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Summary 
 
The immune system and the process of antigen presentation in particular encompass 
events that occur at multiple length and time scales. Despite a wealth of information in 
the biological literature regarding each of these scales, no single representation 
synthesizing this information into a model of the overall immune response as it depends 
on antigen presentation is available. In this paper we outline an approach for integrating 
information over relevant biological and temporal scales to generate such a representation 
for MHC class II-mediated antigen presentation. In addition, we begin to address how 
such models can be used to answer questions about mechanisms of infection and new 
strategies for treatment and vaccines. 



 3

Introduction 
 
Biological systems are often explored in the laboratory at a reductionist scale. The idea is 
that if we understand everything at particular scales (most recently focused at the 
molecular scale), we will then understand the system as a whole; immunology is no 
exception. Of concern, however, is that the immune system spans multiple length (gene 
through body) and time (sub-second through lifetime) scales and that the immune 
response will likely only be completely understood through knowledge of how processes 
at these different scales work together. Such an integrative picture of a system is the 
desired outcome of multi-scale modeling. In total, approaches that capture multi-scale or 
system-wide features fall under the umbrella of systems biology. 

Systems biology encourages a non-reductionist approach to model development, 
beginning with the simplest possible model. Coined ‘reconstructionism’ by M. Savageau 
(1), the idea is that biological systems are more than the sum of their parts and that 
integrative behavior occurs in a non-predictable fashion. The modeling process itself 
brings about an understanding of the underlying system, as components are captured with 
mathematics and/or statistics. A minimal model is constructed and then grows in 
complexity, driven by new hypotheses that may not have been apparent from the 
phenomenological descriptions. With recent advances in information technology—fast 
and inexpensive computing power, global networking infrastructure, and comprehensive 
databases—modeling and simulation are becoming increasingly important biological 
tools. For the most part these efforts have focused at a single scale, e.g. 
genomic/proteomic, cellular, tissue, organ, organ system and whole body. Only now is 
there an emphasis to develop tools, techniques, algorithms, and mathematical theory to 
integrate seamlessly the continuum from the micro- to the macro-scale. Multi-scale 
modeling deals with spanning scales as diverse as from molecular to population. It can 
impact our understanding of biological processes and also further our predictive 
capabilities in biology. Multi-scale algorithms are built and validated against 
experimentally derived data and observations.  

The need for multi-scale approaches in biology is recognized in the cardiovascular field, 
where a number of groups are developing methods to integrate molecular and cellular 
events with organ function (e.g. 2, 3). In addition, multi-scale approaches are now being 
considered for neural systems (4, 5, 6), tumor growth (7), the vasculature (8), and 
developmental biology (9). Multi-scale approaches are also being applied in various 
engineering problems, for example in polymer science (10) and tissue engineering (11). 
We argue that immunology is also ripe for such a multi-scale approach.    

We focus in this chapter on antigen presentation via the major histocompatibility 
complex class II (MHC II) pathway and its role in the immune response. We first review 
the relevant biological events and discuss the multi-scale aspects of the process. We then 
present models that have been developed to address biological events occurring at various 
scales and give examples of applications to the study of disease dynamics. Finally we 
discuss ways to begin to integrate models across scales. 
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The biology of antigen presentation 
 
Antigen presentation is the process by which peptide fragments from the proteins of 
pathogens or the host are partially degraded and then displayed (or “presented”) on the 
surfaces of cells in complex with MHC molecules. Once bound to MHC, antigens can be 
recognized by cognate T cells which then respond by either killing the original antigen-
presenting cell or else activating it along with other cells. While antigen presentation may 
appear to occur only at molecular and cellular scales, events at other scales also affect the 
outcome. For instance, antigen presentation to naïve T cells occurs within the larger 
context of the lymph node (LN), and other chemical signals (e.g. cytokines produced by 
other cells) within the LN or the topology of the LN itself may affect whether APCs are 
able to contact and activate T cells. Similarly, the ability of effector T cells to traffic out 
of the LN and throughout the body will affect the time course of an infection. The 
success of antigen presentation therefore depends on events occurring at multiple 
biological scales (Fig. 1). 
 
 

 
Figure 1 
 
Peptide-MHC binding 
 
A key event in antigen presentation is the binding of peptide to one of two classes of 
MHC molecule. All nucleated human cells perform antigen presentation to some extent 
by expressing MHC class I (MHC I) molecules which sample peptides from the 
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cytoplasm. However, some cells are also capable of presenting peptides derived from 
exogenous antigens using MHC class II molecules; these specialized cells are known as 
professional antigen-presenting cells (APC). In this review we focus macrophages and 
dendritic cells, although B cells can also serve as APCs.  (A recently discovered pathway 
for presenting lipid antigens, the CD1 pathway, will not be considered here. See (12) for 
a review of this topic.) 
 
For the most part the two classes of MHC molecule sample different sources of antigen 
and take divergent pathways through the cell. Proteins found in the cytoplasm, including 
those produced by viruses, are degraded (or “processed”) into shorter peptides by the 
main protein turnover machinery of the cell, the proteasome. A subset of these peptides is 
transported into the endoplasmic reticulum (ER) by the transporter associated with 
antigen processing (TAP). Binding between peptides of a particular length (8-10 amino 
acids) and MHC class I molecules then occurs within the ER, and the resulting 
complexes are trafficked to the cell surface. In contrast antigens from pathogens that do 
not reside in the cytoplasm, including bacteria and parasites, are generally first taken up 
by the cell and then processed in the endosomal pathway. Cathepsin proteases located 
within the endosomal pathway become activated by the increasingly acidified 
environment and cleave the protein antigens into peptides of shorter lengths. Binding 
between extracellular-derived peptides of varying lengths (often greater than 9 amino 
acids) and MHC class II molecules then occurs later in this pathway or in a specialized 
vacuole that branches off known as the MHC class II binding compartment (MIIC). 
Peptide-MHC II complexes are then trafficked to the cell surface as in the case of the 
class I pathway. In both cases the final stage is recognition of the complexes by cognate 
T cell receptors (TCR), either on the surface of CD8+ cytotoxic T cells (in the case of 
MHC class I) or on the surface of CD4+ helper T cells (in the case of MHC class II). 
 
One theme that arises from this cursory overview of both antigen presentation pathways 
is the importance of high-affinity binding. Peptides that bind a particular MHC molecule 
weakly—or alternatively MHC variants that bind a particular peptide weakly—are 
expected to lead to relatively few peptide-MHC complexes on the APC surface. Binding 
affinities of peptide-MHC complexes can be measured in vitro using a number of 
different techniques. In the most common assay, a competitive binding assay, various 
concentrations of the peptide of interest are used to displace the binding of a labeled 
reporter peptide. The concentration at which 50% of the reporter peptide is displaced 
provides the IC50 which approximates the equilibrium dissociation constant of a peptide-
MHC complex, KD. More precisely IC50 is related to KD according to 
 

KD = IC50 (1 + Lr/Kr) -1 
 
where Lr and Kr represent the concentration of the reporter peptide and the equilibrium 
dissociation constant of the reporter peptide-MHC complex, respectively (13). These 
parameters frequently vary by protocol, Lr explicitly so and Kr by virtue of being specific 
to each combination of peptide and MHC (14, 15, 16). Alternatively KD values and even 
association and dissociation rate constants can be determined by other techniques 
including radiolabeling and fluorescence polarization methods (17). Several online 



 6

databases including MHCPEP (18), MHCBN (19), and AntiJen (20) now store peptide-
MHC binding affinities. These databases currently contain measurements on 
approximately 13000, 14000, and 24000 peptides, respectively. In the former two 
databases IC50 values are not available directly but can be inferred from the four-tiered 
classification used by both databases: high affinity indicates IC50 of <1 nM; moderate, 
IC50 of 1 nM-100 nM; low, IC50 of 100 nM-10 µM; no binding, IC50 of >10 µM. An IC50 
of 500 nM is also commonly used as a threshold to differentiate binding from non-
binding (21). In AntiJen IC50 is reported directly whenever possible. 
 
The greater significance of binding affinity to antigen presentation can also be discerned 
from the epidemiological literature. Various MHC alleles have been correlated with 
increased susceptibility to diseases, particularly chronic diseases of an autoimmune or 
infectious nature (22). Examples of diseases associated with particular MHC alleles 
include type I diabetes, rheumatoid arthritis, malaria, and tuberculosis. Because most 
polymorphisms in MHC molecules occur within the peptide-binding region, it is 
reasonable to assume that binding to either peptide or TCR is affected. The detailed 
mechanisms behind these associations have not yet been elucidated, although several 
hypotheses exist (22, 23, 24). Furthermore a correlation between peptide-MHC affinity 
and magnitude of the immune response at the cellular level has been demonstrated (25, 
26). We provide a full treatment of this topic elsewhere (Chang et al., in preparation). 
 
Cellular processes controlling display of peptide-MHC complexes 
 
Peptide-MHC binding is by no means the only step that is regulated in the antigen 
presentation pathway. Other steps are controlled dynamically—by cell-to-cell contact or 
the constantly changing cytokine environment surrounding the APC, for instance—and 
allow antigen presentation to be fine-tuned. We describe these steps and others relevant 
to the MHC II-mediated pathway in more detail below (Fig. 2) but refer the reader to a 
recent review for a full treatment (27).  
 

 
Figure 2 
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Antigens for the MHC II-mediated pathway are generally internalized by one of three 
routes before converging on the endosomal pathway: phagocytosis, fluid-phase 
pinocytosis, and receptor-mediated endocytosis. Internalized antigens then progress 
through increasingly acidified endosomes and are exposed to low pH-activated cathepsins 
that degrade the antigens into smaller peptides (28). These peptides then either bind MHC 
II molecules or are directed to lysosomes for degradation. 
 
MHC II expression normally occurs at low levels in resident APCs but can be up- or 
down-regulated by the cytokine environment. Interferon-γ (IFN-γ) is one cytokine that 
affects MHC class II expression. After IFN-γ binds to its receptor on the APC surface, a 
signal is propagated through the JAK-STAT pathway that increases the level of class II 
transactivator (CIITA) in the cell. CIITA acts as the master regulator of MHC II 
transcription, and increased levels of CIITA lead to parallel increases in MHC II 
expression several hours after exposure to IFN-γ. Nascent MHC II molecules enter the 
ER and are coupled to another protein, invariant chain (Ii). The luminal domain of Ii 
binds the peptide-binding groove of MHC II, protecting it from proteases, while the 
cytoplasmic domain of Ii directs the two molecules to the endosomal pathway. After 
reaching the endosomal pathway MHC II molecules retain a remnant of Ii, the class II 
invariant peptides (or CLIP), until released by the enzyme H2-/HLA-DM (29). Here 
antigenic peptides compete for binding to MHC II with self peptides that are present at 
high levels and may bind greater than 80% of the available MHC II in the absence of 
exogenous peptides (30, 31). In complex with either self or exogenous peptides, MHC II 
molecules then traffic to the cell surface where they may remain stable for days until 
recognized by CD4+ T cells or internalized and degraded.  
 
Macrophages and dendritic cells (DCs) express not only MHC II molecules but also co-
stimulatory and adhesion molecules necessary to engage T cells. Both macrophages and 
DCs derive from a common precursor, the monocyte, which differentiates into one of the 
two cell types based on environmental cues (32, 33).  (B cells, another APC type and not 
a focus of this review, are derived from hematopoietic cells in the bone marrow (27). 
Macrophages and DCs are found in overlapping distributions within the body in areas 
such as the LNs, and there is even evidence to suggest these cells can re-differentiate 
from one class to the other (34). 
 
Differences between macrophages and DCs occur in the rates at which they perform 
processes related to antigen presentation. DCs express 10-100 times the number of MHC 
II molecules expressed by macrophages and also perform antigen uptake at generally 
increased rates (35, 36). Consistent with these findings, fewer DCs are required to 
activate T cells than macrophages (35). More importantly these cells play different roles 
in the overall development of the immune response. DCs take up antigen at the site of 
infection and migrate to LNs to present antigen, while macrophages primarily perform 
their function as APC at the infection site (37). 
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Cellular interactions in the context of the lymph node 
 
Once on the surface of the APC, peptide-MHC II complexes (pMHC) can elicit partial or 
full activation of T cells depending at least in part on the number of peptides presented 
and the number of TCR engaged (i.e. bound to pMHC). Relatively few measurements of 
pMHC-TCR affinity have been made, although some are available in AntiJen (20). A 
single pMHC on the APC surface has been shown to be sufficient to elicit an intracellular 
release of calcium within the T cell, while full activation is generally acknowledged to 
require hundreds of complexes as gauged by the release of IL-2, a cytokine that initiates 
localized T cell division (also known as clonal expansion) (38, 39). In addition there is 
evidence that a quantitative relationship exists between surface pMHC levels and the 
magnitude of T cell response, assuming pMHC levels exceed a lower threshold (38, 40, 
41, 42). The effects of antigen presentation may therefore be sensitive to variations in a 
number of contributing intracellular processes.  
 
During the course of an infection antigen presentation occurs at two major sites. First, 
within the LN antigen presentation events that are responsible for initiating an adaptive 
immune response occur and are driven mainly by DCs. Secondly, at the site of infection 
macrophages participate in antigen presentation events that sustain immune responses. 
The tissue-level context strongly influences the dynamics of antigen presentation and 
recognition. For example, the LN environment restricts cytokines and chemokines to a 
microenvironment allowing efficient signaling to occur. 
 
As the early events of immunity likely determine the success of the response, 
understanding events within the LN is a critical first step. There are approximately 700 
LNs, each roughly 1-5 cm3 in size, distributed throughout the human body and those 
closest to a given site of infection will be engaged in infection dynamics. Some infections 
are systemic involving not a particular tissue site but instead the blood or multiple 
epithelial sites; in these cases many different LNs will be involved at some level. 
 
LNs are connected through a series of lymphatics that serve as the highway between the 
LNs, entering into each LN through afferent lymph ducts and leaving through the 
medullary sinuses that flow into a single efferent lymph duct (Fig. 3). Blood vessels also 
feed into the lymphatic system, both directly into the LNs (at high endothelial venules: 
HEVs) and at junctures throughout. Lymphatics then return cells to blood via a common 
conduit: the thoracic duct (43). APCs circulate into LNs via the afferent lymphatics while 
T cells enter through the HEVs (44, 45). Once in the LN, CD4+

 
T cells sample the surface 

of APCs for pMHC complexes within the LN paracortex. 
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Figure 3 
 
 
When a CD4+ T cell encounters an APC and its TCR binds its cognate pMHC on the 
surface of the APC, a series of events follows leading to T cell activation. At the interface 
between APC and T cell, pMHC, TCR, and co-stimulatory and adhesion molecules 
aggregate into a structure known as the immunological synapse (IS) (46). Recently the IS 
has been the subject of intense investigation and several theories exist as to how this 
intricate structure forms and functions (e.g. 47). If recognition occurs, T cells become 
activated and begin secreting IL-2. These T cells differentiate and become fully activated 
in response to further environmental cues and additional cell-cell interactions with APCs 
(48, 49). Experimentally these changes can be tracked by measuring the amount of 
radioactively labeled nucleotide incorporated by T cells as they divide. The ability to 
quantify T cell activation in turn provides an assay for antigen presentation (50). In one 
commonly used in vitro assay, cultured APCs are pulsed with a particular model antigen 
(e.g. ovalbumin) and then exposed to T cell hybridoma cells specific for that antigen. 
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The composition of individual LNs can be determined by extracting the LNs from 
animals (pre- and post-infection) and analyzing them by flow cytometric methods (such 
as fluorescence-activated cell sorting, or FACS) (51, 52, 53, 54). From these studies it is 
clear that immune cell numbers increase dramatically during an immune response. 
However, what cannot be ascertained from these studies are the spatial dynamics that 
occur within a LN and are known to play a role in the success of antigen presentation 
events. 
 
With the advent of two-photon intravital microscopy, a technique that allows 
visualization of cells within a tissue environment, it is becoming increasingly clear that T 
cell responses in LNs in vivo are much different than what has been observed in vitro due 
to environmental factors as well as the inherent structure of the LN (e.g. 55, 56; 57 and 
see Fig. 3). Using intravital techniques, one can observe T cells and DCs interacting as 
they travel through the LN. T cells display rapid motion in LNs, moving at an average of 
10-12 µm/min and a peak velocity of 25 µm/min. On the smallest time scale, the motion 
varies linearly with time, having a mean free path � 30 µm and changing path direction 
on average every 3 minutes (57). Over longer time scales (up to 20 minutes) 
displacement-squared varies almost linearly versus time, characteristic of a random walk 
and quantified by the motility coefficient � 65 µm2/min (58). Since T cells must traverse 
a LN in <48 hours (as observed in classical studies of lymph circulation, ref. 59) their 
motion must be biased toward migration from entry at the afferent lymph to exit at the 
efferent lymph over the time scale of hours to days. Alternatively, if the motion through 
the LN conformed to a random walk with a motility coefficient of 65 µm2/min, T cell 
migration through the LN would take 24 hours to move 600 µm from the starting point 
and more than 10 days, on average, to be displaced 2 mm. Both of these distances would 
represent unrealistically slow movement through the LN, particularly since the T-cell 
motility decreases when bound to a DC or when the T-cell enters the medullary sinuses 
on the path to exit from the LN via the efferent lymphatic. (Note these calculations do not 
refer to the total path length but rather the net displacement from the starting point for a 
completely random walk.) Once a T cell binds to a DC with cognate antigen, its 
movement slows with binding lasting over a period of 10-15 hours; clusters of T cells 
form around the DC followed by swarming behavior of the T cells (60). Following this 
prolonged contact, both T cells and DC are activated (a fully activated DC is known as a 
licensed DC, or LDC), and T cell proliferation begins (60).   
 
Unfortunately the processes captured via intravital microscopy technique represent very 
short time scales (minutes to hours) and occur over very small length scales (100 µm). 
Intravital microscopy therefore captures a relatively small region of an entire LN, which 
can be larger than 1 cm3 (and during infection grows even larger) and over a relatively 
brief time slice of an adaptive immune response that occurs over days to weeks. Further, 
simultaneous assessment of the processes occurring at different biological scales and time 
scales cannot be made by microscopy studies at this point. Image analysis is also time-
consuming and complicated (55). As a result many details regarding human LNs and the 
role these structures play in determining the outcome of the immune response remain to 
be elucidated (43). 
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The anatomy of the LN is important in discerning not only antigen presentation events 
but requirements for trafficking into and out of the node. The structure and composition 
of HEVs determine T cell entry into the LN (43, 61). During inflammation cells that 
would normally exit from the LN might be blocked (62), leading to a sudden increase in 
cell numbers within the LN. While T cells enter through HEVs, DCs enter through the 
afferent lymphatics. After entry DCs position themselves around HEVs (63, 64), allowing 
for efficient scanning by T cells immediately upon entry. Thus the dynamic processes of 
trafficking into and out of the LN can greatly enhance the opportunity for antigen 
presentation to occur as well as determine its success (65). 
 
Circulation of immune cells between blood and other physiological compartments 
 
Ultimately the success of the initiated immune response also depends on the ability of 
APCs to traffic to LNs and the ability of activated T cells to return to the site of infection, 
events dependent on input from multiple compartments including both the blood and 
lymphatic systems. Of the more than 1011 immune system cells in constant circulation 
between the blood and lymphatics, only a small proportion (10%) of activated cells travel 
to the LNs on a regular basis. The other 90% circulate to the spleen, lung, liver, bone 
marrow, and other parts of the lymphatic system (66, 67). The purpose of this trafficking 
is to maintain immune surveillance in all parts of the body so as to rapidly mobilize cells 
to sites of antigen challenge (68). For example, to understand the dynamics of infection 
with Mycobacterium tuberculosis (Mtb), one would need to consider the flow of immune 
cells between the LN and the lung (69, 70). The entire process of T cell trafficking 
through lymph nodes occurs over a 24-48 hour time frame with T cells spending the 
majority of their time in the lymphatics (71, 72). This circulation is critical for driving 
LN dynamics. 
 
Trafficking of DCs from the site of infection where they encounter and take up antigen to 
the closest draining LN is the first step in the cascade of events leading to adaptive 
immunity. DCs must migrate from peripheral sites into the paracortical regions of the 
LNs to optimally encounter T cells (65). During the course of migrating from the site of 
infection to the LN, DCs undergo a number of changes collectively referred to as 
maturation. These changes include a cessation of the rapid pinocytic rates DCs display at 
peripheral sites and an increase in MHC class II expression. Upon reaching the LN, DCs 
carrying antigen are classified as mature. Although data support the presence of immature 
DCs in the LN, it is unclear how they come to be there. Immature DCs either must 
migrate in or are generated from monocyte precursors in the LN. Naïve T cells are 
constantly circulating through the lymphatic system to encounter antigen presented on 
DCs. The adhesion molecule L-selectin (CD62L), expressed on naive CD4+

 
T cells, is 

essential for entry of cells into the LN (73). The process of T cells circulating to the LNs 
in this fashion is referred to as homing (73). Effector T cells that have been primed in the 
LN must circulate back to the site of infection to participate in the clearance of the 
pathogen. 
 
Pathogens regularly interfere with antigen presentation 
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Pathogens regularly interfere with immune processes (74). Since pathogens meet APCs 
continually as a first line of defense, it should not be surprising that viral and bacterial 
pathogens have evolved ways to inhibit multiple aspects of antigen presentation both 
directly and indirectly. Cytomegalovirus is a viral pathogen that has been shown to 
inhibit antigen presentation by interrupting the MHC II expression pathway (75). 
Recently both Ebola and Hanta viruses have also been shown to interfere with antigen 
presentation (76).  
 
An example of a bacterial pathogen that inhibits antigen presentation is M. tuberculosis. 
Mtb is the number one cause of death due to infectious disease in the world today (2 
billion people infected). Upon entering the lungs Mtb is taken up by resident 
macrophages or DCs, adapts to the intraphagosomal environment, and either becomes 
dormant or slowly replicates (77). Mtb is known to inhibit antigen presentation in 
chronically infected macrophages. The mechanisms by which Mtb achieves this 
inhibition have not been completely elucidated, though several hypotheses have been 
proposed (cf. 78, 79, 80). Mathematical modeling is a tool that can be used to explore the 
mechanisms by which pathogens inhibit antigen presentation. 
 
Approximately 14 million people have died in the AIDS pandemic. Over 40 million 
people are estimated to be HIV-positive, with about 4.9 million newly infected per year 
81. Despite the impressive amount of research on HIV pathogenicity and immunology, 
there is no effective vaccine or cure. Ultimately, our capacity to fully treat or immunize 
against HIV is limited by our incomplete knowledge of the mechanisms behind the 
immune response to HIV-1, the more prevalent and virulent type of the virus. Since HIV-
1 uses the CD4 receptor on the surface of both T cells and macrophages for entry and 
infection, these important immune cells are greatly affected. Specifically, the numbers 
and functionality of these important immune cell classes diminish during infection, 
eventually leading to AIDS. Although HIV-1 is not known to directly inhibit MHC II 
presentation, it disrupts many of the important events that occur both upstream and 
downstream of T cell recognition of pMHC complexes. A comprehensive model of 
antigen presentation encompassing adaptive immunity would allow for a greater 
understanding of how the immune response fails in HIV-1 and highlight targets for 
therapeutic intervention. 
 
Antigen presentation as a multi-scale process 
 
Processes at several length and time scales govern antigen presentation and the 
development of an immune response as summarized in Table 1A. The binding affinity of 
MHC II and peptide depends not only on the peptide sequence but also on the particular 
MHC II allele. Peptide-MHC binding is a molecular-scale event that is embedded in the 
context of single cell-scale events, e.g. antigen uptake, MHC synthesis, antigen 
processing, and pMHC trafficking and display, which occur on a time scale of minutes to 
hours. In the LN environment, a tissue space of � 1 cm3, T cells meet APCs and over a 
period of hours to days cells interact with APCs, divide, migrate through the LN, and 
exit. Finally, at the organ/organism scale, exiting cells go to sites of infection to 
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participate in the adaptive immune response which bears a length scale that encompasses 
the entire organism and a time scale of days to weeks.   

 

A: Scale B: Modeling  

Biological Time Length Dynamics Model Type 

Molecular 101-102 s 10-9-10-8 m Deterministic, 
continuous Statistical 

Cellular 101-103 s 10-5 m Deterministic, 
continuous Mathematical: ODE 

Tissue 104 -105 s 10-3-10-2 m Stochastic, discrete Algorithmic: ABM 

Organ/ 
organism 105-106 s 10-2-1 m Deterministic Hybrid: 

ODE+ABM 

 
Table 1. Relevant scales and features associated with the different antigen 
presentation events. (A) Biological events occur at different time and length scales. (B) 
Modeling approaches described here. ODE = ordinary differential equations; ABM = 
agent-based model. 
 
 
 
Of primary interest is the entire multi-scale system: the immune response and the 
outcome of infection in a host. How this complex system depends on various parameters 
and even therapeutic manipulations at the different scales is a key goal. Yet given its 
complexity the entire multi-scale system is presently impossible to study in an 
experimental setting.  Thus we turn instead to building a multi-scale model of antigen 
presentation and its role in the immune response.   
 
Certainly there has been a wealth of basic science performed at the various biological 
scales attempting to elucidate these processes. Indeed, events at each scale of the antigen 
presentation process are likely to affect the overall development of the immune response. 
Thus models built to elaborate the relevant interactions and dynamics at each of the 
individual scales are the first step towards understanding a larger picture. Ultimately the 
integration of such models will provide a multi-scale model of the process.   
 
Such a multi-scale approach will allow us to address questions that bridge biological 
scales. For example, can particular MHC alleles (molecular scale) give rise to more 
pMHCs on the APC cell surface (cellular scale)?  Can higher pMHC affinity (molecular 
scale) compensate for poorer APC uptake ability (cellular scale) or fewer APC or fewer 
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highly specific T cells (tissue scale)? Could reduced display of pMHC by an APC 
(cellular scale) be compensated for by a longer residence time in the LN (tissue scale)?  
Will slowed cell circulation through the LN (tissue scale) slow or diminish the magnitude 
of the overall response (organ/organism scale)?  
 
At the scale of an entire organism, a multi-scale model can address issues related to 
infection sites and other organ involvement. For example, how large must variations in 
the affinities of peptides for MHC (molecular scale) be in order to significantly impact 
the response (organism scale), and can such variation in affinities offer a basis for disease 
association? Multi-scale models are essential to reveal features that cannot be predicted 
by a focus on a single spatial or time scale. To begin to address these issues, we now 
present efforts made using modeling approaches at each of the scales and discuss how we 
might link these individual models to generate a multi-scale model of antigen 
presentation. 
 
Modeling approaches 
 
Models at individual scales 
 
It would be difficult to imagine a single experiment that could shed information on all the 
different spatial and time scales involved in antigen presentation. Similarly, constructing 
and validating a model encompassing all of these events presents unique challenges. The 
approach we describe below is to build models at each of the different scales and then 
develop methods to link them together. For each of the biological scales represented in 
Fig. 1,  different statistical, mathematical, or algorithmic models have been developed 
(Table 1B). 
 
At each scale a decision needs to be made regarding the appropriate type of model to 
construct. Statistical models can be used for uncovering trends when large data sets are 
available. Here an understanding of mechanisms is not necessary; rather, mechanisms 
may be inferred from the results of the analysis. Mathematical models involve equations 
to describe biological events, and these may be solved analytically or numerically. 
Algorithmic models are implemented on the computer as a detailed sequence of rules. 
Hybrid models are also possible. Several excellent texts are available that describe the 
use of each of these models in biology, particularly mathematical models (82, 83, 84, 85, 
86, 87, 88). A limited number of texts are also available describing the biological 
applications of statistical models (89-91) as well as algorithmic models (86, 92).  
 
Models may be categorized in one of several ways. First, models may be continuous or 
discrete. Continuous models treat entities not as individuals but as an averaged 
population or concentration; e.g. the concentration of a cytokine might vary continuously 
from 1 nM to 5 nM within a LN. Discrete models treat entities as individuals; e.g. a 
single cell could be tracked as it moves through a LN. Secondly, models may be 
stochastic or deterministic. Stochastic models have random events that affect the 
outcome; e.g. a cell may move to the right or to the left with equal probability. Each 
individual simulation will give a slightly different result. The results of multiple 
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simulations can be averaged and standard errors obtained. Deterministic models, on the 
other hand, yield the same result each time they are solved or simulated, capturing for 
example an average behavior of a molecular or cell population rather than particular 
outcomes. 
 
Ultimately the choice of modeling approach depends on considerations of the biological 
scale of interest—its spatial and time scales, the questions to be posed, whether tracking 
individual entities is important, etc.—as well as practical considerations such as available 
computing resources. In some cases new insights may be found by using multiple 
approaches to a single problem (93). 
 
Parameter estimation and sensitivity analysis 
 
A critical issue to all models at any spatial or time scale is that of estimating parameter 
values (e.g. rate constants, concentrations, probabilities of a particular event, etc.). There 
are several approaches possible for estimating parameter values: (a) direct experimental 
determination of a parameter, (b) simultaneous estimation of several parameters at once 
by fitting experimental data to a model (e.g. 94), and (c) estimation of a parameter based 
on known values for similar systems. In all cases there is necessarily some uncertainty in 
the parameter value (due, for example, to experimental error, differences in animal 
models, and technical limitations in kinetic measurements), and this leads to uncertainty 
in the output of any model using that parameter. 
 
Because our models include parameters describing a large number of known biological 
processes, it is critical to understand the role that each of these parameters plays in 
determining output. Sensitivity analysis involves the correlation of variances in parameter 
values to variances in model output and is particularly useful when parameter values are 
not known with certainty. If simulations can be performed relatively quickly, all 
parameters can be varied simultaneously to ascertain those that contribute to significant 
variations in output variables. In the Latin hypercube sampling (LHS) algorithm each 
parameter is assigned a distribution, typically uniform or normal and centered on a 
baseline or estimated value, allowing the effect of under- and over-estimation to be 
examined. The entire range of each distribution is then sampled to generate a set of 
values for each parameter, and parameter values for each simulation are chosen to cover 
the entire parameter space in as few simulations as possible (95, 96). Although originally 
developed for differential equation models, we have recently adapted the algorithm for 
use in other types of models (97, 98). The extent to which each parameter affects the 
output can be quantified by one of several metrics including the partial rank correlation 
coefficient (PRCC). PRCC, like the more familiar Pearson correlation coefficient, varies 
between -1 and 1 indicating strongly negative and positive associations, respectively. A 
PRCC of 0 indicates no association. PRCC values can also be calculated at different time 
points of the simulation allowing the relative importance of a particular parameter in 
determining model output to be tracked over time. In addition a confidence interval can 
be determined for each PRCC, and differences between PRCCs can be tested for 
statistical significance (99). This allows parameters to be ranked in order of effect on 
output by PRCC magnitude. 
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The results of sensitivity analysis can be used to identify which interactions or processes 
in a system are important to different observed behaviors, i.e. which of several processes 
dominates at a particular time. In addition the results can be used to identify potential 
targets for therapeutic intervention; e.g., one could target a pathway to which cell 
behavior is sensitive as identified by sensitivity analysis.  
 
Models 
 
Here we present four different models developed to capture antigen presentation 
processes at the four different biological scales shown in Fig. 1. (See Table 1B.)  
 
Algorithms for predicting peptide-MHC binding affinities 
 
Peptide-MHC binding is a prerequisite for antigen presentation and the event most likely 
to be affected by polymorphisms that exist within the MHC of human populations. From 
a clinical perspective these polymorphisms may distinguish individuals who succumb to 
a particular infectious disease from those who remain healthy, and significant effort has 
been expended to assess whether binding occurs between relevant peptide-MHC 
combinations. However, the sheer numbers of possible peptides (209 or ~ 1011 peptides of 
length nine) and MHC molecules (more than 2200 known HLA alleles) make this task all 
but impossible for anything more than a small sampling of the peptide-MHC combination 
space. 
 
To circumvent this difficulty computational algorithms have been developed to predict 
whether binding occurs between particular combinations of peptide and MHC (Fig. 4A). 
In general these algorithms have the same aim as other algorithms in bioinformatics: to 
identify patterns in sequences that are known to either possess or not possess a particular 
trait. In this case the trait is binding to a particular MHC molecule. 
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Figure 4 
 
 
With this aim in mind computational algorithms have been built around a number of 
statistical and machine learning methods to predict peptide-MHC binding (Fig. 4A). The 
first and simplest algorithms were based on the identification of motifs within peptides 
binding particular MHC (100). An example of such a motif is the requirement for a 
hydrophobic amino acid at the N-terminus (position 1) of a 9mer binding MHC of the 
DR1 serotype, a guideline still generally followed today (16). The advent of competitive 
binding assays allowed a more nuanced view of binding to be taken. Motifs that required 
certain amino acids to be present in MHC-binding peptides were superseded by matrices 
scoring amino acids at each position within the peptide. Different statistical methods 
could be used to generate the elements of the matrix, including nonlinear and linear 
programming (101, 102), stepwise discriminant analysis (103, 104, 105), and partial least 
squares (106, 107). One simplifying assumption made in many of these algorithms is that 
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binding of each amino acid within the peptide to the MHC molecule occurs 
independently of adjacent as well as more distal amino acids. Though this assumption 
was largely confirmed by available crystal structures, algorithms were also developed 
that did not rely on this assumption based on machine learning methods. Several machine 
learning methods have now been incorporated into prediction algorithms including 
artificial neural networks (108, 109, 110), hidden Markov models (111), and support 
vector machines (112, 113). 
 
A different approach has been to predict the structure of the peptide-MHC complex and 
attempt to calculate the free energy change (114, 115, 116, 117, 118). Structure-based 
prediction may someday supplant statistical- or machine learning-based algorithms but is 
currently hampered by the limited availability of solved structures and high 
computational costs. For a more comprehensive review of algorithms, the reader is 
referred elsewhere (119, 120). 
 
An obvious question to ask about the preceding list of algorithms is how well each one 
performs compared to the others. To gauge prediction accuracy an algorithm that has 
been trained on a set of data is used to make predictions on a test data set for which 
affinities are known, and the output of the algorithm is compared to the known affinities 
(Fig. 4A). A score is then calculated to determine how closely predicted affinities 
approximate known affinities; however, this task is complicated by differences in the 
nature of algorithm output. In some cases output is a continuous variable (affinity), while 
in other cases discrete (binding or non-binding). This reflects differences in the nature of 
the available binding data on which these algorithms are fitted or trained. Some databases 
provide only lists of peptides that either bind or do not bind particular MHC variants 
(121) while other databases provide a measure of affinity such as IC50 (20). The 
appropriate performance measure therefore differs according to whether input and output 
are both continuous (Pearson correlation coefficient), both discrete (Matthews correlation 
coefficient), or discrete and continuous, respectively (area under receiver operating 
characteristic curve, or AROC).   The AROC plots represent the probability of true positives 
vs. false positives, given a particular threshold or cut-point for a discriminatory test.  A 
completely random outcome would have an area = 0.5, while a test that perfectly 
discriminates (detects all true positives and no false positives) would have an area = 1.0.   
As with PRCC these correlation coefficients vary between -1 and 1 while AROC ranges 
from 0.5 to 1.0. In both cases higher scores indicate more accurate predictions. 
Continuous data can be converted into discrete data by assuming that a certain threshold 
affinity is required for binding such as an IC50 of 500 nM (21) allowing some overlap 
between performance measures. Examples of scores obtained for several algorithms are 
provided in MHCBench (122). For example, using binding data for the human MHC II 
allele HLA-DRB1*0401 from which homologous sequences had been removed, twelve 
algorithms were found to produce AROC scores between 0.57 and 0.76.  
 
Our efforts in this area have focused on improving how prediction algorithms handle 
features that distinguish MHC II-binding peptides from MHC I-binding peptides. 
Because peptides binding MHC I lack the heterogeneity in peptide length characterizing 
MHC II-binding peptides, most prediction algorithms were originally developed in the 
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context of MHC I. Adapting these algorithms to MHC II therefore requires an assumption 
to be made regarding how heterogeneity in length affects binding. One possibility is that 
parts of the peptide extending past the ends of the MHC II peptide-binding groove, the 
so-called peptide flanking regions (PFR), interact with more distal areas of the MHC 
molecule (123). In most algorithms it is assumed that PFR do not interact with the MHC 
molecule and have a negligible effect on binding. In addition, longer peptides are also 
more likely to have additional binding registers (9mer subsequences that fit in the binding 
groove) allowing shifting among the registers. Some algorithms assume that the highest 
affinity register predominates (18, 124). Other algorithms assume that all registers are 
presented in equal numbers and predict the measured binding affinity to be the mean 
affinity of the different registers (107). We have proposed instead that registers are 
presented in quantities proportional to their equilibrium affinities and that the measured 
affinity of a given peptide-MHC complex therefore represents a weighted average 
(Chang et al., submitted), a situation analogous to competition between receptors of 
different affinities for ligand (87).   
 
We hypothesized that the effects of PFR interactions and register shifting could be 
discernible in plots of affinity versus length and could be taken into account either by 
filtering the data prior to use in algorithm fitting or training (in the case of PFR-MHC 
interactions) or by using an equation for register shifting (Fig. 4A). Recently we have 
shown that both modifications significantly improve the performance of multiple 
algorithms (Chang et al., submitted). In Fig. 4B, the results of our modifications for one 
such algorithm, ISC-PLS (107), applied to two MHC alleles are shown. These results are 
consistent with past experimental studies showing that peptide length affects binding to a 
number of MHC alleles (125, 126). 
 
In sum the output of these computational algorithms is a prediction of binding between 
particular peptides and MHC alleles, one measure of which is the equilibrium 
dissociation constant of a peptide-MHC complex (KD) or the related IC50. (In the 
remainder of this review, we use the term affinity to refer to the reciprocal of KD so that 
higher affinity refers to stronger binding.) Affinity is one of several parameters that 
determine the number of pMHC displayed on the surface of the APC. To understand the 
role that cellular parameters also play in determining pMHC display, we next turn to 
models of the APC. 
 
Models for antigen processing and presentation by APCs 
 
Peptide-MHC binding is only one step of many that constitute the antigen presentation 
pathway, and other steps may confer additional specificity to or alter the dynamics of 
which peptides are ultimately presented (see Fig. 2). In both MHC I- and MHC II-
mediated antigen presentation, antigens are acquired (from either an intracellular or an 
extracellular source), degraded into peptides (i.e. processed), and trafficked to the cell 
surface after binding MHC. At the same time MHC molecules are synthesized, trafficked 
to and from the surface, and degraded. Many of these steps are subject to complex 
regulation by the cytokine environment and feedback signals. The peptides found to bind 
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a particular MHC variant may therefore only provide a rough, static approximation of 
peptides that are ultimately presented in a dynamic fashion. 
 
Models of antigen presentation must therefore account for more than peptide-MHC 
binding. In the case of MHC I-mediated antigen presentation, at least two additional 
events are known to confer selectivity: proteasomal cleavage and TAP transport. 
Algorithms have been developed to predict which peptides progress through these stages, 
and only recently have they been daisy-chained together with algorithms of peptide-MHC 
binding to represent antigen presentation in toto (127, 128). The result is a more accurate 
but still static picture of the peptides encountered by CD8+ T cells. 
 
In contrast we were initially interested in the dynamics of MHC II-mediated antigen 
presentation but not necessarily its specificity. To track the levels of different molecular 
intermediates in the pathway we used a mathematical representation known as ordinary 
differential equations (ODEs). ODEs are commonly used to represent systems that are 
both continuous and deterministic. One assumption made in using ODEs is that the 
represented entities exist as large, well-mixed populations (i.e. can be approximated as 
continuous). For MHC II-mediated antigen presentation the available data validated this 
assumption. Baseline estimates of the number of MHC II molecules expressed by APCs 
were on the order of 105 and antigen was typically present at high concentrations, at least 
in vitro (>1012 peptides per cell 79, 80). Furthermore precedent for using ODEs had been 
provided by models of receptor-ligand systems of which peptide-MHC could be 
considered one instance (87). 
 
Using a series of models that have incorporated increasing amounts of biological detail, 
we have been able to address different aspects of antigen presentation that have not 
always been tractable in the laboratory setting. The first model included only those 
intracellular processes thought to be essential to antigen presentation (antigen uptake and 
processing, peptide-MHC binding, and MHC trafficking and recycling) but was sufficient 
to generate realistic time courses of peptide-MHC levels on the APC surface of both 
macrophages and B cells (129). Parameters that would have been difficult to manipulate 
experimentally, e.g. the rate of antigen uptake, were easily varied in the model. The 
relationship between these parameters and the level of antigen presentation could then be 
studied without concerns of inhibitor toxicity, etc. Later versions of this model included 
self peptides and TCR and expanded the range of questions that could be asked, 
including: At what density are exogenous peptides presented relative to self peptides 
(130), and can higher peptide-MHC affinity offset lower pMHC-TCR affinity to engage 
the same number of TCRs (41)? 
 
In the latest version of this model we have included the regulatory effects of IFN-γ to 
more closely mirror experimental protocols used in vitro (131, Fig. 2). For parameters 
that were unique to this model, values were either derived from the recent literature or 
constrained by biological requirements (e.g. to maintain low-level MHC expression in 
resting APCs, as observed experimentally). The model was tested by comparing the 
dynamics of several output variables to experimental data. For example, times at which 
CIITA mRNA and MHC II mRNA reached maximal levels following IFN-γ stimulation 
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were compared in simulation and experiment and found to be similar (Fig. 5A, B). The 
final model contained 16 variables, each representing a different molecular species, and 
30 rates or rate constants. 
 
 
 

 
 
Figure 5 
 
This model was developed initially to explore presentation dynamics in macrophages. 
However, with appropriate parameter values it can be used to simulate pMHC display by 
DCs as well. Because DCs have an enhanced capability for antigen uptake and greater 
numbers of MHC available (132, 133), they display more pMHC on their surfaces than 
macrophages (Fig. 5C).  
 
There were several key findings of our model. First, the number of cell surface pMHC 
was calculated and shown to be a strong function of a molecular scale parameter, peptide-
MHC affinity (Fig. 5D). This is relevant to the linking of individual models (here, 
molecular and cellular scales) to produce a multi-scale representation of antigen 
presentation. Second, sensitivity analysis revealed that particular cellular parameters may 
have increasing or decreasing effects on pMHC levels over time (Fig. 5E). For example, 
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the effects of varying rates of MHC transcription are only apparent at longer time scales 
(here, 10-100 hours) while the effects of varying trafficking of pMHC to the cell surface 
plays a more prominent role early in the process (1 hour), showing how the importance of 
a particular intracellular process to surface pMHC levels can be time-dependent.  
 
Models of cell-cell interactions in the LN  
 
Up to this point our focus has been on molecular and cellular events involved in antigen 
presentation. Here we examine the interactions between cells of the immune system and 
place these dynamics in the context of the environment that houses the majority of 
antigen presentation activities: the LN. This not only allows us to bring another key 
biological scale into our model—that of tissue—but also brings us closer to the goal of 
developing a full-system model of antigen presentation and its role in the immune 
response.  

 
There have been numerous mathematical models studying the interactions of immune 
cells (for a review, see 134). Most of these earlier models of cellular dynamics were built 
on ODE systems that were continuous and deterministic in their abstraction of cellular 
events. Typically the LN is not explicitly included; however, when it is considered, it is 
treated as a coarse-grained (i.e. with little mechanistic detail), well-mixed compartment 
and the spatial structure is disregarded. 
 
We recently explored the dynamics of antigen presentation within the LN using an agent-
based model (ABM) approach (Bajaria et al., submitted). ABMs are algorithm- or rule-
based models that allow for a discrete and stochastic representation of cells and events 
(86). In an ABM cells (or any other entity of interest) are represented as discrete software 
objects (or “agents”) and placed on a lattice. Rules are assigned to the agents governing 
their movement and interactions within the lattice that represents the LN in our model. A 
time step is then specified for the model based on considerations of durations of cell 
movements and interactions (e.g. 1 minute to move one cell length), and the model is run 
for as many time steps as desired. ABMs therefore have the following components in 
common: (1) agents, (2) the environment where agents reside, (3) the rules that govern 
the dynamics of the agents, and (4) the time scales on which these rules are executed. We 
describe each of these components as they are represented in our model below. 
 
The goal of our model was to understand how the interactions of individual APCs and T 
cells within the specific spatial and chemical environment of the LN generate observed 
numbers of activated T cells. An ABM is useful here as it allows tracking of individual 
APCs and their interactions with both T cells and their environment. ABMs can capture 
spatial aspects of the system as well, for example the particular geometry of the LN and 
any groupings of cells that develop. These features are not readily available in the more 
commonly used differential equation formulations. Another advantage of ABM over 
ODE model representations is the opportunity to observe how outcomes are influenced 
by various stochastic events that are not wholly deterministic.  We do note, however, that 
a disadvantage of ABMs as a model framework at this early stage in their development is 
a shortage of rigorous analysis techniques; models tend to be highly specific and 
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parameter-dependent. Furthermore, because stochastic events influence the outcome, a 
large number of simulations are required to characterize the mean behavior of the system. 
In a recent study by our group, we compared four different modeling techniques to 
explore a different immunological problem—how a granuloma (a spheroid mass of 
APCs, T cells, and bacteria) forms during TB infection—and while each of the 
approaches made important and consistent predictions, the ABM yielded the most 
realistic results (135).  
 
The agents in our model are the cells known to participate in antigen presentation events. 
In our initial studies we have included CD4+ and CD8+ T cells and DCs. Because this 
model captures only a single LN, we used phenomenological source functions describing 
the entry of cells to the LN. We count cells as they exit the LN as well but do not track 
them further. 
 
The spatial environment of our model consists of a two-dimensional (2-D) lattice with 
100 microcompartments, each of size 20 µm x 20 µm and together large enough to 
represent a single human LN (see Fig. 3). T cells and DCs interact in the LN paracortex, 
a region facilitating communication between immune mediators such as cytokines and 
the cells that they influence (56). Each microcompartment is designed to hold only one 
DC, the largest cell in the system. Up to two T cells can share the same 
microcompartment, and multiple molecules (e.g. cytokines and antigen) can also be 
found in each microcompartment. A 2-D representation is reasonable for ease of 
computation. Also, analysis of multi-photon microscopy data from 2-D cross-sections 
indicates that the majority of dynamic behavior occurs in the 2-D plane and only 
occasionally do cells jump to other depths (out of the plane of observation) (M. Miller, 
personal communication, and 57).  
 
Also included as part of the environment are antigens (whether non-specific or from a 
particular bacterium or virus) and cytokines/chemokines such as IL-2. These are all 
treated as continuous variables that are real-valued in each microcompartment of the 
lattice. Treating molecules in solution as continuous variables is reasonable as the 
concentrations of these molecules are high in comparison to cell numbers.  
 
Discrete agents in the model are assigned a set of states and rules. As an example, a CD4+ 
T cell can have one of four states: resting (and naïve), activated or effector. They also 
have a lifespan. For each state, rules are specified governing the interactions possible for 
that state. One such rule is the following (see Fig. 6): If a mature DC (MDC) encounters 
and binds a resting CD4+ T cell in one of 8 neighboring microcompartments for 15 hours 
(136) then the CD4+ T cell becomes activated with probability p. (Note- since two T cells 
can occupy one microcompartment, this means that a single DC can bind up to 16 T cells 
at one time). For each implementation of the rule, a number is drawn from a uniform 
distribution with range [0, 1] and when the chosen number is less than the parameter 
value, e.g. p = 0.25, then the event occurs; otherwise, it does not.  (This again illustrates 
the contrast between a deterministic vs. ABM implementation of a probability rule.) 
Predictions using different probabilities of activation can be generated, and the effect on 
the system can be examined using sensitivity analysis. Other rules account for the ability 
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of DC dendrites to scan neighboring compartments for cognate T cells, allow a resting T 
cell to remain bound to a DC for 10-15 hours while becoming activated, and allow a 
mature DC to bind up to 16 T cells, as observed in microscopy studies (68, 60). The rules 
for APC-T cell interactions in this model are flexible and can accommodate many 
different lines of experimental evidence regarding how these cells interact.  The time step 
used for updating cell position was 2 minutes.  Other time-dependent phenomena 
included lifespan of cells, duration of cell binding, and recruitment of new T-cells via the 
HEV. 
 
 
 

 
Figure 6 
 
 
Simulations of a number of different conditions were performed. The negative control 
depicts simulations in the absence of antigen. In this case immature DCs and resting 
CD4+ T cells are present in homeostatic numbers (data not shown). Fig. 7A shows T cells 
and DCs in the LN at a single time point (approximately 42 hours) of the simulation after 
the arrival of six MDCs from a site of infection. What is evident for the first time using 
our model is a spatial organization to the dynamics of antigen presentation. For example, 
in Fig. 7A clusters of DCs and T cells are seen. Such clusters are necessary for activation 
of T cells as well as licensing of mature DCs (60). As in the microscopy we observe that 
these clusters move and conjoin (M. Miller, personal communication).  
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Figure 7 
To track the total sizes of the cell populations as they evolve over time, snapshots such as 
that shown in Fig. 7A are enumerated for each cell type. Fig. 7B shows the temporal 
dynamics of each of the cell populations over the entire time frame of the simulation and 
indicates the following course of events for T cell dynamics over the simulated infection. 
With the introduction of only 6 mature, antigen-bearing DCs on day 0 (into a system that 
is already in homeostasis), we see an increase in activated CD4+ T cells (aT4) and then a 
day or so later a similar increase in effector CD4+ T cells (eT4). Effector CD4+ T cell 
numbers peak at ~6 days (~140 hours), 2 days after activated CD4+ T cell numbers peak. 
Both decline slowly after that. This is expected as immature DCs have a lifespan in the 
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range of 1-9 days, MDCs have a lifespan of 3 days, while licensed DCs have a lifespan of 
1.5 days. (In the model licensed DCs are MDCs that have engaged a CD4+ T cell for a 
long period of time or after having engaged an effector CD4+ T cell.) No additional 
mature DCs were introduced in this simulation. CD8+ T cell numbers follow a similar 
path, and in addition memory cells are generated. Notice that the levels of resting CD4+ 
and CD8+ T cells remain in homeostasis even during this infection scenario. This result 
emerges from the model and represents a natural feedback regulation that occurs. Thus 
while cells are being recruited to the other subclasses (i.e. through activation), new cells 
continue to enter into the LN to replace them, maintaining homeostatic resting T cell 
numbers and supplying new T cells that can be recruited to an activated state.  
 
To illustrate the usefulness of sensitivity analysis in this setting, we explore the parameter 
representing the probability that binding between a CD4+ T cell and its cognate MDC 
results in activation of the T cell. As discussed above, T cell activation likely depends on 
many factors including the number of pMHC on the surface of the DC as well as the 
binding affinity between pMHC and TCR. In our ABM these factors are combined into 
the representative parameter p. Fig. 8 shows a dynamic plot of two model outcomes, the 
number of activated CD4+ (panel A) and activated CD8+ T cells (panel B) in the LN 
versus p (the probability that a CD4+ T cell becomes activated upon encounter with an 
MDC or LDC) at four time points. In both cases activated CD4+ and CD8+ numbers 
increase as a function of p. Activation of both cell types is a strong function of p, and this 
could be explored further by integrating finer detail in this term (i.e. by incorporating the 
smaller length scale models described earlier); a first step at a multi-scale approach.  
 

 
 

Figure 8 
 
  
The ABM allowed us to obtain information regarding individual cell behavior for 
different cell types. This approach was in many ways superior to that of continuous 
models for the questions we were exploring here. First, we could track the location and 
state of all cells at any given time point allowing determination of spatial dynamics.  
Second, individual cell-cell interactions could be tracked in both space and time. These 
features allowed us to make predictions regarding biological mechanisms that were not 
feasible using continuous model approaches. For example, we determined that the 
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lifespan of licensed DCs greatly affects the number of effector CD8+ T cells generated 
(PRCC = 0.75 with p-value < 10-6). If a therapy could be identified to prolong licensed 
DC lifespan, then the model predicts a greater cytotoxic T cell response would be 
generated.  
 

Finally, in the ABM of the LN we were able to track how many effector cells leave the 
LN over time. However, the model did not capture the trafficking events of these cells 
from the LN back to the site of infection, the next important step in the immune response. 
In addition the entry of cells into the LN was represented simply—using a single 
parameter—which does not account for factors such as the amount of antigen initially 
produced at the site of infection that ultimately limits the number of mature DCs. In the 
next section we discuss ways to integrate the LN into a more complete model of 
trafficking of cells during an immune response.  
 
Multi-compartment models of the LN with other organ systems 
 
In order to capture the full spectrum of immune system dynamics in a model, it will be 
necessary to include physiological compartments in addition to the LN. Immune cells 
regularly circulate through the blood, and because of ease of access blood data are the 
major diagnostic available to the physician. However, blood data provide only a snapshot 
of a system that also includes the lymphatics (which drain the tissues, typically key 
sources of antigen and DCs) and various organs and sites of infection.   
 
In order to capture different physiological compartments, a model is usually developed 
for each compartment separately and then linked to the other models by representing the 
trafficking of shared elements between the compartments. Most typically the dynamics 
within each particular compartment as well as the trafficking between compartments are 
described with ODEs, though other possibilities exist.  Which compartments are included 
in any particular model will depend on the types of infection being simulated and the 
questions being asked. For example, in studies of the immune response to Mtb it will be 
critical to include the lung compartment where granuloma formation occurs. Further, 
developing models that include these additional compartments will influence the LN 
model described above. In that model phenomenological source functions were used to 
describe the trafficking of cells into the LN. In addition we tracked the number of effector 
cells leaving the LN but did not allow them to continue to play a role in the immune 
response. Thus the goal now is to capture more mechanistically the dynamics of those 
compartments external to LNs. This will bring us one step closer to developing theories 
regarding overall immune activation as it depends on local antigen presentation events. 
 
Many compartmental models of biological systems and the immune system have been 
developed (137, 85). Here we review two sets of compartmental models developed by 
our group, the first developed to study HIV-1 infection, the other to study infection with 
Mtb. We present here the non-infection states of these models (i.e. the negative controls) 
to demonstrate that we can understand the dynamics in healthy scenarios (Fig. 9). In both 
cases the LN is represented along with an additional compartment relevant for disease: 
the blood in the case of HIV and the lung in the case of TB. 
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Our blood-lymph circulation models (Fig. 9A) were developed first for the case of no 
infection to observe homeostasis and then in the context of infection, specifically with 
HIV-1 (138, 139, 140). In one work (140) we used ODEs to track CD4+ and CD8+ T cells 
and DCs circulating within and between the blood and lymph compartments. The model 
successfully captures known dynamics of these cell populations in their respective 
compartments. Dynamics of cell turnover and migration are the main features represented 
in this model. In the model CD4+ T cell counts are about 2 × 1011 in total lymph tissue 
and approximately 1 × 103 per µl of blood. This matches what has been observed in 
humans (141). The ratio of CD4+ T cells to CD8+ T cells found in the model is 2:1 in 
both blood and lymph, also as is observed (141, 142). We also predicted that there are 
1011 CD8+ T cells in the lymph system and 5 × 102 CD8+ T cells per µl of blood, which 
agrees with data from Haase (141). The model also maintains a level of 14-20 DCs per 
ml of blood (143). 
 

 
Figure 9 
Our LN-lung compartmental model (Fig. 9B) is an example of a model that includes both 
the LN and an additional site of infection, the lung. Effector T cells generated in the LN 
via antigen presentation leave and travel to particular sites. For this model, which was 
developed with application to tuberculosis, the site of interest was the lung. The process 
by which effector T cells travel throughout the body is not well characterized and differs 
greatly depending on where the site of infection is located. The LNs that are typically 
involved are the closest draining LNs to the site of infection. This facilitates ease of 
trafficking between compartments. 
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As in the blood-lymph model, the simplest model here tracks only homeostasis of T cells 
and DCs between both compartments (69, 70). Specifically we linked a coarse-grain 
model of the LN based on a system of ODEs with an existing fine-grain ODE model (i.e. 
a model that includes many mechanistic details) of the immune response in the lung. In 
the lung model (144) we tracked resting, infected, and activated macrophages, Th0, Th1, 
and Th2 lymphocytes, the cytokines IFN-γ, IL-12, IL-4, and IL-10 and the level of 
antigen. Important in this model is the presence of macrophages playing multiple roles as 
APCs, cytokine producers, and killers of intracellular pathogens. In the coarse-grain LN 
we track mature DCs, resting T cells, Th0 cells and the concentration of the cytokine IL-
12 (a promoter of Th1 immunity). In order to investigate DC trafficking, we modified the 
lung compartment by including immature DC in the lung model.  In the absence of 
antigenic stimulation, i.e. at homeostasis, the LN compartment has an average of 104 
naïve, resting CD4+ and CD8+ T cells, and all other cell types are absent. In the lung 
there are 5 × 104 immature DCs (approximately 10% of resting macrophage population) 
and all other cell types are absent. Our results are in agreement with lung and LN data 
from various animal models on the numbers of cells present in healthy subjects (145, 146, 
147, 148, 149, 150, 151, 152, 153). 

Applications of the individual models to study infection 

Each of the individual scale models described above can be used to answer questions and 
suggest new experiments aimed at uncovering the roles that parameters (representing 
biological mechanisms) play in antigen presentation at each particular scale. Several 
examples are given below. 
 
We used the model representing a single APC (Fig. 2, Fig. 5) to investigate why multiple 
mechanisms had been proposed to explain how Mtb inhibits antigen presentation in 
macrophages (131). For example, some researchers had identified MHC II transcription 
as a process which Mtb disrupts in macrophages. Others had suggested antigen 
processing or peptide-MHC co-localization as targets. By varying the rates or rate 
constants for particular processes in the model, we were able to predict the effect of the 
corresponding mechanisms on surface pMHC levels under different experimental 
conditions. We found that mechanisms could generally be categorized according to the 
timing of their effects. Targeting antigen processing or peptide-MHC co-localization, for 
instance, resulted in an immediate decrease in the ability of macrophages to present 
antigen, while mechanisms targeting MHC expression required a delay of at least 10 
hours to become effective. However, the stimulatory effects of IFN-γ may necessitate the 
use of long-term mechanisms by a pathogen, particularly a slow-growing one such as 
Mtb. These two categories of mechanisms can therefore be thought of as non-redundant 
in function, suggesting that Mtb gains distinct benefits from inhibiting multiple 
intracellular processes. 
 
Sensitivity analysis can be used to identify other possible mechanisms used by Mtb to 
inhibit antigen presentation. Because antigen presentation is required to resolve most 
infections, the results can often be applied to other pathogens as well. For example, 
surface pMHC levels were found to be sensitive to the rate constant for pMHC trafficking 



 30

to the surface at early time points (i.e. <10 hours post-infection, Fig. 5E). This process as 
well as others that have more significant effects early relative to cellular-scale events may 
make attractive targets for inhibition by pathogens with shorter doubling times. 
(Targeting transcription of MHC, in contrast, may require many hours to hinder antigen 
presentation.) This suggests one way in which antimicrobial therapies could be improved: 
ensuring that the pathogenic mechanisms targeted therapeutically are consistent with the 
time scale of the pathogen’s lifetime. 
 
Other examples of applying the individual-scale models build on our two-compartmental 
studies (Fig. 9). Our group and others have used multiple compartment models to study 
infection dynamics. The first models were developed to understand HIV-1 infection (154, 
155, 156). Studies by our group looked in detail at the dynamics of circulation and 
trafficking of immune cells in blood and lymphatics during HIV-1 infection (138, 140). 
The latter model consists of a system of nonlinear ordinary differential equations that 
captures interactions between T cells and DCs and builds directly on the LN-blood model 
discussed above (Fig. 9A).  
 
When HIV-1 is introduced into the system, additional cell types must be tracked. HIV-1 
infects CD4+ T cells, so there is an additional class: infected cells. Further, because 
antigen is present, effector CD8+ and CD4+ T cells are generated in response to antigen 
presentation activities. Simulating this two-compartmental infection model yields good 
agreement with clinical data in both compartments. In the LN, resting CD4+ and CD8+ T 
cells both are estimated to be 1010 in number, while virus is 9 × 1010 and infected cells are 
4 × 109, similar to the results of 141. In the blood, activated CD8+ T cells are estimated to 
be 8.8% of total CD8+ T cells, which is in the same range as observed (157, 158). Our 
model predicts the ratio of activated to total CD4+ T cells in the blood to be 
approximately 1:108, while the only available data suggest this ratio is roughly 1:103. Our 
prediction varies depending on the level of interaction with DCs (for more details see 
140). When the finer-grained models described above are linked with this model we 
should be able to better elaborate the mechanisms of CD4+ T cell decline during HIV-1 
infection and better understand the role that antigen presentation plays. 
 
We have also developed two-compartment models describing Mtb infection. Here we 
captured the dynamics of a specifically infected tissue (i.e. lung) and its closest 
associated LN, building on the LN-lung model discussed above (Fig. 9B; 69, 70). In 
addition to the variables included in the homeostasis lung model, we tracked both 
intracellular and extracellular load of Mtb. Once bacteria are present in the system, 
macrophages can take up bacteria at the site of infection and are classified as infected. If 
time passes and they are not activated sufficiently to clear their intracellular bacteria, then 
they are classified as chronically infected. Immature DCs that take up bacteria in the lung 
traffic to the LN to present antigen and generate effector cells that can now migrate back 
to the lung to participate in the adaptive immune response. 
 
The model output qualitatively captures the main dynamics of a non-human primate 
infection model in both lung and LN compartments (see 69 and 70 for full details). The 
measured unit of the model is number of cells (or bacteria) per cm3 of granulomatous 
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tissue. Total CD4+ T cell counts during latent TB in the mathematical model range 
between 1 × 103 - 1 × 104 (both in the lung and in the LN compartment). DC numbers 
during latent TB range in the lung between 2 - 2.5 × 104 in the mathematical model (a 
range similar to non-human primates). The main result of this work is that delays in either 
DC migration to the LN or T cell trafficking to the site of infection can alter the outcome 
of Mtb infection, defining progression to primary disease or latent infection and 
reactivated tuberculosis. 
 
How to build a multi-scale model 
 
Models developed at individual physiological scales can be linked to form a multi-scale 
model. Both mathematical/computational and biological issues bring complexity to this 
task; the development of efficient and computationally feasible multi-scale methods is an 
area of current investigation (7, 159, 160). 

One of the simplest ways to link models is to have the output from one model be the 
input to another. Coveney and Fowler (161) and Vlachos (159) review an approach in 
which the results from a model developed at the smallest scale are passed to the model at 
the next scale, and so on, termed a hierarchical, sequential, or serial approach. For 
example, the output from a smaller-scale model may be the calculated value of an 
important parameter (e.g. affinity) or a set of values (e.g. the number of cells in a given 
state as a function of time). Even with a hierarchical approach, there are decisions to 
make. Does the larger-scale model contain the entire smaller-scale model? If so, then 
computation may be an issue. Further, with any numerical solver issues of error arise. For 
each of the individual models, numerical errors may accumulate, and the propagation of 
these errors by passing them across scales presents significant challenges. 

Alternatively, if changes at larger scales affect behavior at smaller scales, for example if 
there is feedback occurring over multiple biological scales, a hierarchical approach is no 
longer valid (but may still be a useful starting point) and a hybrid or coupled multi-scale 
approach should be used. It is likely that this will nearly always be the case in biology. 
For example, changes in ion channels in the heart affect overall heart function. At the 
same time, blocking blood flow in a coronary artery also affects heart tissue at the 
cellular scale (162).   
 
To begin to build a multi-scale model for our system of antigen presentation, we will 
need to interface the four individual-scale models under development and discussed 
above (summarized in Table 2) in a hierarchical fashion as shown schematically in Fig. 
10. We work under the hypothesis that events at each scale (molecular, cellular, tissue, 
and organ/organism) of the immune system represented in a multi-scale model affect the 
development of the immune response. First, the output of our molecular-scale model, 
peptide-MHC II affinity, is a critical parameter that serves as an input into our single-
APC model. This allows us, for example, to explore the effect that MHC II 
polymorphism may have on pMHC presentation (Fig. 10A). Second, the state of an APC 
agent, in particular the number of pMHC displayed on the surface as a function of time, 
can be calculated from our single-cell-scale APC model. At this point we can determine 
whether differences in peptide-MHC affinity found at the smaller scale give rise to 
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significant differences in pMHC display (Fig. 10B, cf. Fig. 5D). Third, the ODE 
simulations of the APC model will generate individual, single cell-scale information that 
will be used to update each agent within the tissue-scale model, the ABM of a single LN. 
In this model the number of pMHC complexes on the surface of an APC is currently 
represented as a probability p that an APC will activate a T cell with which it has come 
into contact, an input parameter for the ABM. We can now again determine whether 
differences in peptide-MHC affinity will play a key role, but this time by examining 
effector T cell numbers generated in the LN (Fig. 10C). Finally, we can use the fairly 
course-grained ODE models developed for particular, relevant body compartments (e.g. 
blood, sites of infection) together with the fine-grained agent-based LN model to see, for 
example, the impact of peptide-MHC affinity at the organism scale (Fig. 10D, E). One 
might compare the predictions of this multi-scale model with the data of Geluk et al. who 
showed that only a few TB-derived peptides elicit a T cell reaction in mice and that these 
peptides also bind MHC with high affinity (25). Similarly, T cell proliferation and IFN-γ 
production have been correlated with peptide-MHC affinity (26). Together, the multi-
scale model incorporates the molecular-, cellular-, tissue-, and organ/organism-scale 
models and allows us to explore, among other things, the relevance of peptide-MHC 
affinity differences to the overall immune response.   
 
 
 
 

Scale Model Description Model Inputs Model Outputs 

Molecular Peptide-MHC 
binding model 

Training data 
(peptide sequence, 
binding affinities) 

Peptide-MHC II 
affinity 

Cellular Single-APC model 
Antigen and IFN-γ 
concentrations; 
cellular parameters 

Surface pMHC 
complexes 

Tissue Cellular interactions 
in a single LN 

Antigen 
concentration cell 
numbers; cellular 
and LN parameters 

Number of effector 
cells exiting the LN 

Organ/organism 

Two-compartment 
models of LN + 
other sites of 
interest 

Antigen; cell 
numbers; cell, LN 
and tissue 
parameters 

Pathogen numbers 
(i.e. viral or 
bacterial load) 

Table 2. Description of each of the four individual-scale models. 
APC=antigen presenting cell , LN=lymph nodes.
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Figure 10 
  
In a similar fashion, the impact of combinations of parameters might be explored. For 
example, can a higher peptide-MHC affinity compensate for poorer APC uptake ability?  
As shown in Fig. 11A, there is indeed such a relationship between affinity and uptake 
rate. Can a higher peptide-MHC affinity compensate for fewer APCs or fewer highly 
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specific T cells? As shown in Fig. 11B, there is a tradeoff between affinity and the 
number of mature DCs required to enter the LN in order to produce a particular number 
of effector T cells. In this figure, affinity is represented as part of the aggregate parameter 
p, the probability that a CD4+ T cell becomes activated after contact with a DC; p 
increases with the number of pMHC displayed, which in turn increases with pMHC 
affinity (see Fig. 5D). This suggests that an increase in the number of cells presenting 
antigen within the LN can compensate for a reduced affinity between peptide and MHC 
or lower numbers of pMHC on the surface of the DC (both factors captured by the 
probability p). A similar result holds for the number of T cells present that can recognize 
the antigen being presented (data not shown). Thus, although at present we are still in the 
early stages of integrating our individual-scale models, we can already begin to address 
some of the multi-scale questions posed earlier, in particular those that do not require 
integration of all four scales. 
 

 
Figure 11 
 
We described above a hierarchical approach to our multi-scale model of antigen 
presentation. However, at a later stage in model development we may need to incorporate 
feedback from larger scales to smaller scales, moving us to a hybrid approach. 
Information on the local environment in the LN, for example cytokine concentrations, 
could be passed back to the APC model to allow cytokine concentrations to influence the 
number of pMHCs on the APC surface. Furthermore, many intracellular pathogens, 
including Mtb, inhibit antigen presentation within macrophages. While the mediators of 
this effect, including 19-kDa lipoprotein (163, 164, 165, 166), act on molecular-scale 
events within macrophages, the total production of such mediators is likely to depend on 
the number of pathogens at the site of infection, a tissue-scale quantity. However, the 
latter quantity can only be predicted after accounting for other tissue-scale factors such as 
the activation state of macrophages and T helper cells at the site of infection. In this 
example, then, tissue-scale events feed back on molecular-scale events and vice versa. 
 
Most importantly, once a multi-scale model is developed, it can be applied toward the 
generation of hypotheses regarding the role of antigen presentation in immunity. For 
example, recall that there is a clear association between particular MHC alleles and 
disease susceptibility/resistance. If our molecular-scale model shows that there is a link 
between particular MHC alleles and affinities for particular antigens, then the full multi-



 35

scale model could be used to show the expected outcome at the system scale (Chang et 
al., submitted). 
 
As another example, the efficacy of a vaccine is in part determined by activation of CD4+ 
T cells. A multi-scale model will enable testing of the roles that various factors play in 
that activation. What is the relationship between antigen dose in the vaccine and the 
number of mature DCs appearing in a LN? What level of T cell activation is necessary to 
generate an appropriate memory response (one further possible extension of the multi-
scale model) that is critical for vaccines to be effective against later challenge? Further, 
what aspects of the antigen presentation process should be targeted to optimize vaccine 
efficacy? Can such insights help explain why BCG, the vaccine against TB used for the 
last 80 years, has failed to eliminate TB? Finding the answers to such questions may rely 
at least in part on the developments described in this review. 
 
Looking Ahead 
 
The ultimate goal of developing mathematical/computational models of biological 
systems is to use these models to better understand the systems and to suggest 
mechanisms to manipulate the systems, i.e. to treat or prevent disease. For example, one 
can introduce therapeutic modulation, even modes unapproachable using current medical 
techniques, in a controlled manner in order to evaluate potential targets for both treatment 
and vaccine strategies. Indeed, the FDA Critical Path Initiative (167) has recently 
identified model-based drug development, including drug and disease modeling, as an 
important goal. 
 
There are numerous challenges ahead for the development of multi-scale models in 
biology and for antigen presentation in particular. First, there is a need for experimental 
data to allow for model validation at every scale. For example, although model 
development is an essential part to predicting peptide-MHC affinities, the quality and 
amount of data available to develop models remains an issue (168, 169, 120). The 
predictive ability of a model should improve with the size of the training set. Currently 
databases contain 13000-24000 peptides, though the sizes of these databases can be 
misleading. Labs often generate very closely related peptides to determine characteristics 
of binding; these peptides are then listed as separate entries in the databases. However, 
using homologous peptides to fit models of peptide-MHC binding can skew predictions. 
Methods to eliminate homologous peptides are available (170, 171) and, when 
implemented, significantly reduce data set size. 
 
From a computational perspective, methods for integrating predictions at individual 
scales and for allowing behavior at each scale to influence behavior at other scales are 
needed and are currently under development for a number of biological systems (172). In 
addition, a number of groups are developing platforms with the explicit aim of 
standardizing models; this would make it easier to pass models from one research group 
to another (173-175). 
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In sum, nearly all biological processes involve multiple scales. Thus the lessons learned 
here regarding the use of modeling to integrate molecular-, cellular-, tissue-, and 
organ/organism-scale events can inform studies on a broad range of biological systems 
and provide tools to analyze them. 

 

 

Figure legends 

Fig. 1. Key events in antigen presentation. Biological scales are represented here as 
physical scales. (A) Multi-compartmental system of blood, lymphatics, and particular 
organs/sites of interest. (B) Lymph node environment wherein antigen-presenting cells 
(APCs) interact with T cells. (C) Intracellular pathways leading to peptide-MHC class II 
(pMHC) complexes on the surface of an APC. (D) Molecular-level interactions between 
peptide and MHC are influenced by genetic differences among MHC II alleles. 
 
Fig. 2. Molecular and intracellular events influencing the display of peptide-MHC II 
complexes on a single antigen-presenting cell. One-step reactions are indicated by solid 
arrows while regulatory processes (which may involve several reactions) are indicated by 
dashed arrows. 
 
Fig. 3. Antigen-presenting cells (APCs) and T cells interacting in the lymph node 
(LN). (A) Schematic of the LN. Afferent lymphatics empty into a LN, bringing APCs 
such as DCs that rarely leave the LN after arrival. T cells enter from the blood through 
the HEVs and exit via the efferent lymph. Dynamic interactions between APCs and T 
cells occur within the LN. (B) Intravital microscopy image showing the interaction of 
DCs (green) with T cells (red) within a section of the lymph node measuring 75 µm by 
100 µm. Image from (60), courtesy of J. Exp. Med. and Mark Miller. (C) Lattice 
representation of a LN. A 7x7 grid is shown, where each unit space is the size of one DC, 
the largest cell type of those included in our simulations. T4 = CD4+ T cell; T8 = CD8+ T 
cell; DC = dendritic cell; r = resting; a = activated; e = effector; M=mature; L = licensed. 
 
Fig. 4. Algorithms to predict peptide-MHC binding. (A) On the left we show three 
steps common to most algorithms: training data selection, algorithm fitting or training, 
and testing. On the right we show two modifications that we have proposed making to 
these algorithms to improve prediction of longer peptides (i.e. those greater than nine 
amino acids in length). These modifications are intended to account for PFR-MHC 
interactions and register shifting. (B) Performance of one published algorithm, ISC-PLS 
(107), before and after modifications proposed in Panel A, on training and test sets for 
two MHC II alleles. 
 
Fig. 5. Model of a single antigen-presenting cell (APC). Ordinary differential equations 
were written based on the events shown in Figure 2. (A) Model simulation of CIITA 
mRNA and MHC II mRNA levels in macrophages following IFN-γ treatment 
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representing a positive control. (B) Experimental data (176) for comparison with panel A. 
(C) Comparison of the antigen-presenting abilities of macrophages and DCs. Macrophage 
parameter values (i.e. baseline) were taken from (131). Two parameters were changed to 
simulate DCs: rate constants for uptake and MHC II expression (132, 133). (D) Number 
of surface pMHC complexes as a function of pMHC affinity (1/KD) in macrophages three 
hours following addition of antigen. (E) Partial rank correlation coefficients for three 
parameters (ktxn, kout, kpino) at three time points (1, 10 and 100 hours following addition of 
antigen). ktxn = MHC II transcription rate constant; kout = rate constant for trafficking of 
pMHC to the cell surface; kpino = pinocytosis rate constant. 

Fig. 6. Rule for T cell activation within the agent-based model (ABM). If a mature 
dendritic cell (MDC) and a resting (and naïve) CD4+ T cell (rT4) are in neighboring 
microcompartments, then there is a probability p that the resting cell will become 
activated. 

Fig. 7. Cell dynamics in the simulated LN. (A) Snapshot of cells in the LN at � 42 
hours after introduction of  6 MDCs onto the ABM lattice at day 0 of the simulation. 
Initial conditions were 250 resting CD4+ T cells, 125 resting CD8+ T cells, and 5 
immature DCs. A complete list of rules can be seen in (Bajaria et al., submitted). (B) 
Temporal dynamics of all cell populations in the simulation. Cell types are as defined in 
Fig. 3. 

 
Fig. 8. Effect of variation in the probability of activating resting CD4+ T cells in the 
ABM model. The parameter p represents the probability of activation of a resting CD4+ 
T cell upon interaction with a cognate MDC and is varied from 0.05 to 0.95. (A) The 
number of activated CD4+ T cells produced at a given time point increases with p. (B) 
Likewise, the number of activated CD8+ T cells produced at a given time point also 
increases with p. In this figure, 16 MDCs were introduced on day 0.  
 
Fig. 9. Two-compartment models of LN linked to another system. (A) LN-blood 
model. CD4+ T cells, CD8+ T cells, and DCs traffic between these two compartments. (B) 
LN-lung model. DCs, macrophages (MΦ) and CD4+ T cells traffic between these two 
compartments. Cell types are as defined in Fig. 3.  
 
Fig. 10. Building a multi-scale model of antigen presentation from four individual 
scale models. In the particular example shown, the relevance of allele-specific 
differences in peptide-MHC II affinity to antigen presentation and the overall immune 
response are explored. Predictions from each scale are fed to the next larger-scale model, 
providing predictions between adjacent (A-D) and non-adjacent (E) scales; i.e. a 
hierarchical approach is used. A hybrid approach must be used if feedback from larger 
scales to smaller scales is present, for example if overall pathogen load can affect 
intracellular events.   
 
Fig. 11. Tradeoffs between processes in the models. (A) The relationship between 
uptake rate and peptide-MHC II affinity in producing pMHC complexes in the APC 
model (Fig. 2). Each point represents a pair of compensatory parameter values that 
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results in � 200 pMHC complexes on the APC surface three hours after antigen is added 
to macrophages. (Other parameters were as published in 131). (B) The relationship 
between the probability of activation of resting (naïve) CD4+ T cells versus the number of 
mature DCs that enter the LN on day 0 in generating activated CD4+ T cells in the ABM. 
Each point represents a pair of compensatory parameter values that results in 330 ± 30 
effector CD4+ T cells generated. This result represents the 42-hour time point. In both 
(A) and (B) a local regression line has been fitted to the data. 
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