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24.1 Introduction

The combination of experimental and computational methods provides a
powerful approach for understanding biological processes. Initial experiments
can suggest hypotheses that can be captured by first-generation mathematical/
computational models (henceforth simply called ‘mathematical models’ or
‘models’), which can then be employed to generate new experimental approa-
ches to test those models. Understanding signal transduction pathways,
with their myriad of molecular interactions, feedback loops, and spatial and
temporal variations in concentrations of key molecules, requires such an
iterative process between experiments and modeling.1
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Models of signal transduction pathways that are mechanistic (reflecting
actual physical processes that occur as opposed to empirical or statistical
models) typically have many parameters. The concentrations of various
molecules along the pathways, the forward and reverse rate constants for
binding reactions, diffusivities of key molecules, and enzymatic activities are all
physical parameters that can appear in such models.2–5 Yet values for all of
these parameters are not known with certainty. Assays can of course be
developed to measure some of the parameters. Yet how well those values
translate from the assay conditions (often in vitro) to the cellular environment
during signalling is typically not known.
This uncertainty in parameter values, combined with uncertainty in experi-

mental measurements, can make the comparison between model and experi-
ment difficult: does, for example, a 30% difference between the two reflect an
incorrect parameter value, a small error in the experimental measurement, or a
poor understanding of the governing physical processes when the model was
formulated? One approach that is helpful is to develop qualitative tests for the
comparison. In other words, although the output of both the model and the
experiment are quantitative (e.g. numbers of G proteins activated or con-
centration of intracellular free calcium), a comparison of qualitative trends (e.g.
does a curve rise or fall, or shift right or left) may be most useful, at least in the
initial stages of understanding a mechanism. Thus, it is helpful to develop new
(and multiple) qualitative tests that can be used for the comparison between
proposed mechanisms (as formulated in a model) and experimental data.
In this chapter, we focus on G protein signalling, in particular G protein-

coupled receptor (GPCR) mediated calcium oscillations. Numerous models
have been developed to describe these calcium oscillations.6–12 Here we describe
a novel approach, the modelling and experimental analysis of phase-locking,
which provides a qualitative test that can be used to evaluate those models.
Phase-locking analysis involves application of periodic stimulation to an

oscillatory pathway, which then becomes synchronized to the stimulation
inputs. While the phenomenon of phase-locking is intrinsic to all non-linear
oscillators,13 phase-locking behaviour may be different for different oscillatory
mechanisms.14 We first describe proposed mechanisms for GPCR-induced
calcium oscillations, and then introduce simulation and experimental methods
to analyse phase-locking properties of the oscillations. Finally, we demonstrate
phase-locking analysis as applied to a GPCR-mediated calcium signalling
pathway to elucidate signalling mechanisms.

24.2 Models of GPCR-induced Calcium Signalling
Mathematical modelling of GPCR-initiated signal transduction pathways, like
all modelling of biological processes, offers the opportunity for us to interpret
data, analyse hypothesized mechanisms, run virtual (in silico) experiments and
motivate new experiments. For example, different pathways or physical
mechanisms may be suggested to explain the same biological data. Designing
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and performing experiments based on mathematical models that have been
formulated for the proposed mechanisms can help distinguish between these
mechanisms.
GPCR-induced intracellular calcium signalling has been the focus of many

modelling studies, due in part to the discovery of calcium oscillations upon
chemical stimulation of cells.15–17 Another key observation was that increasing
or decreasing the ligand concentration changes primarily the frequency and not
the amplitude of calcium oscillations,8 suggesting that critical information for
signalling pathways is encoded in the frequency of calcium signals. These
observations, along with estimation of some relevant kinetic parameters, led to
the development of a variety of oscillatory calcium models whose mechanisms
differ, often significantly, in terms of how oscillations are generated and
calcium levels are set.6–12 Most of these models are composed of ordinary
differential equations based on mass action kinetics and assumptions of
Michaelis–Menten kinetics, cooperativity (e.g. Hill coefficient), and similar.
Upon solving these equations, one can track the dynamics of each of the
cellular components [e.g. bound receptors, activated G proteins, inositol 1,4,5-
trisphosphate (IP3) and intracellular free calcium concentration] over time.
For this chapter, we focus on two representative mathematical models of

calcium oscillations with differing activation and recovery properties—one
described by Chay et al.7 and another by Politi et al.11 (Figure 24.1). For the
Chay et al. model (Figure 24.1 top left), calcium oscillations are produced by
the switch-like (Hill coefficient of 4) activation of phospholipase C (PLC) by G
proteins, which in turn produces IP3 and diacylglycerol (DAG). IP3 binds to
IP3 receptors, opening calcium channels on intracellular stores and thus eli-
citing a calcium response. DAG initiates a negative feedback that subsequently
reduces G protein activity, resulting in calcium oscillations. A basal level of G
protein activity that results in basal IP3 production is included, ensuring
that IP3 levels return to pre-stimulus levels. In this model, signalling is initiated
by increasing the receptor contribution to the rate of G protein activation,
indicated by the term ‘stimulant’ in Figure 24.1.
In contrast, the Politi et al. model (Figure 24.1 top right) assumes that

activation of PLC by G proteins is a graded process (as opposed to switch-like).
In other words, the rate of PLC activation is proportional to the number of
activated G proteins. Production of IP3 initiates a feedback loop between the
IP3 receptor (IP3R), calcium and PLC that leads to calcium oscillations.
Furthermore, the model does not include a mechanism for basal IP3 production,
highlighting a difference in recovery properties of the respective models in
addition to the difference in their activation properties. In the Politi et al.model,
signalling is initiated by increasing the rate at which phosphatidylinositol 4,5-
bisphosphate (PIP2) is converted to IP3 (by activated PLC). Parameters for both
models were derived from a combination of experimental data and estimation.
Despite having different mechanisms for generating calcium oscillations, the

two models behave nearly identically when addressed with continuous stimu-
lation; both models produce calcium oscillations upon application of con-
tinuous stimulation. The period of these oscillations decreases with increasing
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stimulation strength (Figure 24.1 bottom left and 24.1 bottom right), demon-
strating that this widely applied qualitative test is insufficient to distinguish
between these (and many other) model mechanisms.

Figure 24.1 Schematics of the two mathematical models of oscillatory calcium sig-
nalling analysed in this chapter: the Chay et al. model7 (top left) and the
positive feedback Politi et al. model11 (top right). Original published
equations and parameters were used for both models. Under continuous
stimulation, both models produce calcium oscillations whose period
decreases with increases in stimulant strength (bottom figures). Despite
significant differences in the mechanisms between these models, they
exhibit the same behaviours under continuous stimulation. The stimulant
strengths have different units, based upon the molecular species in the
models that convey information about stimulant strength. For the Chay
et al.model, themolecular species is the active agonist/receptor complex; for
the Politi et al. model, the molecular species is the PLC/activated G-protein
complex (PLC-G*). G¼G protein; G*¼ activated G protein; PLC¼
phospholipase C; PIP2¼ phosphatidylinositol 4,5-bisphosphate; IP3¼
inositol 1,4,5-trisphosphate; DAG¼ diacylglycerol; DAG-DP¼DAG
dependent protein; deg¼ degradation; Ca21¼ calcium; ER¼ endoplasmic
reticulum; IP3R¼ IP3 receptor; IP3R(i)¼ inactive IP3R.
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These and other results demonstrate that analysis of calcium transients
elicited with continuous stimulation (e.g. the oscillations shown here) or simple
step changes in stimulation (e.g. a sudden increase in ligand concentration) are
insufficient to adequately probe the calcium signalling pathway. Are there
additional tests available to distinguish between proposed model mechanisms
for GPCR-induced calcium oscillations? As described below, phase-locking
behaviour may provide one such test.

24.3 Phase-locking and Sub-threshold Calcium
Responses

Phase-locking refers to the phenomenon whereby an oscillatory system syn-
chronizes to a periodic input (Figure 24.2). Phase-locking is predicted to occur
for all non-linear oscillators;13 for example, it was explored in oscillatory
electrical systems exposed to periodic electrical stimulation for the purpose of
understanding how to better control such non-linear systems.18 In a biological
context, phase-locking has been observed in experiments with cardiac19 and
neuronal systems.20 In these studies, periodic electrical stimulation was sup-
plied and the corresponding cellular (electric) responses were measured.
Several studies have indicated that the simple observation of phase-locking

alone does not provide insight into the mechanisms of oscillatory systems.13

However, phase-locking properties (e.g. how phase-locking changes, or not,
with different stimulation parameters) can provide insight into oscillatory
mechanisms. Seminal studies of phase-locking in cardiac cell aggregates found
that as the rest period between periodic electrical stimulation events was
reduced, the cells’ capacity to keep up with the stimulatory inputs was also
reduced.19 In other words, the number of cellular responses was less than the
number of stimulation events, indicative of skipped beats. To quantify the cells’
capacity to keep up with periodic stimulation, one can use the metric called the
phase-locking ratio (PLR), elsewhere referred to as the Winding number
(Figure 24.2). One can define the phase locking ratio PLR as:

PLR ¼ number of system responses

number of stimulation events
ð24:1Þ

Theoretical studies have characterized the effects of periodic stimulation
parameters on the PLR.7 Periodic stimulation parameters include the stimulant
concentration (C), the stimulation duration (D) and the rest period (R) (Figure
24.3). When the PLR is plotted against the value of a single periodic stimula-
tion parameter (while holding the others constant), what has been termed a
‘Devil’s Staircase’7 emerges (Figure 24.3).
Examining how the PLR changes with simulation parameters gives insight

into activation and recovery properties of the oscillatory system. Depending
upon the activation and recovery properties of the system, the staircase may
increase or decrease; in other words, the PLR may increase or decrease with
increasing C, D or R, based upon the activation and recovery properties of the
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Figure 24.2 Phase-locking of calcium responses to a periodic stimulation input and
calculation of the phase-locking ratio (PLR). Top trace shows the peri-
odic stimulation input applied to a single cell, here a pulse of agonist with
concentration [C]. For the three calcium traces depicted, the calcium
responses are synchronized to the periodic stimulation input. A calcium
response only results during a stimulation event; however, not every
stimulation event necessarily elicits a calcium response, indicative of a
loss of fidelity. To assess the degree of fidelity, the PLR is calculated by
dividing the number of system responses by the number of stimulation
events.
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oscillatory system. In our experience with calcium oscillation models, increas-
ing C or D typically results in an increase in the PLR, since both parameters
increase the chances that a system response will occur. Thus, modifying these
two stimulation parameters may not provide the insight needed to discriminate
between various proposed oscillation mechanisms.
However, with calcium oscillation models, we find that when the PLR is

plotted against the rest period R, the Devil’s Staircase plot that results reveals
recovery properties of the oscillatory system. Do cellular levels of key molecules
(IP3, calcium) slowly or rapidly return to baseline values or perhaps overshoot
baseline values and spend some time at reduced levels? These features affect the
ability of the system to respond to the next stimulation pulse. Thus, periodic
stimulation can provide insight into the recovery properties, a feat difficult to
attain with continuous stimulation and conventional experimental techniques.
In calculating PLR, it is typical to count only ‘full’ responses; researchers

have also observed ‘sub-threshold’ responses upon exposure of oscillatory
systems to periodic stimulation21 (Figure 24.3). Here ‘sub-threshold’ delineates
that a system response did not reach full amplitude. This type of response
represents a unique activation property that emerges only from periodic
stimulation, and it may also be useful in comparing mechanisms.

24.4 Phase-locking Analysis of GPCR-induced
Calcium Signalling in Two Models

Proposed GPCR-induced calcium oscillation models can be examined for the
existence and properties of phase-locking.14 Periodic stimulation in the form of
ligand pulses can be used as a model input, and analysis proceeds as described
in Figure 24.3. Here we focus on the Chay et al. and Politi et al. models.
Because neither model explicitly includes receptor/ligand binding, periodic
stimulation is implemented by periodic increases in the receptor contribution to
the rate of G protein activation (Chay et al. model) or periodic increases in the
rate at which PIP2 is converted to IP3 (Politi et al. model). We have also
explicitly added the equations describing receptor/ligand/G protein dynamics
to these models, and the phase-locking behaviour is similar to that shown
here.14 Phase-locking of the calcium responses is observed with both models, as
expected for any non-linear oscillator13 (Figure 24.4A). Under some periodic
stimulation conditions, the calculated PLR for both models is less than one
(Figure 24.4), indicative of skipped beats and consistent with observations in
other experimental19 and theoretical systems.7 Note that the Politi et al. model,
but not the Chay et al. model, shows sub-threshold calcium responses (Figure
24.4A). This result demonstrates that the activation properties of the two
mathematical models are different, despite the similarity in signalling behaviour
upon continuous stimulation seen in Figure 24.1.
To assess the phase-locking behaviours of the two models, each was exposed

to periodic stimulation while the stimulant concentration (C), stimulation
duration (D) or rest period (R) was varied. As seen in Figure 24.4B and 24.4C,
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the behaviour of both models when only C or D was varied is similar. However,
plotting the phase-locking ratio against the rest period provides a dis-
criminating marker: PLR increases as the rest period increases for the
Chay et al. model, while the opposite trend occurs for the Politi et al. model

Figure 24.3 Procedure for assessing the effect of stimulation parameters on the phase-
locking ratio (PLR) in mathematical models, to develop a set of dis-
criminating markers for comparison to experiments. Periodic stimulation
is applied to a single cell described by one of the mathematical models
and the PLR is calculated. A single stimulation parameter (C, D or R) is
varied and the PLR is calculated for every value. Plotting PLR vs. the
stimulation parameter value results in a ‘Devil’s Staircase’ graph. The
relationship between the stimulation parameter and the PLR (increasing
or decreasing) provides a discriminating feature for comparison to
experiments.
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(Figure 24.4D). This difference suggests a difference in recovery properties for
the two models. Importantly, note that the models can be easily distinguished
via a qualitative comparison, i.e. one model predicts an increase in PLR with R
and the other predicts a decrease, and that this behaviour should be readily
apparent in experimental data.
Investigation of the respective model architectures reveals the mechanisms

responsible for the differing activation and recovery properties. We can first

(A)

(B)

(C)

(D)

Figure 24.4 Unique signalling properties uncovered by phase-locking analysis of the
Chay et al. and Politi et al. mathematical models. Original published
equations and parameters were used for both models. (A) Periodic sti-
mulation of the Chay et al.model leads to skipped beats with the absence
of sub-threshold spikes. Periodic stimulation of the Politi et al. model
also leads to skipped beats, but features sub-threshold spikes. (Chay et al.
model: C¼ 0.03 1/s; Politi et al.model: C¼ 0.8 mM/s. For both: D¼ 30 s,
R¼ 30 s). (B) PLR vs. C (Chay et al. model: D¼ 10 s, R¼ 50 s; Politi
et al. model: D¼ 10 s, R¼ 50 s). (C) PLR vs. D (Chay et al. model:
C¼ 0.03 1/s, R¼ 60 s; Politi et al. model: C¼ 0.8 ı̀M/s, R¼ 60 s). (D)
PLR vs. R (Chay et al. model: C¼ 0.03 1/s, D¼ 10 s; Politi et al. model:
C¼ 0.8 mM/s D¼ 10 s).
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examine the activation behaviour. The Chay et al. model does not exhibit sub-
threshold calcium responses because of a switch-like activation of PLC by G
proteins; the Hill coefficient of the reaction is four in this model. In contrast, the
Politi et al. model exhibits sub-threshold calcium responses because G protein-
mediated activation of PLC is graded. In terms of recovery properties, the Chay
et al. model contains a basal G protein activity that results in basal IP3 pro-
duction. Basal IP3 production promotes recovery to resting levels between
stimulation events, and thus with longer rest periods, IP3 levels are higher and
more likely to cross the threshold necessary to elicit a calcium response with a
subsequent stimulation event. Ultimately, this results in an increase in PLR as
R is increased. In contrast, the Politi et al. model has no such recovery
mechanism; IP3 levels subside as the rest period increases and so calcium
responses are less likely to occur with a subsequent stimulation event. As a
result, one observes a reduction in PLR as R is increased.
These model observations provide a concrete set of discriminating markers

that can be compared with experimental results. However, typical experiments
assessing GPCR-induced calcium oscillations rely on continuous stimulation or
on a single step change increase in ligand concentration. Thus experimental
setups that are able to stimulate cells periodically and allow for real-time
imaging of the resulting intracellular calcium responses must be developed.

24.5 Microfluidics to Enable Pulsatile Stimulation
of Cells

The ability to carry out phase-locking analysis for the study of G protein
dynamics is dependent upon the ability to reproducibly control cellular sti-
mulation with high temporal resolution. Conventional techniques for creating
dynamic cellular stimulation conditions are deficient in this respect; these
methods typically involve adding known amounts of ligand to cells growing in
culture dishes or on glass slides, effectively exposing cells only to step increases
in stimulant concentration.22 This approach is not amenable to the generation
of reproducible periodic stimulation patterns necessary to study phase-locking.
For example, it is difficult to exchange fluid rapidly because it requires a user to
manually address cells repeatedly with stimulant, aspirate the stimulant away,
and then reapply the stimulant, within a matter of tens of seconds. Perfusion
chambers represent an advance in terms of reproducibility, but these setups
lack versatility and scalability.23

The advent of microfluidic technology has overcome many of these limita-
tions (Figure 24.5A). In terms of scalability, entire biochemical and genetic
operations and manipulations are executed on a platform several square inches
in area. The crux of this technology is the ability to harness the physical
properties of liquids on the micron scale, enabling enhanced control over
spatial and temporal facets of cellular stimulation, and thus versatility. While
microfluidics initially garnered interest for studies of spatial dynamics,24,25

recently it has become increasingly utilized for studies of temporal dynamics of
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cell signaling.26 The appeal of this method is the rapid fluid exchange that can be
achieved, as well as the low reagent consumption, portability and potential for
high throughput analysis. For example, Hersen et al.27 developed a microfluidic
device capable of addressing cells with a chemical stimulant at frequenciesr2Hz
without disrupting cell adhesion. G protein signalling occurs on the sub-second
to seconds time scale, while G-protein-mediated calcium signalling is generally
on the order of tens of seconds to minutes. Thus, microfluidic technology pro-
vides an optimal platform for investigations of these dynamics.
The ability to rapidly customize experimental setups for studyof thedynamics of

a particular GPCR ligand-receptor in a specific cell type is another major advan-
tage of microfluidics over conventional techniques. Microfluidic devices can be
designed and fabricated inB24 hours. Most microfluidic devices are created by a
rapid prototyping method pioneered by the Whitesides group.28 Initially, micro-
fluidic designs are created on a computer aided design (CAD) program and these
designs are then converted into a transparency. The transparency design is
transferred to a silicon wafer or glass slide through a photolithographic process,
effectively creating amould with positive relief features. The overwhelming choice
of material for creatingmicrofluidic devices is polydimethylsiloxane (PDMS); this
silicon-based elastomer has favourable properties for cell culture and imaging.29

PDMS is cast against the mould, and upon curing, the device is irreversibly sealed
against a flat surface (usually glace or PDMS sheet) through plasma oxidation.
Microfluidic devices can be customized for a particular cell type in a number of
ways; for instance, for cell types that donot adherewell toPDMSor glass surfaces,
the device surface can be coated with adhesion molecules such as laminin
or fibronectin.30 More elaborate manipulations can be implemented to support
culture of cells that are difficult to grow in vitro.31

Themethod for pumping liquid in the microfluidic devices plays a tremendous
role in the design and fabrication process. The most common pumping methods
employed in microfluidics are gravity-driven and syringe-mediated pumping, of
which the latter is more reliable. More elaborate pumping systems include
‘Quake valves’,32 Braille actuation,33,34 acoustics,35 and most recently autono-
mous pumping regulation by embedded components.36

(A) (B) (C)

Figure 24.5 The microfluidic setup is able to control three stimulation parameters (C,
D and R) (see Figure 24.3). (A) Image of the microfluidic setup filled with
fluorescein solution. (B) Braille-actuated pumping controls fluid flow
through channels. (C) Pulses generated by the microfluidic setup are
reproducible andhigh temporal resolution is achievable. (Scale bar¼ 90 s).
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The reproducibility and versatility of generation of temporal patterns is
in large part determined by the pumping mechanisms implemented for
conveying fluids through the microfluidic channels. In our experiments, we
use Braille-actuated pumping, which offers an excellent level of control,
reproducibility and portability33,34 (Figure 24.5B). With this approach,
microfluidic channels are aligned on a Braille display that is connected to a
computer via USB. Upon elevation, individual Braille pins are able to valve
off the microfluidic channels that lie above, due to the elastomeric nature of
the PDMS. In the appropriate sequence, consecutive Braille pin movements
enable relatively unidirectional flow. Individual Braille pin movements are
controlled by a computer program, such that the speed and direction of
pumping can be regulated. This setup provides an optimal platform for
conducting studies in which control over cellular stimulation parameters,
such as stimulation duration and rest between stimulation events, is required.
This is demonstrated in Figure 24.5C; one reservoir of the device was filled
with fluorescein solution and the other with water. Upon alternating from
which reservoir liquid was pumped, square-wave patterns of specific duration
and rest period were reliably generated.37

24.6 Imaging of Signalling Dynamics
in a Microfluidic Device

In order to monitor cellular signalling dynamics resulting from temporal
patterns of stimulation, real-time imaging of appropriate readouts of cell
signalling is needed. The advent of fluorescent reporters of cell signalling has
enabled tracking of signalling behaviours of individual cells. In particular,
green fluorescent protein (GFP) based readouts (or variants of GFP) have
been employed to track the localization, translocation, appearance or
degradation of intracellular components, representing ‘passive’ applications
of these fluorescent constructs; in this context, ‘passive’ denotes that the
component activity is not assessed.
Fluorescence resonance energy transfer (FRET) has been used in order to

convey dynamic information about intracellular activity.38 Although FRET
probes for directly assessing G protein activity have been developed,39 the
dynamic range of these readouts has not reached a level that has led to
widespread utilization. However, the following are some of the probes
developed over the last 15 years that are able to track G protein-mediated
signalling activities: Cameleon (for intracellular calcium);40 Raichu-Ras
(measures levels of activated Ras);41 cGMP probe;42 PKA probe; and a cAMP
probe.43

In this chapter, the focus is on using G protein-mediated calcium signalling
to elucidate molecular mechanisms. Since imaging probes for calcium are
more developed compared with those for G proteins,39 intracellular calcium is
used as a readout to infer G protein signalling dynamics. While the fluorescent
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protein aequorin44 has been utilized for assessing intracellular calcium levels
in real-time, it is labour-intensive to introduce into cells, requiring micro-
injection. Since high throughput analysis of cells is thus not feasible with this
indicator, fluorescent dyes and genetically coded probes are preferred. Fura-2
and Fluo-4 are popular fluorescent dyes;45,46 these probes can be easily
introduced into cells and are commercially available. These dyes can leak out,
rendering them infeasible for use in long-term experiments and it has been
reported that the dyes can localize to various compartments of cells, com-
plicating quantification of calcium levels. Genetically encoded FRET probes
for calcium can be easily introduced into cell populations through transfec-
tion.47 In addition, these probes are specifically designed to localize to a
specific part of the cell and do not leak out, enabling long-term character-
izations of calcium dynamics. For these reasons, we used the FRET probe
YC3.60 developed by Nagai et al.,48 which measures free calcium levels
exclusively in the cytosol.

24.7 Experimental Observations of Phase-locking
in GPCR-induced Calcium Signalling

Using the microfluidic and imaging techniques described above, one can
measure GPCR-induced calcium oscillations and compare those data with the
phase-locking properties of models to elucidate mechanisms. Using our Braille-
actuated microfluidic platform, cells were periodically exposed to ligand and
the resulting calcium signals were recorded in real-time using the FRET probe
YC3.60.14 The D and R values chosen for these studies were based upon the
typical durations of single oscillatory calcium responses (tens of seconds) and
typical oscillation periods (tens of seconds to minutes).
Figure 24.6 shows the calcium responses of three cell types exposed to periodic

stimulation with different GPCR ligands: a HEK293 cell stimulated with carba-
chol (through the M3 receptor); a HeLa cell stimulated with histamine (through
histamine receptors); and a HeyA8 cell stimulated with extracellular calcium
(through the calcium-sensing receptor), respectively. Phase-locking was observed
with each cell type, as calcium responses were synchronized to the periodic
stimulation events. Furthermore, all three cells exhibited PLRs less than one,
as predicted by the models under some periodic stimulation conditions. Thus
phase-locking is a general result of periodic stimulation of GPCR systems
and phase-locking analysis may be appropriate to analyse signalling mechanisms.
For the remainder of this chapter, we focus our phase-locking analysis on

the M3 muscarinic pathway in HEK293 cells in order elucidate mechanisms
of G protein (here, Gq) signalling. Periodic stimulation of HEK293 cells
with carbachol resulted in phase-locking of the resulting calcium responses and
sub-threshold spikes are present (Figure 24.6B). We then examined the phase-
locking ratio as stimulant concentration (C), stimulation duration (D) or rest
period (R) was varied. The PLR was measured for individual cells and then
averaged. The population-averaged PLR can be used to compare between
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different experimental conditions (Figure 24.7). Note that as C is increased,
PLR increases; the same trend is observed when D is increased (Figure 24.7A
and 24.7B). Thus increasing either C or D enhances the probability that a

(A)

(B)

(C)

(D)

Figure 24.6 Observation of phase-locked calcium responses and sub-threshold spikes
in three different cell types and with three different agonists. (A) Periodic
stimulation pattern. (B) HEK293 cell periodically stimulated with car-
bachol (C¼ 10 nM, D¼ 24 s, R¼ 24 s). (C) HeLa cell periodically sti-
mulated with histamine (C¼ 100 uM, D¼ 24 s, R¼ 24 s). (D) HeyA8 cell
periodically stimulated with extracellular calcium (C¼ 2 mM, D¼ 16 s,
R¼ 16 s). Here I/I0 signifies the FRET ratio of the calcium signal (I)
normalized to the minimum FRET ratio (I0), as has been done pre-
viously for analysis of intracellular calcium responses.48

(A) (B) (C)

Figure 24.7 Experimentally measured average phase-locking ratios of cell popula-
tions vs. increasing C, D, or R. in HEK293 cells periodically stimulated
with carbachol. (A) PLR vs. C (D¼ 24 s, R¼ 24 s). (B) PLR vs. D
(C¼ 10 nM, R¼ 24 s). (C) PLR vs. R (C¼ 10 nM, D¼ 24 s). As each
stimulation parameter was increased, there was a corresponding increase
in the PLR, providing useful comparisons to mathematical model pre-
dictions. The results presented here are representative of at least 60 cells
at each condition from three different experiments.14
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calcium response is going to result during a particular stimulation event. We
also found that increases in R produced increases in PLR (Figure 24.7C),
suggesting that a recovery mechanism allows a reset of the signalling system
if there is enough time between stimulation events.

24.8 Comparing Model and Experimental Results

These experiments described above (Figure 24.7) provide data on the M3
system for comparison with model predictions on phase-locking. The models
introduced above and the experimental data show increases in PLR with C or
D, so this comparison does not allow the models to be distinguished. However,
because sub-threshold oscillations are not seen with the Chay et al. model, and
because PLR decreases with R rather than increases with the Politi et al.model,
neither mathematical model is able to account for all of our experimental
observations even at a qualitative level.
A comparison between the models offers insights into GPCR-induced

calcium oscillations mechanisms, particularly the activation and recovery
properties of the M3 receptor/cell system are studied. The presence of
sub-threshold calcium responses (Figure 24.6B) suggests that the G protein
activation of PLC is graded and not switch-like as modelled by Chay et al. The
G protein activation properties thus appear more similar to those of the Politi
et al. model. However, increasing the rest period R in experiments resulted in
increases in PLR (Figure 24.7C). This result indicated that the recovery
properties of the system were better described by the Chay et al. model, sug-
gesting the existence of basal G protein activity driving basal IP3 production.

24.9 Model Revision
At least two approaches can be suggested to come up with a mechanistic model
that is more consistent with the experimental data. First, we can learn from the
comparison above and combine elements of each model to produce a model
that does a better job of agreeing with the data. In order to undertake
mechanism revision, elements from the respective calcium models that resulted
in correct predictions of the activation and recovery properties of the system
were combined.14 Phase-locking analysis indicated that the Chay et al. model
had the correct recovery properties, due to the inclusion of a basal G protein
activity mechanism. Analysis also suggested that the Politi et al. model pos-
sessed the correct activation properties, due to the graded activation of PLC by
G-proteins. Combining these two mechanistic elements, we created a revised
model and then evaluated it using phase-locking analysis (Figure 24.8).
Periodic stimulation resulted in the emergence of sub-threshold calcium
responses, confirming an improvement in the activation properties of the new
model (Figure 24.8A). As the rest period of the periodic stimulation increased,
the phase-locking ratio correspondingly increased (Figure 24.8E), indicating
that the recovery properties of the new system were accurate.
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The second approach takes account of the fact that the discrepancies between
models and experiments could be the result of incorrect parameter values in the
model. Uncertainty in model parameter values is a given, as assays to measure
all parameter values in vivo simply are not available. The Politi et al. model has
17 independent parameters, while the Chay et al.model has ten—most of which
were estimated and not measured directly. Rather than haphazardly attempting
to explore all possible parameter space, a sampling algorithm can be used to
effectively search a large parameter space to explore whether the differences
between the models and experiments are the result of the model parameter
values but not mechanisms. Latin Hypercube Sampling (LHS) is an algorithm
that we have implemented for this purpose; it entails specifying a distribution
(e.g. normal or uniform) and dividing it up into equal probability intervals

(A) (B)

(C)

(E)

(D)

Figure 24.8 Behaviours of the revised model (with basal IP3 production¼ 0.3 mM/s)
agree with experimental results of our phase-locking analysis. The model
was revised by adding the basal IP3 production term to the rate equation
describing IP3 production by PLC. (A) The revised model correctly
predicts that under continuous stimulation, the calcium oscillation per-
iod decreases with increasing stimulant concentration (mM/s). (B) The
model correctly predicts the presence of sub-threshold calcium spikes
upon periodic stimulation (C¼ 0.3 mM/s, D¼ 10 s, R¼ 50 s). (C,D,E)
Model predictions as stimulation concentration, stimulation duration,
and rest period are varied: PLR vs.C (mM/s) (D¼ 10 s, R¼ 50 s). PLR vs.
D (C¼ 0.3 mM/s, R¼ 50 s). PLR vs. R (C¼ 0.3 mM/s, D¼ 10 s).
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from which to sample without replacement.4,49,50 LHS is generally run for
hundreds to thousands of iterations and allows for simultaneous variation of
multiple model parameter values. In the context of this study, LHS was run for
both the Chay et al. and Politi et al. models to observe whether any parameter
set could result in the emergence of sub-threshold calcium responses. Para-
meters were sampled both from a normal distribution (with original parameters
for the mean and with a standard deviation of 100%) and a uniform
distribution (with a minimum of 0.1 times original parameter values and a
maximum of ten times original parameter values). None of the parameter sets
sampled were able to result in behaviour that agreed with our experimental
results.

24.10 Future Directions
We have demonstrated in this chapter that phase-locking analysis can provide a
useful tool for evaluating proposed mechanisms of GPCR-induced calcium
oscillations. In particular, phase-locking can reveal aspects of the activation
and recovery properties of oscillatory systems, particularly when the stimula-
tion time and time between stimulation events are varied. Importantly, phase-
locking analysis provides a qualitative tool: the ability of proposed models to
reproduce experimental behaviour, i.e. the existence (or not) of sub-threshold
oscillations and the behaviour (unchanged, increasing, decreasing) of the
phase-locking ratio (PLR) as stimulation parameters are varied can be assessed.
We demonstrated this concept here with two mathematical models of oscilla-
tory calcium signalling (and with seven more models in ref. 14). As another
qualitative test, Sneyd et al.51 detailed an approach that involves subjecting
cells to a pulse of IP3 and observing whether subsequent calcium oscillations
increase or decrease in frequency. This qualitative readout of GPCR signalling
can help determine whether IP3 oscillations are passive reflections of calcium
oscillations or absolutely necessary to produce the calcium oscillations. A
proposed mechanism that succeeds in passing qualitative tests can then be
subjected to more quantitative tests and rigorous determination of physical
parameter values. These tools complement existing genetic and chemical tools
for deciphering GPCR signalling.
With advancements in imaging and synthesis, other probes should be

available for phase-locking analysis and thereby provide even more dis-
criminating markers for evaluation of mathematical models and elucidation of
signalling pathways. Direct imaging of G protein dynamics has been
achieved,39 and with further development would be interesting to use for phase-
locking analysis. Other relevant signalling components to image would be
IP3,52 and perhaps protein kinase C (PKC)53 and the regulator of G protein
signalling (RGS) proteins.54

Microfluidic technology will also allow other stimulation patterns to be
tested. The phase-locking analysis described here relied on the ability to gen-
erate periodic (square-wave) stimulation. Other stimulation patterns such as
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saw-tooth patterns,55 different step patterns23,56 and sine waves57 are examples
of stimulation patterns that could be used in this context and might expand
the number of discriminating markers available for evaluating models and
elucidating mechanisms.
Collectively, the combination of microfluidics, real-time imaging, and

mathematical modelling provides a means of effectively elucidating molecular
mechanisms of signalling that has many future possibilities.

Acknowledgements
The authors would like to thank Bryan Howell, Michelle Cote, Susan
M. Wade, Khamir Mehta, Atsushi Miyawaki and Richard R. Neubig for
assistance with various aspects of the experimental or modelling work, and/or
helpful comments.
This research was supported by the following sources: NIH Microfluidics in

Biomedical Sciences Training Program (NIH NIBIB T32 EB005582), NIH
ARRA Summer Supplement, NIH grants R01 HL084370-04, R01 CA136829-
01, R33 HL092844, and the US Army Research Laboratories and the US Army
Research Office (under contract number DAAD 19-03-1-0168).

References
1. J. J. Linderman, J. Biol. Chem., 2009, 284, 5427–5431.
2. P. Bisegna, G. Caruso, D. Andreucci, L. Shen, W. Gurevich, H. E. Hamm

and E. DiBenedetto, Biophys. J., 2008, 94, 3363–3383.
3. S. J. Bornheimer, M. R. Maurya, M. G. Farquhar and S. Subramaniam,

Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 15899–15904.
4. T. L. Kinzer-Ursem and J. J. Linderman, PloS Comput. Biol., 2007, 3

84–94.
5. J. J. Saucerman, J. Zhang, J. C. Martin, L. X. Peng, A. E. Stenbit, R. Y.

Tsien and A. D. McCulloch, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
12923–12928.

6. A. Atri, J. Amundson, D. Clapham and J. Sneyd, Biophys. J., 1993, 65,
1727–1739.

7. T. R. Chay, Y. S. Lee and Y. S. Fan, J. Theor. Biol., 1995, 174, 21–44.
8. K. S. R. Cuthbertson and T. R. Chay, Cell Calcium, 1991, 12,

97–109.
9. G. Dupont and C. Erneux, Cell Calcium, 1997, 22, 321–331.

10. Y. X. Li and J. Rinzel, J. Theor. Biol., 1994, 166, 461–473.
11. A. Politi, L. D. Gaspers, A. P. Thomas and T. Hofer, Biophys. J., 2006, 90,

3120–3133.
12. J. Sneyd, Modeling IP3-dependent calcium dynamics in non-excitable cells,

in Tutorials in Mathematical Biosciences II, Springer-Verlag, Berlin, 2005,
Lecture Notes in Mathematics, vol. 1867, pp. 631–634.

13. L. Glass and M. C. Mackey, J. Math. Biol., 1979, 7, 339–352.

486 Chapter 24



14. A. Jovic, B. Howell, M. Cote, S. M. Wade, K. Mehta, A. Miyawaki, R. R.
Neubig, J. J. Linderman and S. Takayama, PLoS Comput. Biol., 2010,
6(12), e1001040.

15. R. Jacob, J. E. Merritt, T. J. Hallam and T. J. Rink, Nature, 1988, 335
40–45.

16. M. Prentki, M. C. Glennon, A. P. Thomas, R. L. Morris, F. M.
Matschinsky and B. E. Corkey, J. Biol. Chem., 1988, 263, 11044–11047.

17. N. M. Woods, K. S. Cuthbertson and P. H. Cobbold, Nature, 1986, 319,
600–602.

18. M. S. Baptista and I. L. Caldas, Nonlinear Dyn., 1998, 17, 119–139.
19. M. R. Guevara, L. Glass and A. Shrier, Science, 1981, 214, 1350–1353.
20. R. F. Galán and N. N. Urban, Phys. Rev. Lett., 2005, 94, 158101.
21. R. Wessel, Eigenmannia, Biophys. J., 1995, 69, 1880–1890.
22. S. Paliwal, C. J. Wang and A. Levchenko, HFSP J., 2008, 2, 251–256.
23. K. R. King, S. Wang, A. Jayaraman, M. L. Yarmush and M. Toner, Lab

Chip, 2008, 8, 107–116.
24. A. Sawano, S. Takayama, M. Matsuda and A. Miyawaki, Dev. Cell, 2002,

3, 245–257.
25. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M.

Whitesides, Nature, 2001, 411, 1016–1016.
26. A. Jovic, B. Howell and S. Takayama,Microfluid. Nanofluid., 2009, 6, 717–

729.
27. P. Hersen, M. N. McClean, L. Mahadevan and S. Ramanathan, Proc.

Natl. Acad. Sci. U. S. A., 2008, 105, 7165–7170.
28. G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang and D. E. Ingber,

Annu. Rev. Biomed. Eng., 2001, 3, 335–373.
29. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J.

Schueller and G. M. Whitesides, Electrophoresis, 2000, 21, 27–40.
30. J. N. Lee, X. Jiang, D. Ryan and G. M. Whitesides, Langmuir, 2004, 20,

11684–11691.
31. G. Mehta, M. J. Kiel, J. W. Lee, N. Kotov, J. J. Linderman and

S. Takayama, Adv. Funct. Mater., 2007, 17, 2701–2709.
32. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Sci-

ence, 2000, 288, 113–116.
33. N. Futai, W. Gu, J. W. Song and S. Takayama, Lab Chip, 2006, 6, 149–

154.
34. W. Gu, X. Y. Zhu, N. Futai, B. S. Cho and S. Takayama, Proc. Natl. Acad.

Sci. U. S. A., 2004, 101, 15861–15866.
35. S. M. Langelier, D. S. Chang, R. I. Zeitoun and M. A. Burns, Proc. Natl.

Acad. Sci. U. S. A., 2009, 106, 12617–12622.
36. B. Mosadegh, C. H. Kuo, Y. C. Tung, Y. S. Torisawa, T. Bersano-Begey,

H. Tavana and S. Takayama, Nat. Phys., 2010, 6, 433–437.
37. A. Jovic, S. M. Wade, A. Miyawaki, R. R. Neubig, J. J. Linderman, et al.,

Hi-fi transmission of periodic signals amid cell-to-cell variability. Mol.
BioSyst., 2011, in press, DOI: 10.1039/c1mb05031a.

38. A. Miyawaki, Dev. Cell, 2003, 4, 295–305.

487Using Microfluidics, Real-time Imaging and Mathematical Modelling



39. M. Akgoz, I. Azpiazu, V. Kalyanaraman and N. Gautam, FASEB J., 2004,
18, C257–C257.

40. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura
and R. Y. Tsien, Nature, 1997, 388, 882–887.

41. N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A.
Miyawaski and M. Matsuda, Nature, 2001, 411, 1065–1068.

42. Y. Nino, K. Hotta and K. Oka. PLoS ONE, 2010, 5(2), e9164.
43. V. Nikolaev, M. Bunemann, A. Hannawacker and M. J. Lohse, Naunyn

Schmiedebergs Arch. Pharmacol., 2004, 369, R46–R46.
44. J. R. Blinks, W. G. Wier, P. Hess and F. G. Prendergast, Prog. Biophys.

Mol. Biol., 1982, 40, 1–114.
45. G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem., 1985, 260,

3440–3450.
46. K. R. Gee, K. A. Brown, W. N. U. Chen, J. Bishop-Stewart, D. Gray

and I. Johnson, Cell Calcium, 2000, 27, 97–106.
47. A. E. Palmer and R. Y. Tsien, Nat. Protoc., 2006, 1, 1057–1065.
48. T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa and A. Miyawaki, Proc.

Natl. Acad. Sci. U. S. A., 2004, 101, 10554–10559.
49. S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, J. Theor. Biol.,

2008, 254, 178–196.
50. S. M. Blower and H. Dowlatabadi, Int. Stat. Rev., 1994, 62, 229–243.
51. J. Sneyd, K. Tsaneva-Atanasova, V. Reznikov, Y. Bai, M. J. Sanderson

and D. I. Yule, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1675–1680.
52. H. Shirakawa, M. Ito, M. Sato, Y. Umezawa and S. Miyazaki, Biochem.

Biophys. Res. Commun., 2006, 345, 781–788.
53. J. Goedhart and T. W. J. Gadella, J. R. Soc. Interface, 2009, 6, S27–S34.
54. X. Luo, S. Popov, A. K. Bera, T. M. Wilkie and S. Muallem, Mol. Cell,

2001, 7, 651–660.
55. L. Chen, F. Azizi and C. H. Mastrangelo, Lab Chip, 2007, 7, 850–855.
56. B. Kuczenski, W. C. Ruder, W. C. Messner and P. R. LeDuc, PloS ONE,

2009, 4, 8.
57. J. Olofsson, H. Bridle, J. Sinclair, D. Granfeldt, E. Sahlin and O. Orwar,

Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 8097–8102.

488 Chapter 24


