 926 

simulations by using parameter ranges in those original model equations for our updated 927 

individual LN granuloma model (35). We employed two primary methodologies to modify our 928 

published, previous parameter ranges, and we describe both in brief below. 929 

  930 

8.1  Calibration protocol using Latin hypercube sampling.  931 

The goal of calibration is to tune model parameters so that model outputs recapitulate variation 932 

observed in target datasets (91,92). We performed calibration using our CaliPro method (91) and 933 

summarize our application of it here. 500 combinations of model parameters are globally sampled 934 

from uniform distributions using a technique called Latin hypercube sampling (LHS) (92). Using 935 

these samples, parameters are grouped into either “pass” or “fail” sets depending on whether 936 

model outputs match target datasets as follows. Consistent with published CaliPro examples 937 

(90,91) at each timepoint in our datasets we widen a dataset range by a magnitude to specify a 938 

pass set definition; this prevents simulations that do not strictly match a dataset range from being 939 

excluded to allow for subsequent improvement. When the pass rate of sampled parameters 940 

exceeds 90%, calibration process is stopped to not overfit the data (91). To improve pass rate 941 

between calibration iterations, parameter ranges under calibration are adjusted using a technique 942 

of alternative density subtraction, which subtracts a fail parameter set probability density from a 943 

pass parameter set probability density (91). Note that we do not fix parameter values even when 944 
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performing model calibration to capture biological variability between LNs, hosts, and granulomas. 945 

In total, 74 parameters across five LNs are varied, and 22 parameters are fixed. 946 

 947 

8.2 CaliPro, the Calibration protocol, uses visual inspection and identification.  948 

The above-described calibration protocol, CaliPro (91), is unable to account for pass sets not 949 

capturing within data ranges. Thus, we augment the calibration protocol approach by employing 950 

a method that uses visually identifiable hosts with favorable characteristics. Specifically, “good 951 

hosts” are those whose outcomes are closer to the median of calibration data. We then determine, 952 

for each of these “good hosts”, where in a previous parameter range a host parameters fell. If any 953 

of those “good parameter values” fell near an edge of their source parameter range (within 10% 954 

of an edge of the range), we expanded and recentered the parameter’s range to center around 955 

that “good value” in the logarithmic scale. We continue this process iteratively until sampling 956 

ranges produce model results that adequately capture data ranges. 957 

 958 

8.3 Model scope. 959 

The scope of a model is the set of all credible statements that a model can make and highly is 960 

related to the set of mechanisms validated within the model. Systematic assessment of a model’s 961 

full scope is beyond the purview of this paper. Rather, we determine whether claims about 962 

individual outcomes are within-scope by determining (i) if known biologically-relevant 963 

mechanisms have been explicitly represented while justifying simplifications, and (ii) if a model 964 

can reproduce datasets and qualitative behaviors that were not used for calibrate  (i.e., model 965 

validation). As Mtb infection is chronic and potentially lasting for decades, we assume that 966 

trajectories that exhibit slow long-term changes (other than sterilization) are reasonable, and 967 

therefore predictions beyond 200 dpi to be within-scope. Within the results section we explicitly 968 

indicate results we are using as validation. 969 
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Note that, while we simulate multiple biologically-relevant spatial scales (i.e., cell, tissue, and 970 

host), we do not explicitly represent spatial gradients of molecules within any individual model 971 

component. This is because we find a non-spatial model to be both feasible and sufficient for our 972 

goal: to simulate longitudinal trajectories of LN granuloma infection and determine biological 973 

mechanism influential over LN and LN granuloma outcomes. 974 

9 Outcome measures.  975 

To best determine mechanisms that may predict LN granuloma fates we define the following 976 

output measures:  977 

 978 

9.1 LN granuloma bacterial load.  979 

For each individual, diseased (LN granuloma-containing) LN, we sum bacteria counts over all 980 

subtypes. This determines LN granuloma fate.  981 

 982 

For some of our analyses, we assign each simulation as having one of three fates: bacterial levels 983 

that are growing large, bacterial loads that are stable, and bacterial levels that sterilize. We define 984 

bacterial levels that are growing large as those that have a maximum bacterial load at the end of 985 

simulation period. We define bacterial loads that are stable as those that a bacterial load remains 986 

greater than 0.5 and have reached a maximum bacterial load before the end of the simulation. 987 

Lastly, we define LN granulomas that sterilize as those that have a bacterial load of less than 0.5 988 

at any point during the simulation. 989 

 990 

9.2 Time-to-sterilization. 991 

For all LNs undergoing granuloma formation, we define time-to-sterilization as the first time point 992 

after initial seeding of live bacteria within LNs that total bacterial load (regardless of intracellular 993 
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status) fell below less than 0.5 bacteria. Note that any rebounds in bacterial loads above 0.5 we 994 

disregard as an artifact of using a continuous model.  995 

 996 

We also use time-to-sterilization to capture how non-sterilizing LN granulomas will take longer to 997 

clear than the study duration, if at all. To this end, we default time-to-sterilization to day 482 for 998 

all non-sterilizing granuloma-forming LNs, although any arbitrary time beyond the simulation end-999 

time yields the same PRCC results. This is because PRCC uses Spearman correlations, and 1000 

consequently all non-sterilizers are ranked identically. 1001 

 1002 

9.3 Serial 2-deoxy-2-[18F]-D-deoxyglucose (FDG) avidity.  1003 

PET/CT scans are a non-invasive method of examining granulomas. Scans using 18F-1004 

fluorodeosyglucose are used to measure metabolic activity of a tissue (44,45). We do not explicitly 1005 

model metabolic activity within our LN; however, we approximate FDG avidity as a weighted sum 1006 

of cell counts, where more metabolically active cell types are more highly weighted. Simulated 1007 

FDG avidity is an exploratory measurement of metabolic activity adapted from our previous work 1008 

(94). This measurement assumes that pro-inflammatory cell states are more metabolically active 1009 

and resting/memory/non-effector states are less metabolically active.  Factors that influence real 1010 

FDG avidity are currently not experimental known and thus we hypothesize that relative cellular 1011 

activity based on numbers are a fair proxy.  1012 

 1013 

We made four assumptions: (i) activated macrophages are more metabolically active than 1014 

infected macrophages; (ii) activated macrophages were 1.5x more metabolically active than 1015 

effector T cells; (iii) that metabolic activity level of T cells was greatest in effector cells, less in 1016 

memory cells, and further less in precursor cells; and (iv) that CD4+ and CD8+ T cells had similar 1017 

levels of metabolic activity. Our weights, given below, reflect these assumptions. Note that scaling 1018 

the entire measurement up or down does not affect our conclusions because our analysis,  PRCC, 1019 
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is a method that ranks outcomes relative to one another (rather than using the absolute levels of 1020 

sFDG). The calculation is as follows and can be modified as new data are available. 1021 

 1022 

sFDG  =  2𝑃4 + 4𝐸4 + 4𝐺4 + 3𝐶𝑀4 + 3𝐸𝑀4 + 2𝑃8 + 4𝐸8 + 4𝐺8 + 3𝐶𝑀8 + 3𝐸𝑀8 + 5𝑀𝐼 + 6𝑀𝐴 1023 

 1024 

9.4 Numbers of effluxing T-cells.  1025 

For all LNs, we define numbers of effluxing T cells as the number of Mtb-specific effector T-cells 1026 

(CD4+ and CD8+) that leave a given LN at a time point.  1027 

 1028 

9.5 Virtual lymph node effacement.  1029 

In all diseased LNs that undergo granuloma formation, we calculate percent effacement and bin 1030 

it into two categories: greater than (>) 50% effacement and less than (<) 50% effacement. To find 1031 

percent effacement, we take volume of total granuloma-associated cells (macrophages, 1032 

granuloma-associated T cells, and Mtb) and divide it by total LN volume (i.e. granuloma-1033 

associated cells and non-granuloma-associated LN T-cells). We assumed that macrophages, T 1034 

cells, and LNs are approximately spherical in shape and bacteria are approximately cylindrical. 1035 

The specific formula used to calculate percent effacement is as follows:  1036 

 1037 
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 1038 

 1039 

Where 𝑀𝑡𝑜𝑡  is total number of macrophages within a LN granuloma, 𝑇𝐺,𝑡𝑜𝑡 is number of 1040 

granuloma-associated T cells, 𝐵𝑡𝑜𝑡 is total number of bacteria within a LN granuloma, and 𝑇𝑁𝐺,𝑡𝑜𝑡 1041 
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is number of non-granuloma-associated T-cells. 𝑑𝑀, 𝑑𝑇, and 𝑑𝐵 correspond to the diameters of 1042 

macrophages, T cells and Mtb, respectively and 𝑙𝐵 corresponds to length of Mtb.  1043 

 1044 

We define LNs with a greater than 50% effacement to be those that have a percent effacement 1045 

greater than or equal to 0.5 and LNs with less than 50% effacement to be those that have a 1046 

percent effacement of less than 0.5. Given that almost all LNs in the NHP experimental dataset 1047 

are from 201 days post-infection or shorter and that we assume that the majority of highly effaced 1048 

LNs at late time point belong to NHPs that would have to be euthanized due to severe disease 1049 

progression, we calculate virtual LN effacement values at 201 days post-infection.  1050 

 1051 

10 Uncertainty and sensitivity analyses.  1052 

To determine mechanisms driving key outcomes of interest as described above, we perform 2 1053 

quantitative statistical techniques called uncertainty and sensitivity analyses. Using Latin 1054 

hypercube sampling, we efficiently sample our parameter ranges to generate 1000 virtual hosts. 1055 

Given our individual LNs are independent copies of one another, we pool our LNs as either 1056 

diseased or activated. This means that, for a diseased host, we have 2000 diseased virtual LNs 1057 

and 3000 activated virtual LNs in our final analysis set. Then, to determine relative impact of 1058 

changes to parameter values on model output measures of interest, we calculate correlations 1059 

using the Partial Rank Correlation Coefficient (PRCC) method, a well-established method of 1060 

determining correlation-based sensitivity (92).  1061 

 1062 

In brief, PRCC is a method of assessing nonlinear correlations between model inputs 1063 

(parameters) and a specific model output measure. As an example, a PRCC value indicates 1064 

dependence of a variation of an outcome measure (e.g., total bacterial burden at a given timestep) 1065 

on each parameter in a model. Because our model generates outcomes that we can measure at 1066 

each time point, we use PRCC to assess correlations in both time and across parameters. We 1067 
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also perform Bonferroni corrections for multiple comparisons, given that we are determining the 1068 

dependence of an outcome on each parameter simultaneously (90,92). We do not expect that a 1069 

single mechanism will have a large correlation, as this would be a biological fail-point. Moreover, 1070 

PRCC values are partial-correlations, which remove the linear contribution and may mean that 1071 

absolute correlation values appear smaller while still retaining biological significance (93). 1072 

 1073 

To further simplify interpretation of our sensitivity analysis, post-PRCC analysis we calculate 1074 

average PRCC value for each parameter in 50-day ranges. This is done to represent and visualize 1075 

results and trends of data more easily (see Results for details). We also exclude from our 1076 

analyses any parameters that have PRCC values that is significant for less than 30 days within a 1077 

period. We do this because we assume that, if the PRCC value of a parameter is not significant 1078 

for at least 30 days within a 50-day range, it is likely an artifact rather than a true result.  1079 

 1080 

11 Model simulation and analysis tools.  1081 

We implement our model code and preliminary data analysis in MATLAB (2024a). We solve our 1082 

system of ODEs using MATLAB’s ode15s solver. Post-processing statistical analysis was 1083 

performed within MATLAB (R2024a) and all figures were generated using R (R version 4.3.2). 1084 

We also provide (i) an SMBL-encoded version of the ODE component of our model (generated 1085 

using MOCCASIN (95)), (ii) spreadsheets containing parameter and initial condition ranges that 1086 

we used (i.e., a machine-readable version of Tables S1-3 in S2 Appendix); and (iii) the specific 1087 

per-virtual-host parameter and initial conditions we used for all simulations presented in this work. 1088 

Hyperlink: http://malthus.micro.med.umich.edu/lab/lymphSim/ 1089 
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S1 Appendix. Model ODE Equations. This document contains the equations used in our multi-1376 

LN model of the LDLN response to pulmonary Mtb infection. These equations are split up into 1377 

three classes of systems: blood 7 equations (Section 1), lymph node equations (Section 2), and 1378 

LN granuloma equations (Section 3).  1379 

 1380 

S2 Appendix. Model Parameters. This appendix provides a complete list of model parameters 1381 

for equations given in S1 Appendix. Table S1 details blood parameters. Table S2 details lymph 1382 

node parameters. Table S3 details lymph node granuloma parameters. Column 1 shows the 5 1383 

searchable name of each parameter. Bl refers to blood. Column 2 shows the symbol used in the 1384 

equations. Column 3 givens a 6 description of the parameter. The last 3 columns refer to the 1385 

uncertainty analysis parameter distributions and the range values of minimum and maximum.  1386 

 1387 

S3 Text. Supplementary Model Information. This document details pulmonary status of actively 1388 

infected host (Figure S1), model blood (Figure S2) and negative control calibration (Figure S3), 1389 

and actively infected host analyses that parallel the LTBI host presented in the manuscript (Figure 1390 

S4-8). 1391 

 1392 

S1 Figure. Lung granuloma output for active pulmonary disease host. Model output for 1393 

granulomas from a representative host that was used to generate APCs from a host with active 1394 

pulmonary disease. Shown are cell numbers and bacterial levels for this representative active 1395 

host (colors represent unique granuloma trajectories within our representative host). Two 1396 

granulomas (above in purple) have high-burden, uncontrolled bacteria indicating active 1397 

granulomas, and thus an active pulmonary infection. All other granulomas (other lines) are 1398 

granulomas where bacteria are controlled or cleared. 1399 

 1400 
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S2 Figure. Multiple-LN model captures expected evolution of immune T cell population 1401 

dynamics from the blood compartment in 3 cases: uninfected, activated, and diseased 1402 

lymph nodes. We simulated 1000 virtual hosts having both  LTBI and active pulmonary 1403 

disease (using the unique APC trajectories respectively). Our model is calibrated to capture 1404 

key dynamics of total T cells in the blood within the uninfected (A, D), activated (B, E), and 1405 

diseased (C, F) cases for virtual hosts with LTBI (A, B, C) and virtual hosts with active pulmonary 1406 

infection (D, E, F). Uninfected hosts have no Mtb infection and no APC driven activation in their 1407 

LNs. Activated hosts have five LNs receiving Mtb activated APCs. Diseased hosts have five 1408 

activated LNs receiving Mtb activated APCs and LN granulomas forming in LN #1 and #2. We 1409 

simulate 1000 separate virtual hosts for each case. Black dashed line in A and B represents 1410 

average concentration of CD4+ and CD8+ T-cells in blood of a healthy animal (1). Flow cytometry 1411 

data from individual NHPs is represented by black dots from (2) in B, C, E, and F. 1412 

 1413 

S3 Figure. Multiple-LN model captures expected evolution of immune T cell population 1414 

dynamics in uninfected lymph nodes for 1000 virtual hosts. Our model is calibrated to capture 1415 

key dynamics of Mtb-specific T cells (A, C) and total T cells (B, D) for virtual uninfected hosts with 1416 

both LTBI (A, B) and active pulmonary infection (C, D). Uninfected hosts have no Mtb infection 1417 

and no APC-driven activation in their LNs. We simulated 1000 separate virtual hosts for each 1418 

case. In each plot, 1000 hosts are represented, each host LN is a line. 1419 

 1420 

S4 Figure. Multiple-LN model captures expected evolution of immune T cell population 1421 

dynamics in activated and diseased cases for 1000 virtual hosts with active pulmonary 1422 

disease. Our model is calibrated to capture key dynamics of Mtb-specific T cells (A, C) and total 1423 

T cells (B, D) within activated (A, B) and diseased (C, D) cases. Activated hosts have five LNs 1424 

receiving Mtb activated APCs. Diseased hosts have five activated LNs receiving Mtb activated 1425 

APCs and LN granulomas forming in LN #1 and #2. For diseased LNs, our model captures the 1426 
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dynamics of LN bacterial load (E) and macrophages (F). We simulated 1000 separate virtual hosts 1427 

for each case, generating a distinct trajectory for each of their LNs based on their 1428 

parameterization. Lines in each plot show cell populations from the indicated LN within one host. 1429 

For LN bacterial load (E) and macrophages (F), lines are colored by bacterial load trajectory: 1430 

growing large (purple lines), stabilization (teal lines), and sterilization (yellow lines). Flow 1431 

cytometry data from individual NHP LNs taken at necropsy are represented by black dots from 1432 

(8). Note that lines are truncated on virtual host death (see Methods, Section 6). 1433 

 1434 

S5 Figure: Bacterial load is driven by a balance of macrophage infection and activation 1435 

within 1000 hosts with active pulmonary disease. (A) Proportion of 2000 virtual LN 1436 

granulomas by fate: no bacteria present (sterilized), stable bacterial growth (stable), and 1437 

uncontrolled bacterial growth at 481 days post lung infection (N=2000). (B) Summary of sensitivity 1438 

analysis detailing significant parameters driving total bacterial load. PRCCs are binned into 50-1439 

day bins for ease of analysis (see Methods). Shading indicates average PRCC value during a 1440 

time interval t (given a parameter is at least significant for 30 days in t). White boxes indicate no 1441 

significant correlation for longer than 30 days in t. A (+) indicates a positive correlation and 1442 

absence of a symbol indicates a negative correlation. Significance alpha = 0.01 after Bonferroni 1443 

correction. Complete model state descriptions (MR, MI, E4, etc.) can be found in Table 2 in 1444 

Methods and parameter value description found in Tables S1-3 in S2 Appendix. 1445 
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