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ABSTRACT 
Motivation: Algorithms for predicting peptide-MHC class II binding 
are typically similar, if not identical, to methods for predicting pep-
tide-MHC class I binding despite known differences between the two 
scenarios. We investigate whether representing one of these differ-
ences, the greater range of peptide lengths binding MHC class II, 
improves the performance of these algorithms. 
Results: A nonlinear relationship between peptide length and pep-
tide-MHC class II binding affinity was identified in the data available 
for several MHC class II alleles. Peptide length was incorporated 
into existing prediction algorithms using one of several modifica-
tions: using regression to pre-process the data, using peptide length 
as an additional variable within the algorithm, or representing regis-
ter shifting in longer peptides. For several data sets and at least two 
algorithms these modifications consistently improved prediction 
accuracy. 
Availability: http://malthus.micro.med.umich.edu/Bioinformatics 
Contact: linderma@umich.edu 

1 INTRODUCTION  
Major histocompatibility complex (MHC) molecules, also known 
as human leukocyte antigens (HLA), are a vital component to the 
development of the immune response to pathogens (Kaufmann 
2005). These molecules act as receptors for peptides derived from 
foreign antigens as well as self peptides and enable the long-term 
display of antigens on the cell surface. T cells recognize antigenic 
peptides in the context of MHC, and depending on the class of 
MHC involved, recognition can lead to the death of the presenting 
cell or its activation. In either case peptide-MHC binding is an 
important prerequisite event and has far-reaching consequences to 
the ensuing response. 

Prediction of peptide-MHC binding therefore represents an im-
portant goal in bioinformatics, particularly as applied to immunol-
ogy, and a number of computational approaches have been devel-
oped (reviewed in Buus 1999; see also Robinson et al. 2003 for 
other MHC-specific bioinformatics tools). The simplest are based 
on motifs, i.e. requirements for particular amino acids at positions 
within the peptide as determined from pool sequencing of eluted 
peptides (Falk et al. 1991, Rammensee 1995 and references 
therein). Such approaches have largely been superseded by algo-
rithms using matrices to score the relative contribution of amino 
acids at each position within the peptide (Parker et al. 1994, Dav-
enport et al. 1995, Marshall et al. 1995). Machine learning meth-
ods including hidden Markov models and artificial neural networks 
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have also been applied, with peptide sequence serving as input and 
binding/non-binding as output (Brusic and Harrison 1994, Honey-
man et al. 1998, Mamitsuka 1998). More recently, attempts have 
been made to predict the structure of the peptide-MHC complex 
and free energy changes associated with binding (Altuvia et al. 
1997, Rognan et al. 1999, Schueler-Furman et al. 2000, Davies et 
al. 2003, Schafroth and Floudas 2004; for a review of current 
structural information and nomenclature see Kaas and Lefranc 
2005). It is also possible to combine some of these approaches, as 
Sturniolo et al. (1999) did using matrices to represent each pocket 
lining the peptide-binding groove. 

Continued progress in the development of these algorithms faces 
a number of challenges including how to handle differences be-
tween the two classes of MHC. Most prediction algorithms were 
first developed in the context of peptide-MHC class I binding 
which involves peptides of a narrow range of lengths, usually 8-10 
amino acids. These algorithms were then applied to peptide-MHC 
class II binding, typically with little or no modification. 

Despite the fact that both classes of MHC share superficial simi-
larities and bind a core of nine amino acids within peptides (Jones 
1997), important differences exist. In particular the open-ended 
nature of MHC class II peptide-binding groove allows for a wide 
range of peptide lengths (Brown et al. 1993). Peptides binding 
MHC class II usually vary between 13 and 17 amino acids in 
length, though shorter or longer lengths are not uncommon (Chicz 
et al. 1992, Sercarz and Maverakis 2003). As a result peptides are 
hypothesized to shift within the MHC class II peptide-binding 
groove, changing which 9mer window (register) sits directly 
within the groove at any given time. In contrast the capped nature 
of the MHC class I peptide-binding groove does not allow varia-
tion in length or such register shifting. 

Variation in peptide length may have important consequences 
for the binding and function of antigenic peptides (Malcherek et al. 
1994, Vogt et al. 1994). For instance, Srinivasan et al. (1993) 
found that a 23mer peptide derived from cytochrome c was 32 
times more immunogenic than a 10mer peptide containing the 
same putative binding core. A direct relationship between peptide 
length and binding affinity has been observed for some MHC class 
II alleles, but whether this holds true for most alleles remains un-
known, as does an explanation for why this relationship exists 
(Bartnes et al. 1999, Fleckenstein et al. 1999, Arnold et al. 2002, 
Sercarz and Maverakis 2003). In addition to having more binding 
registers, longer peptides also possess peptide-flanking residues 
(PFR) which lie outside of the peptide-binding groove and may 
interact with the MHC class II molecule at more distal locations 
(Sercarz and Maverakis 2003). Whether information regarding 
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peptide length, or any other peptide property lost by considering 
only 9mers, may aid prediction also remains unknown. 

In this study we address several issues related to peptide length 
and binding to MHC class II. Using aggregate data that are now 
available from online databases, we first examine whether a rela-
tionship exists between length and affinity for several MHC class 
II alleles. We then attempt to incorporate length into two existing 
binding algorithms in a number of ways, including using regres-
sion to pre-process the data, treating length as an additional vari-
able within the algorithms, and deriving a formula to more accu-
rately represent register shifting (Figure 1). We show that im-
provements to more than one current algorithm for predicting pep-
tide-MHC class II binding are possible with relatively simple 
amendments. We also comment on which mechanisms are likely to 
be affecting binding as peptide length increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Schematic of modifications made to existing algorithms to incorpo-
rate peptide length. Modification 1, Alternative Modification 1, and Modi-
fication 2 are abbreviated Mod. 1, Alt. 1, and Mod. 2. Also shown are 
examples of sources of data, algorithms used to remove homologous se-
quences from data, and algorithms to predict peptide-MHC class II binding. 

2 SYSTEMS AND METHODS 
Data sources    Peptide data sets used in this study are available from the 

AntiJen database (http://www.jenner.ac.uk, Blythe et al. 2002) and can be 
downloaded using the perl LWP::Simple module. Other peptide-MHC 
databases listing affinities are also available, including the Immune Epitope 
Database (currently in beta version at http://www.immuneepitope.org, 
Peters et al. 2005), but were not used in this study. Our data sets comprised 
the sequences and IC50 values of peptides binding the MHC class II alleles 
HLA-DRB1*0101, -DRB1*0401, and -DRB1*1501 from AntiJen. IC50 
refers to the concentration of peptide required to inhibit 50% of reporter 
peptide-MHC binding. When more than one IC50 measurement was avail-
able for a given peptide-MHC complex, the first measurement listed was 
used, unless otherwise indicated. IC50 values were converted into pIC50 
using the formula pIC50 = -log IC50 where IC50 has units of molar. Homolo-
gous sequences and their IC50 measurements were removed using Unique-
Prot (Mika and Rost 2003). Other algorithms for removing homologous 
sequences are also available, including Hobohm 1 and Hobohm 2 (Hobohm 
et al. 1992), but were not used in this study. The data sets were of the fol-
lowing sizes (before/after filtering by UniqueProt): DRB1*0101 (464/303), 

DRB1*0401 (606/414), DRB1*1501 (343/213). Two additional data sets 
were used to assess the effect of data set size, those for DRB1*0404 
(81/54) and DRB1*0405 (116/102). 

Regression of binding affinity versus peptide length    Both parametric 
and nonparametric fits were made to plots of affinity vs. length in the data. 
Parametric fits were made with one, two, and three fitted parameters (lin-
ear, quadratic, and cubic, respectively) using the open-source statistical 
program R (http://www.R-project.org, R Development Core Team 2005) 
and the function lm. Nonparametric local regression fits were made using 
the R function loess with default settings (Cleveland and Devlin 1988). 
To evaluate the quality of the fits analysis of variance was performed using 
the R function anova. An F statistic was generated which we used to 
compare linear with nonlinear parametric fits (Motulsky and Christopoulos 
2004). 

Nonparametric local regression fits were evaluated using a permutation 
test. In this test each pIC50 value was reassigned to a different peptide se-
quence at random, and a loess fit was re-derived for the shuffled values. 
This was repeated 1000 times, and the smallest 25 (2.5%) and largest 25 
(2.5%) fitted values at each length were excluded. The local regression fit 
to the original, non-shuffled data set was then compared to the remaining 
95% of permuted values at each length and was determined to be signifi-
cant if it fell outside of this interval. 

Simulations of register shifting    To simulate the effects of register shift-
ing on peptide-MHC class II binding affinity over a range of peptide 
lengths, we derived a formula for the expected value of the affinity of a 
single hypothetical peptide with multiple registers: 

E[K(X)] = ∑ K(xi) p(xi) [1] 

where K(X) is the equilibrium association constant, or affinity, of a peptide 
X, K(xi) is the affinity of a complex with a single register xi, and p(xi) is the 
probability of register xi occurring. We assume that p(xi) can be approxi-
mated by the proportion of complexes having register xi: 

p(xi) = N(xi) / ∑ N(xi). [2] 

where N(xi) denotes the number of complexes having register xi and the 
sum is taken over all possible registers. Belmares and McConnell (2001) 
found that the kinetics of shifting between two registers could be accurately 
represented as x1 ↔ P + M ↔ x2 where P and M are peptide and MHC, 
respectively. Based on this result, at equilibrium [x1] = K(x1)[P][M] and [x2] 
= K(x2)[P][M]. Because both x1 and x2 exist in the same solution, it follows 
that: 

N(x1) / [ N(x1) + N(x2) ] = K(x1) / [ K(x1) + K(x2) ]. [3] 

More generally, 

N(xi) / ∑ N(xi) = K(xi) / ∑ K(xi). [4] 

Combining Equations 1, 2, and 4, we obtain the following result for the 
expected affinity of a given complex when multiple registers are available: 

E[K(X)] = ∑ K(xi)2 / ∑ K(xi). [5] 

This result can also be applied to log-transformed measures of affinity such 
as log K(X). Henceforth we refer to Equation 5 (or its log-transformed 
counterpart) as the equilibrium-based formula for reconciling multiple 
registers.  

We assume that every overlapping 9mer window within a peptide can 
result in binding to MHC and therefore set the lower and upper limits of 
summation at 1 and l − 8, respectively, where l represents peptide length 
and is varied between 9 and 25, the shortest and longest lengths typically 
observed in our data sets. K(xi) was generated from a lognormal distribution 
with mean 107.5 and standard deviation 100.5, based on the observation that 
most values for the equilibrium dissociation constant KD of peptide-MHC 
binding fall in the range of 10-7-10-8 M (McFarland and Beeson 2002). 
Moreover, a lognormal distribution was chosen based on the equation for 
standard free energy change, ∆G° = -RT ln (1/KD) where R and T are the 
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gas constant and temperature, respectively (Eisenberg and Crothers 1979), 
and the assumption that free energy change for peptide-MHC binding is 
normally distributed. For each value of l between 9 and 25, a set number of 
values were generated (in our case, either 10 or 100), resulting in a scatter 
plot of simulated pIC50 values versus length. A curve was then fit to this 
plot using local regression (the loess function in R) with default settings. 

Peptide-MHC binding affinity prediction    Two algorithms were se-
lected to generate baseline predictions against which the effects of modifi-
cations based on length could be compared. One of these algorithms was 
the iterative self-consistent (ISC) partial-least-squares (PLS) algorithm of 
Doytchinova and Flower (2003). We implemented this matrix-based algo-
rithm for predicting peptide-MHC binding affinity in perl and R. Briefly, 
this algorithm uses partial least squares regression to identify underlying 
factors (also known as latent variables) relating multiple predictor variables 
to an outcome variable. In the case of peptide-MHC binding, 180 predictor 
variables were used to denote the presence or absence of the 20 possible 
amino acids within each 9mer window, and the outcome variable was bind-
ing affinity as pIC50. 

The initial steps of the algorithm were performed using perl scripts: 
splitting each data set into training and test sets; generating all possible 
9mers for each training set peptide; selecting only those 9mers having 
position 1 anchor residues (F, I, L, M, V, W, and Y); and converting 9mers 
thus selected into bit strings. PLS regression was then performed in R using 
the bit-encoded 9mers and their corresponding pIC50 values. PLS is avail-
able for R as the pls.pcr library (available at http://cran.r-project.org) 
and was called from within a perl script using the IPC::Open2 module. 
Default settings were used for PLS; however, some options in the commer-
cial software used by Doytchinova and Flower (2003) were not available in 
R, namely scaling method and column filtering. Subsequent steps in the 
algorithm were performed using additional perl scripts: selecting those 
9mers in the training set yielding predicted pIC50 values closest to experi-
mental pIC50 values during cross-validation and repeating the algorithm 
until the selected set of 9mers matched the previously selected set, i.e. 
when self-consistency was achieved. For computational expediency we 
limited the number of PLS iterations for any given peptide to 10. At that 
point the final PLS model was extracted and used to generate predictions 
on the test set. 

For test set peptides having more than one 9mer with an anchor residue 
in position 1, multiple predictions were generated and a rule was needed to 
make a final prediction. One option is to assume only one register pre-
dominates and to take the highest score from among the predictions. More 
complicated rules are also possible such as the combination rule of 
Doytchinova and Flower (2003) whereby the mean of the pIC50 predictions 
is chosen if they fall within a one log range; otherwise, the highest is cho-
sen. 

To measure the performance of the algorithm we used five-fold cross-
validation (5x-CV), setting aside one-fifth of each data set to use as a test 
set and using the other four-fifths as the training set. This process was 
repeated on the same data set four additional times until a prediction was 
made for each peptide in the data set and complete coverage was achieved. 
(This instance of cross-validation was independent of the leave-one-out-
cross validation used in the ISC-PLS algorithm.) The accuracy of each set 
of predictions was scored by calculating the area under receiver operating 
characteristic curve (AROC). This calculation can be done in R using the 
prediction and performance functions of the ROCR library. By 
repeating each 5x-CV multiple times, we were able to calculate the stan-
dard error of the AROC scores which could then be used to determine 
whether two mean AROC scores significantly differed by Student’s t test. 

A second algorithm that was selected was the TEPITOPE algorithm of 
Sturniolo et al. (1999). In this algorithm amino acid-binding profiles are 
generated for each pocket within the peptide-binding groove, and these 
profiles are combined according to MHC sequence. We did not regenerate 
these matrices but rather used the matrices available on the ProPred website 
(http://www.imtech.res.in/raghava/propred, Singh and Raghava 2001). 

Using the appropriate matrix a sum was calculated for each peptide in a 
selected AntiJen data set. To this value we added an approximation of the 
binding affinity of an all-alanine 9mer (pIC50 = 6.169, Doytchinova and 
Flower 2003) generating a final prediction. Performance was scored by 
calculating the AROC. 

Incorporating length into existing prediction algorithm    Peptide length 
was incorporated into the ISC-PLS algorithm using one of three modifica-
tions. In Modification 1 (Mod. 1) a local regression fit was first made to the 
peptide lengths and pIC50 measurements in each training set. (In the event 
that the pIC50 value for either the shortest or the longest length peptide was 
excluded from the training set but included in the test set, a local regression 
fit at that length could not be generated; instead, we assigned the average 
fitted values at the remaining lengths.) The value of the fit was then sub-
tracted from the original pIC50 value for each peptide, and the resulting 
difference, i.e. the residual, was then used in place of the original pIC50 
value. The ISC-PLS algorithm was performed as described earlier provid-
ing initial predictions on the test set. To these predictions the value of the 
regression fit was added yielding final predictions. Alternatively, in Alter-
native Modification 1 (Alt. 1), peptide length was appended as the 181st 
predictor variable to the bit-encoded training set and test set 9mers. The 
remainder of the algorithm was then performed as described earlier. Fi-
nally, in Modification 2 (Mod. 2) the formula derived to represent register 
shifting (Equation 5) was used to reconcile predictions made on multiple 
candidate 9mers, i.e. registers, within a test set peptide. This modification 
occurred at the last stage of the ISC-PLS algorithm and was used in place 
of the combination rule described above. 

Only Mod. 2 was used to incorporate length into the TEPITOPE/ProPred 
algorithm. When TEPITOPE/ProPred is applied to peptides with multiple 
registers, the highest score among the different registers is typically taken 
to be the score of the entire peptide (Brusic et al. 1998, Nielsen et al. 2004, 
Murugan and Dai 2005). We reconciled individual register scores using the 
equilibrium-based formula (Equation 5) but did not regenerate the pocket 
profiles and therefore did not apply Mod. 1 or Alt. 1 in this case.  

3 IMPLEMENTATION 

3.1 Peptide length significantly affects binding affinity 
to MHC class II 

To determine the nature of the relationship between peptide length 
and peptide-MHC class II binding affinity, we derived a number of 
regression fits to binding data for several MHC class II alleles 
from the AntiJen database. In all cases homologous sequences 
were first removed from the data sets using a pre-filtering algo-
rithm, UniqueProt (Mika and Rost 2003). Parametric fits were then 
made based on polynomials with one, two, or three fitted parame-
ters (linear, quadratic, and cubic, respectively). Analysis of vari-
ance from these fits showed that for these MHC class II alleles the 
nature of the relationship was most likely nonlinear (Table 1). A 
quadratic or cubic fit resulted in a significant reduction in sum of 
squares in all three cases at the 0.05 level. 

Table 1. Evidence of non-linear relationships in length-affinity data for 
several MHC class II alleles 

 DRB1*0101 DRB1*0401 DRB1*1501 

Quadratic, F 11.745 (<0.001) 8.575 (0.004) 3.670 (0.057) 

Cubic, F 5.849 (0.016) 0.708 (0.401) 4.871 (0.028) 

F statistics are shown for analysis of variance results with p values in parentheses. 
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To better characterize the apparent nonlinearities in the length-

affinity data we then made nonparametric fits to the data and ana-
lyzed the fits. Local regression was used to make nonparametric 
fits, and analysis was done using a permutation test. In this test 
binding affinities were reshuffled among peptide lengths to create 
1000 new data sets, and a local regression fit was re-derived for 
each data set. If the fit to the original data fell outside of the middle 
95% of permutation fits at any particular length, the nonlinearity at 
that length was determined to be significant. In each data set we 
found that the nonlinearity between length and affinity was signifi-
cant at one or more lengths (Figure 2). Lengths associated with 
strongest affinity could be identified, as could lengths associated 
with weakest affinity. For example, for DRB1*0401 affinity ap-
peared strongest for peptides of 12 amino acids and weakest for 
peptides of 20 amino acids. When the data sets were combined and 
the local regression fits were regenerated, the same trends were 
seen (Figure 2D): shorter peptide lengths, of approximately 12 
amino acids, were associated with higher affinity, while longer 
peptide lengths, of approximately 20 amino acids, were associated 
with lower affinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Local regression fits of peptide-MHC class II binding affinity versus 
peptide length for three HLA data sets: A, DRB1*0101; B, DRB1*0401; C, 
DRB1*1501; and D, the three data sets combined. 95% boundaries of per-
mutation distributions are shown (dotted) with fits to the original, non-
shuffled data (solid). 

Nonlinearities may have been present in the length-affinity data 
for several reasons, including the ability of peptides to shift regis-
ters within the MHC class II peptide-binding groove. To simulate 
the effect of register shifting on the mean affinity observed for 
peptides of different lengths, we used a simple statistical model 
based on two assumptions: first, that longer peptides are likely to 
contain more registers than shorter peptides, and secondly, that the 
measured affinity of a given peptide-MHC complex approximates 
the weighted average of the affinities of all the registers in a pep-
tide (Equation 5). For a simulated peptide of a given length l, the 
affinities of l − 8 registers were generated and averaged. This proc-
ess was repeated until the average affinities of either 10 or 100 
peptides at each length (i.e. each value of l) were obtained, result-
ing in data sets of two sizes (one of the same magnitude as those 
typically obtained from databases, the other an order of magnitude 

larger). At this point a regression curve was derived (Figure 3). For 
the larger sized data set the fitted curve was nonlinear and mono-
tonically increasing (Figure 3A). The same trend was seen in the 
smaller data set; in this case, however, deviations were also possi-
ble, resulting in maxima at mid-length peptides (Figure 3B). To-
gether these results suggest that register shifting may be one 
mechanism behind the nonlinearities in the length-affinity relation-
ship from experimental data sets. 
 

 
 
 
 
 
 

 

Fig. 3. Statistical simulations of the effects of register shifting on MHC 
class II binding affinity over a range of peptide lengths: A, for a 1700-
peptide data set; B, for a 170-peptide data set. Curve fits by local regression 
are shown overlaid. 

We also estimated the lengths of the amino- and carboxyl-
terminal portions of each peptide extending outside of the MHC 
class II peptide-binding groove to determine if particular lengths at 
either end of the peptide were favorable or unfavorable for binding. 
9mer cores were identified by position 1 anchor residues (F, I, L, 
M, V, W, Y), and the lengths remaining at each end were calcu-
lated. Local regression fitting and permutation testing were done as 
with overall peptide length. In most cases fits to amino- and car-
boxyl-terminal peptide extensions were determined to be signifi-
cant at one or more lengths (Figure 4 and additional data not 
shown). In comparing fits we found that extensions of 2-4 amino 
acids at the amino terminus and extensions of 1-2 at the carboxyl 
terminus generally appeared favorable for binding (Figure 4 and 
additional data not shown). Likewise, longer extensions (8 and 10 
amino acids at the amino and carboxyl termini, respectively) gen-
erally appeared unfavorable for binding (Figure 4 and additional 
data not shown). We also found that in at least some cases fits to 
overall peptide length could be decomposed into amino- and car-
boxyl-terminal contributions. For example binding to DRB1*0401 
was strongest when amino and carboxyl termini were 2 and 1 
amino acids, respectively (Figure 4). Together with the 9mer core, 
these lengths sum to match the overall length associated with 
strongest binding, 12 amino acids (Figure 2B). 
 
 
 
 
 
 
 
 

 

Fig. 4. Local regression fits of peptide-MHC class II binding affinity versus 
lengths of portions of the peptide extending outside of the peptide-binding 
groove for the HLA-DRB1*0401 data set: A, at the N terminus and B, at 
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the C terminus. 95% boundaries of permutation distributions are shown 
(dotted) with fits to the original, non-shuffled data (solid). 

3.2 Modifying algorithms to account for peptide 
length consistently improves performance 

We incorporated peptide length into two peptide-MHC class II 
binding prediction algorithms in one of three ways. First, as a pre-
processing event (Mod. 1 in Figure 1) a local regression fit was 
made for affinity vs. length in the training/fitting data and the value 
of the fit was subtracted from each affinity measurement. The re-
sulting residuals were used in place of the original pIC50 values in 
the training set. After the algorithm was used to make initial pre-
dictions for the target set peptides, the value of the regression fit 
for each target set peptide length was added to yield final predic-
tions. Alternatively (Alt. 1 in Figure 1) length was also incorpo-
rated directly into the existing algorithm as an additional variable 
(in the case of ISC-PLS, as the 181st variable). Training/fitting was 
then performed as published, and predictions were made on test set 
peptide sequences and peptide lengths. Lastly we used a formula 
derived from the equilibrium-based statistical model to reconcile 
predictions made by existing algorithms on multiple registers 
within the peptide (Mod. 2 in Figure 1). We point out that Mod. 1 
and Alt. 1 are similar modifications that both consider peptide 
length directly (by fitting length as a discrete variable); in contrast 
Mod. 2 considers binding registers (i.e. 9mers with a valid position 
1 anchor) and the relationship among them. Therefore, Mod. 1 and 
Alt. 1 are not used together, although either can be used with Mod. 
2. 

Incorporating peptide length by one or more modifications into 
the ISC-PLS algorithm improved the performance of the algorithm 
for all alleles examined (Table 2). Performance was measured by 
area under receiver operating characteristic curves (AROC) when a 
threshold of 500 nM was used to differentiate binding from non-
binding affinities (Sette et al. 1994). The performance of ISC-PLS 
in conjunction with a combination rule (mean if less than one order 
range; highest otherwise) to reconcile register predictions was used 
as a baseline (Doytchinova and Flower 2003). Taking the highest 
scoring register to be representative of the entire peptide was also 
done as a reference. In general using any of three modifications 
resulted in increases in algorithm performance. However the modi-
fication resulting in the greater increase differed by MHC class II 
allele. In the case of DRB1*0101, deriving a regression fit (Mod. 
1) resulted in significantly greater improvements than either using 
length as an additional variable or using the equilibrium-based 
formula to reconcile register predictions. In the case of 
DRB1*0401, all three modifications resulted in the same magni-
tude of increase in performance. Finally in the case of DRB1*1501 
only an application of both the regression fit (Mod. 1) and the 
equilibrium-based formula (Mod. 2) resulted in the greatest in-
crease in performance. Differences in which modifications resulted 
in the greatest increase in performance may be suggestive of allele- 
or data set-specific mechanisms behind the length-affinity relation-
ships. 

Table 2. Binding prediction accuracy of ISC-PLS algorithm for different 
MHC class II alleles when peptide length was incorporated 

DRB1*0101 ISC-PLS 
Mod. 1: Re-

gression fit 
Alt. 1: Length 

as variable 

Combination rule 0.615 ± 0.0091 0.754 ± 0.009 0.690 ± 0.013 

Highest scoring 
register 

0.652 ± 0.008 0.758 ± 0.006 0.705 ± 0.013 

Mod. 2: Equilib-
rium formula 

0.709 ± 0.005 0.770 ± 0.009 0.752 ± 0.003 

DRB1*0401 ISC-PLS 
Mod. 1: Re-

gression fit 
Alt. 1: Length 

as variable 

Combination rule 0.730 ± 0.0071 0.741 ± 0.010 0.749 ± 0.009 

Highest scoring 
register 

0.732 ± 0.015 0.750 ± 0.006 0.751 ± 0.005 

Mod. 2: Equilib-
rium formula 

0.757 ± 0.008 0.757 ± 0.004 0.754 ± 0.008 

DRB1*1501 ISC-PLS 
Mod. 1: Re-

gression fit 
Alt. 1: Length 

as variable 

Combination rule 0.574 ± 0.0091 0.596 ± 0.015 0.584 ± 0.020 

Highest scoring 
register 

0.575 ± 0.021 0.626 ± 0.014 0.603 ± 0.011 

Mod. 2: Equilib-
rium formula 

0.609 ± 0.019 0.677 ± 0.014 0.609 ± 0.018 

Five-fold cross-validation (5x-CV) was used and repeated five times. Mean AROC 
scores between predicted and experimentally determined pIC50 values are shown with 
standard errors of the mean. Highest scores are shown in bold with multiple scores in 
bold if pair-wise differences were not statistically significant. A threshold of 500 nM 
(Sette 1994) was used to distinguish binding from non-binding peptides. 1The ISC-
PLS algorithm with combination rule (Doytchinova 2003) was used as a baseline 
prediction. 

 
We also incorporated peptide length into the TEPITOPE/ProPred 
algorithm (Sturniolo et al. 1999) and without re-deriving the 
pocket-specific matrices that define that algorithm found that in-
creases in performance could be obtained by use of the equilib-
rium-based formula alone (Table 3). Typically in applications of 
TEPITOPE/ProPred to MHC class II, predictions on multiple reg-
isters are reconciled by taking the highest scoring register to be 
representative of the whole peptide (Brusic et al. 1998, Nielsen et 
al. 2004, Murugan and Dai 2005). We therefore used this rule to 
generate baseline predictions against which we could compare the 
performance of the equilibrium-based formula. Applying the for-
mula for register shifting increased algorithm performance for all 
three data sets examined. 
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Table 3. Binding prediction accuracy of ProPred algorithm for different 
MHC class II alleles when peptide length was incorporated 

 
ProPred: 

DRB1*0101 
ProPred: 

DRB1*0401 
ProPred: 

DRB1*1501 

Combination rule 0.685 0.741 0.669 

Highest scoring 
register 

0.6671 0.7541 0.6351 

Mod. 2: Equilib-
rium formula 

0.702 0.764 0.680 

Matrices were obtained from the ProPred website and used to calculate a score for 
each register within a peptide. To each score the approximate affinity of an all-alanine 
9mer to MHC was added (pIC50 = 6.169, Doytchinova and Flower 2003). AROC scores 
between predicted and experimentally determined pIC50 are shown, using a threshold 
of 500 nM (Sette et al. 1994) to distinguish binding from non-binding peptides. 
1Highest ProPred-predicted scores from all eligible registers were used as baseline 
predictions following recent precedents (Brusic et al. 1998, Nielsen et al. 2004, Mu-
rugan and Dai 2005). 

 
We also investigated whether our modifications might be ap-

plied to alleles for which fewer data exist. In analyzing the data for 
two other alleles, DRB1*0404 and DRB1*0405, we found no sig-
nificant nonlinearities in regression fits of length versus affinity 
(Supplementary Data). Consistent with the results of these fittings, 
we observed no increase in performance after applying either Mod. 
1 or Alt. 1 to the ISC-PLS algorithm when training sets were de-
rived from these data sets (Supplementary Data). An increase in 
performance was observed, however, for the larger of the two data 
sets using Mod. 2 (Supplementary Data). These results suggest that 
our proposed modifications, like matrix-based prediction algo-
rithms, are subject to limitations based on the size of the training 
set. 

4 DISCUSSION AND CONCLUSION 

Information is typically lost during the prediction of peptide-MHC 
class II binding because most algorithms focus exclusively on 
9mers within the peptide. An underlying assumption is that proper-
ties of the parent peptides that cannot be captured in their 9mers 
are irrelevant. This assumption may be true for MHC class I bind-
ing which involves peptides of nine amino acids almost exclu-
sively but may not be true for MHC class II binding. Peptides that 
bind MHC class II are variable in length and may contain segments 
that extend past the ends of the peptide-binding groove, also 
known as peptide-flanking residues or PFR (Brown et al. 1993). 
PFR-MHC interactions may in turn affect peptide-MHC binding in 
a manner that is consistent and useful to prediction. Longer pep-
tides also allow for register shifting, i.e. the ability of peptides to 
bind MHC using different core 9mers. PFR-MHC interactions and 
register shifting represent two possible mechanisms by which vari-
ability in peptide length affects affinity to MHC class II. 

In this study we found that nonlinear relationships exist between 
peptide length and peptide-MHC class II binding affinity in a 
number of aggregate data sets available online. When these nonlin-
earities were examined in more detail, they were found to be sig-
nificant at several lengths, suggesting some lengths were more 
favorable for binding than others. This is consistent with the data 

from a number of experimental studies (Malcherek et al. 1994, 
Vogt et al. 1994, Bartnes et al. 1999, Fleckenstein et al. 1999). In 
these studies affinity was generally found to increase with length 
up to the longest lengths examined, typically between 15 and 17 
amino acids. In our simulations register shifting was found to be 
one mechanism that could account for the direct relationship be-
tween length and binding affinity. However, our analysis of aggre-
gate data sets suggests that additional mechanisms also contribute 
to the effect of length on affinity. For example, register shifting 
alone cannot explain why certain lengths at the amino and carboxyl 
termini are advantageous or disadvantageous for binding 
DRB1*0401. In this case other mechanisms such as hypothesized 
PFR-MHC interactions that are either attractive or repulsive may 
also be playing a role (Sercarz and Maverakis 2003). 

Incorporating peptide length into existing binding prediction al-
gorithms by one or more of our modifications consistently im-
proved performance across MHC class II alleles. Three modifica-
tions were used—one at the level of the training set data (Mod. 1), 
another within the algorithm itself (Alt. 1), and the last after 9mer 
predictions were generated (Mod. 2)—and all resulted in perform-
ance gains over reference algorithms ISC-PLS and 
TEPITOPE/ProPred. Baseline AROC scores for two different algo-
rithms varied between 0.57 and 0.73. By comparison AROC scores 
for modified algorithms varied between 0.68 and 0.77, consistent 
with the range of scores listed in MHCBench 
(http://www.imtech.res.in/raghava/mhcbench/). The modification 
resulting in the largest performance increase differed by allele, and 
this may in part reflect differences in the mechanisms by which 
length affects affinity. For DRB1*0401, for example, using the 
formula for register shifting resulted in performance gains that 
were statistically indistinguishable from those obtained using other 
modifications. For DRB1*0101, however, modifications based on 
regression modeling resulted in significantly greater performance 
increases. These data therefore support roles for both register shift-
ing and other mechanisms. 

Previous studies have provided indirect evidence that accounting 
for variability in peptide length could improve prediction. Godkin 
et al. (1998), for example, found that matrices based on 15mers 
generally outperformed matrices based on shorter lengths, showing 
the usefulness of considering information outside of the core 9mer. 
Likewise, Bui et al. (2005) have proposed deriving a separate ma-
trix for each length of peptide (Bui et al. 2005). Despite the sug-
gestion that explicit consideration of peptide length could improve 
binding prediction (McFarland and Beeson 2002), to our knowl-
edge no previous study has implemented this idea. Our results 
affirm the use of peptide length in binding prediction. In addition 
our modifications are sufficiently general that they could be incor-
porated into other current algorithms based on scoring 9mers. 

Thus far experimental evidence of either register shifting or 
PFR-MHC interactions has involved only a small sampling of 
MHC class II alleles and been of indeterminate generality. For 
example, register shifting has been demonstrated to occur with 
alleles I-Ad and I-Au in mice and DR2 in humans (McFarland et al. 
1999, Li et al. 2000, Seamons et al. 2003, Bankovich et al. 2004). 
Solved structures exist for a somewhat wider array of alleles, in-
cluding I-Ad and I-Ak in mice and DR1, DR3, and DR4 in humans 
(see McFarland and Beeson 2002 for a review). Although these 
structures show the presence of PFRs in peptide-MHC class II 
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complexes, they fail to capture the dynamics of either register 
shifting or PFR-MHC interactions. 

Our analysis of regression fits to different aggregate binding 
data sets suggests that longer PFRs (i.e. in peptides longer than 
approximately 16 amino acids) may generally be deleterious to 
binding. At the same time, however, PFRs of a certain minimum 
length increase the probability of a peptide having multiple binding 
registers which, our simulations show, increases overall binding 
affinity. An optimal peptide length for binding each MHC class II 
variant may therefore exist. Further computational analysis of ag-
gregate data sets may provide a complement to more direct, obser-
vation-based studies in continuing to elucidate the role of peptide 
length in MHC class II binding. 
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